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We develop and apply an ab-initio approach to nuclear structure. Starting with the NN
interaction, that fits two-body scattering and bound state data, and adding a theoretical
NNN potential, we evaluate nuclear properties in a no-core approach. For presently
feasible no-core model spaces, we evaluate an effective Hamiltonian in a cluster approach
which is guaranteed to provide exact answers for sufficiently large model spaces and/or
sufficiently large clusters. A number of recent applications are surveyed including an
initial application to exotic multiquark systems.

1. INTRODUCTION

Quantum many-body theory with a fixed number of Fermions has a rich history in
Nuclear and Atomic Physics. In recent years, numerous applications in Particle Physics
and Nano-physics have also arisen. Few approaches are capable of providing exact answers
when the interactions have challenging long range and short range characteristics. The
Coulomb, inter-molecular and nuclear interactions all share this challenge. We review one
successful approach, the ab-initio no-core shell model (NCSM), and survey its applications.
Recent results with our method appear in a companion paper in these proceedings [1].

For further motivation, we present in Fig. 1 a sketch of the overlaps between ab-initio
methods, such as the NCSM, and some other areas of current intensive research. Our own
efforts have touched on a variety of the interfaces sketched in Fig. 1.

2. NO-CORE SHELL-MODEL

The NCSM [2-7] is based on an effective Hamiltonian derived from realistic “bare” in-
teractions and acting within a finite Hilbert space. All A-nucleons are treated on an equal
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footing. The approach is both computationally tractable and demonstrably convergent
to the exact result of the full (infinite) Hilbert space.

Initial investigations used two-body interactions [2] based on a G-matrix approach.
Later, we implemented the Lee-Suzuki procedure [8] to derive two-body and three-body
effective interactions based on realistic NN and NNN interactions.

2.1. Effective Hamiltonian

For pedagogical purposes, we outline the NCSM approach with NN interactions alone
and point the reader to the literature for the extensions to include NNN interactions. We
begin with the purely intrinsic Hamiltonian for the A-nucleon system, i.e.,
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where m is the nucleon mass and Vi(7; — 7;), the NN interaction, with both strong and
electromagnetic components. Note the absence of a phenomenological single-particle po-
tential. We may use either coordinate-space NN potentials, such as the Argonne potentials
[9] or momentum-space dependent NN potentials, such as the CD-Bonn [10].

Next, we add the center-of-mass HO Hamiltonian to the Hamiltonian (1) Hom = Tom +
Ucnm, where Uoy = %AmQZﬁQ, R = %224:1 7. In the full Hilbert space the added Hcw
term has no influence on the intrinsic properties. However, when we introduce our cluster
approximation below, the added Hcy term facilitates convergence to exact results with
increasing basis size. The modified Hamiltonian, with a pseudo-dependence on the HO
frequency €2, can be cast into the form
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In the spirit of Da Providencia and Shakin [12] and Lee, Suzuki and Okamoto [8,11],
we introduce a unitary transformation, which is able to accommodate the short-range
two-body correlations in a nucleus, by choosing an antihermitian operator S, acting only
on intrinsic coordinates, such that

H=e"Hie . (3)

In our approach, S is determined by the requirements that 7% and HY have the same
symmetries and eigenspectra over the subspace K of the full Hilbert space. In general,
both S and the transformed Hamiltonian are A-body operators. Our simplest, non-trivial
approximation to # is to develop a two-body (a = 2) effective Hamiltonian, where the
upper bound of the summations “A” is replaced by “a”, but the coefficients remain
unchanged. The next improvement is to develop a three-body effective Hamiltonian,
(a = 3). This approach consists then of an approximation to a particular level of clustering

with a < A.
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with

Vio.a = €S H2S =3 by (5)
=1

and S@ is an a-body operator;H! = hy + hy +hg+ ...+ hy +V,, and V, = i<i Vij-
Note that there is no sum over “a” in Eq. (4). Also, we adopt the HO basis states that
are eigenstates of the one-body Hamiltonian Zle h;.

