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1 Introduction

This paper describes the derivation of analytic expresdionthe angular resolution of reconstructing
gamma rays detected via Compton interactions. We considentytpes of gamma-ray detectors:
Compton-ring and electron-tracking devices.

In Compton-ring devices, the direction of the scatteredteda is not resolved, only the total
energy (electron and scattered photon) and the scattecédmdirection are measured. The measured
gquantities define a cone about the axis of the scattered phtection (see Figure 1). The initial
photon direction lies along this cone. Thus for single evémére is a ring-like ambiguity in the photon
direction. By combining multiple events, the intersectafrthe reconstructed rings will resolve the
initial direction of the photon source. In this paper, weigethe resolution of the cone angle for
individual rings.

Electron-tracking type devices resolve the electron pafthough the scattered electron subse-
quently undergoes multiple-Coulomb scattering, it is pmedo measure the initial electron direction
with sufficiently high tracking resolution. By measuringettlirection and energy of the electron and
the direction of the scattered photon, the initial photorection can be uniquely determined. The
challenge for this type of detector is achieving the higlkiag resolution.

In Section 2 we derive the well-known Compton formula for Gaom-ring devices, an analytic
expression for the angular resolution of the cone angle,disliss the limits for applying the er-
ror formula. In Section 3 we repeat the derivation of the refumction for the algebraically more
complicated electron-tracking device. In the final sec{i®action 4) we derive the effect of position
measurement error on the angular resolution, which apgibsth detector types. All of the analytic
results are cross-checked against empirical fits to a siMplae Carlo simulation (Sections 2.5, 3.3,
and 4.2).

Doppler broadening, the effect due to the initial (and mdigally unknown) momentum of the
atomic electron, can be ignored for gamma rays with initiedrgy greater than a few hundreev.
For all kinematic calculations in this paper, the electrotaken to be initially at rest.
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Figure 1. Compton interaction in which an incoming photei gcatters off of an
atomic electron. Unless the electron direction is resqltieere is ap-like ambi-

guity (represented by the ring in the drawing) for the retmesed initial photon
direction.

2 Compton-ring devices

2.1 Derivation of the Compton formula

Assume that the initial electron is at rest, then from coret@n of momentum, the electron recoils
from the scattered photon (see Figure 1):

ﬁe:ﬁ'y_ﬁ'y’-

Taking the square of the momentum and usig p, and E.,= p,, (since photons are massless and
we are using units where c=1), results in

pez f— EA{Z + E.Y/Z — 2E7E-y/ COS 9

Using the invariant mass relatipp® = E.%—m.? and conservation of enerd¥,, + m. = E. + E./)
to eliminate the electron variables and E. results in

Ey +2mcEy +m.* — 2E,Ey — 2mEy + E% — m.?
=E,>+E,?—2E,E. cosb,

which reduces to
me(Ey — Ey) = EyE (1 —cosf).

This is often rewritten as

6059:14_%_7”8

: 1
E, E, @)

2.2 Compton formula implications

As the electron kinetic energ¥. = E. — m,., approaches zero the scattering arglso goes to
zero. Obviously at zero angle there is no scattering and ukgomng photon has the same energy as
the incoming photot £, = E./).
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At the other extreme, the maximum electron energy (and mimnoutgoing photon energy) oc-
curs atd = , i.e., when the photon scatters back in the direction oppasithat of the incoming
photon. The maximum electron kinetic energy is

E?

Re(max) = g—— 75
o7 e

while the minimum outgoing photon energy is not zero, bubhgtead

e 1K (max) (\/Qme/K (max) +1 — 1)

By (min) = 5= me/E, 2

2.3 Derivation of Compton angle error

The Compton anglé in Equation 1 depends only on the energy of the inconifig= E., + E.—m.)
and outgoing [,/) gamma rays. If one considers only small Gaussian errorthéoobservables’,
andE./, then one can derive an analytic expression for the erréramfollows.

Taking the differential of Equation 1 yields
m m
d(cos0) = —sinfdf = ——SdE, + —=dE.,,
E»YZ v E’YIZ Y
which can be rewritten as
E 2
E T~ 2

do = — e [dE

o ]
sin 0,

Sincel, = E, + E,, —m., we havedE,, = dE, + dE.,. Applying this to the previous equation for
df results in

dg = — e [dE + ( 5—722> dE,Y/] . )

sin 0L, 2 o

This equation defines the partial derivativé/OF, andd¢/0E.,. So for Gaussian erroisl, and
0E., the error estimate fat is

Me E.? 2
60 = —=—\|6E2+ (1 - =25 | §E.2 3
smHE \/ + < E,Y/2> 7 ®)

This equation is valid as long as the fractional errGf&, /E. anddE.//E./) are not too large.
Furthermore, one must be careful when applying this equatigituations nea = 0 or .

2.4 Caveats in error function near@ = 0 or

The case wheré is exactly zero is not a problem since this only occurs whenellectron kinetic
energy(K. = E. — m,) is zero. Thus there is no detected first interaction and onddamot apply
the Compton formula. Arbitrarily small values &f, also do not cause a problem for Equation 3 until
they approach the magnitude of the energy resolution itself
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For arbitrarily small values of the kinetic energy, i.&,/E, < 1, the Compton formula (Equa-
tion 1) and energy conservatioh{ = E, — K.) imply

to lowest order inK. /E.,. Thus to lowest order, the square of Equation 3 can be appsizd as

2
502 ~ me |[0K +4Ke

~ SE2|.
2B, | Ko B,

From this one can see th#t? begins to blow up when the the kinetic energy becomes sniherthe
square of the energy resolutioi ., but is well behaved otherwise. Note that the second téfmf%’)
is suppressed for small.. Whenk, is smaller than about twice the energy resolution, the Gaiss
approximation itself breaks down and Equation 3 will begiroverestimate the error th To apply
this formula, one should impose a lower cutoff on the elecanergy based on the energy resolution.
For the case wher& is nearr, the scattered photon energy is near its minimum (but carf@&ot
zero — see Section 2.2). Because of finite detector reso|utie observed photon energy can fluctuate
downward and even be lower than the minimally allowed enefgiyese kinematically unallowed
events will be explicitly rejected since the Compton foreniitelf fails. However, the case where the
photon energy reaches its minimum is kinematically allow€dr these events at or very near the
minimum, the error formula approaches infinity. To highti¢iiee behavior near the minimum energy,
we can rewrite the equation usidg, = E£./(min)(1 + €), wheree < 1. In this limit, the Compton
formula (Equation 1) implies
sin? @ ~ %
E’Y
Thus to lowest order, the square of Equation 3 can be appeatziiras

_ 2\ 2
SE2 + (1 - %> SE.*

562 ~ e
E,Y/2(min)

- QEE,Y3

Neither term § . or 6 2,/) is suppressed, so in order to avoid this infinity (when 0), one should
eliminate events that are less than at least one standaiatideV(in terms of the energy resolution)
away from the minimum photon energy.

2.5 Numerical cross-check of Compton-ring error function

To check the validity of Equation 3 we performed a simple MoGarlo analysis by generating Gaus-
sian distributions for the input variablds, and £, and compared the resulting distributiontofvith
the analytic expression. We generated 100,000 events vither€ompton electron kinetic energy
(E. —m.) was sampled from a Gaussian distribution with a mean ofkt®0and RMS of 1keV, and
the scattered gamma ray energy distribution had a mean atd0@ith an RMS of 2keV.

Using Equation 1 we reconstruct the Compton argfeom the simulated observables. Figure 2
shows the reconstructetidistribution. We fit a simple Gaussian function to this disttion. The
parameters from the fit along with the results from the amalxpressions (Equations 1 and 3) are
given in Table 1 The agreement between the fit and the anabtieession is excellent.
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Figure 2: Compton-ring detector. Reconstructed Compt@heghfrom a simula-
tion of a single physical event sampled 100,000 times withgS&n errors for the
observed energies. The fit result is superimposed on thébdisbn.

Table 1: Compton-ring detector. Compton angle and errompaoison between a fit to the simulation
and an analytic calculation. Sample of 100,000 events wiherelectron kinetic energy is 108V
with an RMS error of keV, and scattered gamma-ray energy of #4680 with an RMS error of ZeV.

Variable Fit Result| Analytic Result
6 (mrad) | 731.03 + 0.02 731.01
060 (mrad) 4.61 +£0.01 4.61
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Figure 3: Compton interaction. Same as Figure 1 with theteseat photon and
electron opening angle labeledas

3 Electron-tracking devices

3.1 Derivation of kinematic relations @ la Compton formula)

The kinematic relations derived in Section 2 also apply todhectron-tracking type detector. Since
the electron-tracking devices resolve the direction ohhtbe electron and photon, it is useful to
derive some additional relations in terms of the openindeanddefined in Figure 3) of the observed
particles. From conservation of momentwin= p., + p. and usingk, = p, andE,, = p./ (since
photons are massless), the square of the initial photon miommeis

EVQ = E,Y/Q + pe? + 2E,pe cos a.
Using the invariant mass relatign® = F.?—m.2 and conservation of energy., = E./ + E. — m.)
to eliminate the incoming photon energy, from the previous equations gives