If the full Hilbert space is divided into a finite model space (“P-space”) and a comple-
mentary infinite space (“Q-space”), using the projectors P and @ with P+ @ = 1, it is
possible to determine the transformation operator S, from the decoupling condition

Qe S H2S P, =0, (6)

and the simultaneous restrictions P,S@P, = Q,5Q, = 0. Note that a-nucleon-state
projectors (P,, Q,) appear in Eq. (6). Their definitions follow from the definitions of the
A-nucleon projectors P, (). The unitary transformation and decoupling condition, intro-
duced by Suzuki and Okamoto and referred to as the unitary-model-operator approach
(UMOA) [13], has a solution that can be expressed in the following form

5@ = arctanh(w — w') , (7)
with the operator w satisfying w = Q,wP,, and solving its own decoupling equation,
Que “H'e“P, = 0. (8)
Let us also note that H, .g¢ = Pae_S(a)Hg’eS(a)Pa leads to the relation

H,_og = (P, + w'w)™V2(P, + Pw!Qo) HY(QuwP, + P,) (P, + wiw)™/2. (9)
Given the eigensolutions, H|k) = Ej|k), then the operator w can be determined from

(aqlwlap) =3 (aqlk)(klap) , (10)
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where we denote by tilde the inverted matrix of (ap|k), i.e., Yo, (klap){ap|k’) = dpu
and Y, (ap|k) (k|ap) = Oty aps for k k' € K. In the relation (10), |ap) and |ag) are
the model-space and the Q-space basis states, respectively, and K denotes a set of dp
eigenstates, whose properties are reproduced in the model space, with dp equal to the
dimension of the model space.

With the help of the solution for w (10) we obtain a simple expression for the matrix
elements of the hermitian effective Hamiltonian

(ap|Haenlap) = 33 (ap|(Pa+wlw) o) ab k) Ey(kl o
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For computation of the matrix elements of (P, 4+ wfw)™'/2, we can use the relation

(ap|(Py + wiw)|ap) = g(ap\/%)@\a'é) : (12)



We note that in the limit @ — A, we obtain the exact solutions for dp states of the full
problem for any finite basis space, with flexibility for choice of physical states subject to
certain conditions [14].

On account of our cluster approximation a dependence of our results on N, and on
() arises. For a fixed cluster size, the smaller the basis space, the larger the dependence
on €. The residual N,, and €2 dependences can be used to infer the uncertainty in our
results.

The model space P, is defined by the maximal number of allowed HO quanta of the
A-nucleon basis states N, from the condition 2n 4+ 1 < Ny — Ngpsmin, Where Nypgmin
denotes the minimal possible HO quanta of the spectators, i.e., nucleons not affected by
the interaction process. For example, B, Nypsmin = 4 as there are 6 nucleons in the
Op-shell in the lowest HO configuration and, e.g., Ny = Nypsmin + 2 + Nmax, Where Npax
represents the maximum HO quanta of the many-body excitation above the unperturbed
ground-state configuration. For 1B, N, = 12 for an Ny, = 6 or “6AQ” calculation.

In order to construct the operator w (10) we need to select the set of eigenvectors K.
We select the lowest states obtained in each two-body channel. It turns out that these
states also have the largest overlap with the model space for the range of A} we have
investigated and the P-spaces we select. Their number is given by the number of basis
states satisfying 2n + 1 < Ny — Ngpsmin-

We input the effective Hamiltonian, now consisting of a relative 2-body operator and
the pure He s term introduced earlier, into an m-scheme Lanczos diagonalization process
to obtain the P-space eigenvalues and eigenvectors. At this stage we also add the term
Heyr again with a large positive coefficient to separate the physically interesting states
with 0S5 CM motion from those with excited CM motion. We retain only the states with
pure 0S CM motion when evaluating observables. All observables that are expressible
as functions of relative coordinates, such as the rms radius and radial densities, are then
evaluated free of CM motion effects.

We close our presentation on the theoretical framework with the observation that all
observables require the same transformation as implemented on the Hamiltonian. To
date, we have found rather small effects on the rms radius operator when we transformed
it to a P-space effective rms operator at the a=2 cluster level [6]. On the other hand,
substantial renormalization was observed for the kinetic energy operator when using the
a=2 transformation to evaluate its expectation value [15].

3. ILLUSTRATIVE RESULTS AND DISCUSSION

Here we will present only results at the a=2 cluster level. Fig. 2 depicts how the
binding energy for 3H converges to the exact result for different choices of the basis space
size (governed by Np..) and the single particle wave function length scale (governed by
hQ) [6]. If we select hS) with the criteria of least sensitivity to Np,q., we achieve excellent
results at rather low values of N,,qz.

We present the 6w results for 2C in Fig. 3. These results extend those presented
through 4A) in Ref. [6]. We note the reasonable convergence of the states dominated by
0AS2 configurations while the low-lying experimental “alpha-cluster” states, or “intruder
states” in our language, will require significantly larger model spaces to converge.
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Figure 1. Illustration of overlaps between ab- Figure 2. The dependence of the 3H

initio nuclear many-body theory with other ground-state energy on number of HO

current research areas. quanta in the basis space for the CD-Bonn
interaction at three values of Af).

In Fig. 4 we present, for the first time, initial results for 0. Since the binding energy
showed a strong dependence on N,,.,, while the binding of the first excited 0T state
exhibits far less sensitivity, we portray our spectra beginning with the first excited 0%
state and shift theory to agree with that experimental state. All known excited states
are observed in the NCSM. To gauge convergence, we portray the RMS change in the
depicted eigenvalues when progressing from the 2A{) through the 6A£2 basis spaces. It
is encouraging to note that the RMS change in eigenvalues decreases by a factor of two
over the range of results presented. We conclude that the residual disagreements with
experiment, as indicated by RMS deviation of more than 1 MeV between the 6A) results
and experiment, are unlikely to be overcome in larger model spaces. Instead, we conclude
that we need NNN interactions to explain most of the remaining differences.

In view of the great interest in nuclei far from stability, we evaluate the spectra of
16C using the same effective Hamiltonian as we employed for 0. Our initial spectra
above the 07 ground state for *C through the 4A{) basis space consists of the states
27.017,2%, 3% and 4" at excitation energies of 2.06, 3.25,4.66,4.77 and 5.66 MeV respec-
tively. These results are in reasonable agreement with the experimental excited state
spectra of 2%, (0%),2,3+) and 4% at excitation energies of 1.77,3.03,3.99,4.09 and 4.14
MeV respectively. It will be interesting to evaluate the B(E2) for the transition from the
first excited state to compare with the reported anomalous hindering of this transtion
[16].

In an initial application to multiquark systems [17], we have fit a QCD-inspired phe-
nomenological non-relativistic effective Hamitonian to the low-lying Charmonia spectra
in a 10A£2 model space. We adjusted the charm quark mass, coupling constants and A2 in
two separate fits to the lowest four negative orbital parity and lowest four positive orbital
parity states. The fits are competitive with standard constituent quark models.

We then solve for the masses of the tetraquark states in the same model space, and
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Figure 3. Low-lying spectra of 12C from the Figure 4. Low-lying %O states from the
CD-Bonn interaction at the a=2 cluster ap- CD-Bonn interaction at the a=2 cluster
proximation in the NCSM. The spectra are approximation in the NCSM with hQ) =
shifted to align the calculated ground state 15 MeV. The spectra are aligned with the
with the exerimental ground state. experimental first excited 0% state.

we obtain states whose quantum numbers indicate they are bound with respect to the
closest allowed threshold for decay by breakup. Net binding in the range of 50-200 MeV
are indicated by these results. Note that we use projection techniques to assure that
the tetraquark states are global color singlets. Apparently, few previous experiments had
the sensitivity to observe these exotic systems so it will be interesting to see if future
experiments observe these “all-charm tetraquarks.”

To close, we mention a few of our efforts to address unsolved problems, some of which
sit squarely on the interfaces depicted in Fig. 1. In the near term, we are addressing
comparisons of spherical Hartree-Fock with NCSM results [18], extrapolation methods
to extend the NCSM to larger spaces [19], NCSM applications to the halo nucleus °He
comparing with neutron-neutron correlation data from breakup reactions [20], extending
NCSM to evaluate effective operators for additional observables [21], NCSM applications
to A = 48 nuclei with intentions of addressing nuclear double beta-decay [22], NCSM
applications to A = 56 nuclei addressing statistical properties relevant for nuclear astro-
physics [23], applications to quantum field theory [24] and to multiquark systems with
relativistic Hamiltonians more closely aligned with QCD [25].

Clearly, the road ahead is promising and we anticipate many additional forefront ap-
plications of the NCSM in the future.

REFERENCES

1. B.R. Barrett, P. Navratil, A. Nogga, W.E. Ormand, and J.P. Vary, see contribution
in these proceedings.

2. D. C. Zheng, B. R. Barrett, L. Jaqua, J. P. Vary, and R. L. McCarthy, Phys. Rev. C
48, 1083 (1993); D. C. Zheng, J. P. Vary, and B. R. Barrett, Phys. Rev. C 50, 2841



11.

12.
13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.

(1994); D. C. Zheng, B. R. Barrett, J. P. Vary, W. C. Haxton, and C. L. Song, Phys.
Rev. C 52, 2488 (1995).

P. Navratil and B. R. Barrett, Phys. Rev. C 54, 2986 (1996); Phys. Rev. C 57, 3119
(1998).

P. Navrétil and B. R. Barrett, Phys. Rev. C 57, 562 (1998).

P. Navratil and B. R. Barrett, Phys. Rev. C 59, 1906 (1999); P. Navratil, G. P.
Kamuntavicius and B. R. Barrett, Phys. Rev. C 61, 044001 (2000).

P. Navritil, J. P. Vary and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000); Phys.
Rev. C 62, 054311 (2000).

P. Navratil, J. P. Vary, W. E. Ormand and B. R. Barrett, Phys. Rev. Lett. 87, 172502
(2001). E. Caurier, P. Navratil, W. E. Ormand and J. P. Vary, Phys. Rev. C 64, 051301
(2001).

K. Suzuki and S.Y. Lee, Prog. Theor. Phys. 64, 2091 (1980); K. Suzuki, Prog. Theor.
Phys. 68, 246 (1982).

R. B. Wiringa, V. G. J. Stoks and R. Schiavilla, Phys. Rev. C 51, 38 (1995).

. R. Machleidt, F. Sammarruca and Y. Song, Phys. Rev. C 53, 1483 (1996); R. Mach-

leidt, Phys. Rev. C 63, 024001 (2001).

K. Suzuki, Prog. Theor. Phys. 68, 246 (1982); K. Suzuki and R. Okamoto, Prog.
Theor. Phys. 70, 439 (1983).

J. Da Providencia and C. M. Shakin, Ann. of Phys. 30, 95 (1964).

K. Suzuki, Prog. Theor. Phys. 68, 1999 (1982); K. Suzuki and R. Okamoto, Prog.
Theor. Phys. 92, 1045 (1994).

C.P. Viazminsky and J.P. Vary, J. Math. Phys., 42, 2055(2001).

H. Kamada, et. al, Phys. Rev. C 64 044001(2001).

N. Imai, et. al, Riken preprint AF-NP-452, August 2003.

R.J. Lloyd and J.P. Vary, “All-Charm Tetraquarks,” hep-ph/0311179.

M.A. Hasan, J.P. Vary, and P. Navratil, Phys. Rev. C to appear.

H. Zhan, A. Nogga, B.R. Barrett, J.P. Vary and P. Navratil, Phys. Rev. C to appear.
O. Atramentov, J.P. Vary and P. Navratil, in preparation.

I. Stetcu, et. al, in preparation.

S. Popescu, S. Stoica and J.P. Vary, in preparation.

B. Shehadeh, M.A. Hasan and J.P. Vary, in preparation.

D. Chakrabarti, A. Harindranath and J.P. Vary, hep-ph/0309317, Phys. Rev. D. to
appear; D. Chakrabarti, A. Harindranath, L. Martinovic, G. Pivovarov and J.P. Vary,
hep-th/0310290; D. Chakrabarti, A. Harindranath, L. Martinovic and J.P. Vary, hep-
th/0309263.

R.J. Lloyd, J.R. Spence and J.P. Vary, in preparation.