Eyz +2E (Ee —me) + (Ee — me)? = EV/2 +p? + 2E./pe cos o

Solving for £,/ results in

Eﬁy/ — me(Ee - me)

(4)

E, —me —pecosa

Applying conservation of energhfe, = E.» + E. — m,) to the above equation gives

B - (Ee —me)(Ee — pe cos a) (5)
K E, —me —pecosa

Note that the ratio of Equation 4 and 5 is
& _ FE. — p.cosa

E’Y' me

Combing the Compton formula (Equation 1) with Equations d &ryields a relation between the
Compton anglé and the angle between the electron and scattered photon

(E. — me — pe cos a)?

cosf =1— .
(Ee — me)(Ee — pe cos a)

(6)
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3.2 Derivation of electron-tracking angular error function

The error function derived in Section 2 also applies for tetettracking devices with one important
distinction: since the electron trajectory is measuregkglis no ambiguity in determining the direction
of the initial photon. One component of the photon direcimoompletely determined by the plane
formed by the scattered electron and scattered photon. ridreom the angular component within that
plane is calculated below.

We start with the analytic expression for the angular ertbgigen by Equation 2. For electron
tracking devices we measure the electron enelgy put not the scattered photon energy(). Using
Equation 4 we can find the relationship between the errofsonwith the error on the measured
gquantitiesF, anda. We can then combine this relation with the previously dedierror function to
find an equation in terms of measured quantities only.

Taking the differential of Equation 4 gives

medE, Me(Ee — me)

- dE. — cos adp, + pe sin adal]
Ee —me—pecosa (B, —me — pe cosa

dE’Y/ = )2 [

Using E.dE, = p.dp. (which follows fromE.? = p.2 — m.?) and Equations 4 and 5 to simplify the
expression, we get

E. B E,ylz(pe - E. cosa)) B E,lepe sin a o

dE. = 7 _—
7 <Ee — Me mepe(Ee - me) me(Ee - me)

Substituting this into Equation 2 and regrouping in termdBfand c gives

E,”—E,* E E. —
do = 2( i u ) Kl— e ——ecosa—l—M) dEe + pesinado| .
E.*(E, —me)sin6 E,  pe E)°—-E,

This equation defines the partial derivativéy/ 0 E. anddf/da. So for Gaussian errords, andda,
the error estimate fof is

E>— E. 2 E E. - ?
(59: ( il i ) \/(1—me ——eCOSQ+M> 5E62—|—p6231n2a5042.

E*(E. —me)?sing Ey  pe E?-E,?

()

This equation is valid as long as the fractional errors intteasured quantities are not too large. As
in the Compton-ring case, one must be careful when applyiiggerror function neaé = 0 or 7.
Also note that this is just the error of one component of thggeanThe orthogonal component and its
associated error are completely determined by the planeatkefly the observed electron and photon
trajectories.

3.3 Numerical cross-check of electron-tracking error funt¢ion

To check the validity of Equation 7 we performed a simple MoGarlo analysis by generating Gaus-
sian distributions for the input variablds, anda and compared the resulting distribution étvith
the analytic expression. We generated 100,000 events vither€ompton electron kinetic energy
(E. — m.) was sampled from a Gaussian distribution with a mean of 00and RMS of 1GkeV,
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Figure 4: Reconstructed Compton anglérom a simulation of a single physical
event sampled 100,000 times with Gaussian errors for theredd energies. The
fit result is superimposed on the distribution.

Table 2: Electron-tracking detector. Compton angle andrezomparison between a fit to simu-
lation and an analytic calculation. Sample of 100,000 evevitere the Electron kinetic energy is
1000keVwith an RMS error of 1keV, and the opening angle between the scattered electron and
gamma ray is 1600 mrad with an RMS of 10 mrad. with and RMS af@rkeV.

Variable Fit Result| Analytic Result
f (mrad) | 1264.70 + 0.04 1264.75
060 (mrad) 13.47 £0.03 13.49

and the opening angle between the scattered electron anti@asay had a mean of 1600 mrad with
an RMS of 10 mrad.

Using Equation 7 we reconstruct the angleom the simulated observables. Figure 4 shows the
reconstructed distribution. We fit a simple Gaussian function to this dmition. The parameters
from the fit along with the results from the analytic expressi (Equations 6 and 7) are given in
Table 2. The agreement between the fit and the analytic esipress excellent.
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4 Generic effects

4.1 Derivation of angular error due to position resolution

The direction of the outgoing photon is determined from theasured positions of the two interac-
tion points. The measurement uncertainty of these positiveates an associated uncertainty in the
direction of the photon. One can derive an analytic expoesiir the angular error due to the position
resolution as follows.

If two pointsv; = (z1,y1,21), v2 = (=z2,y2,22) define the direction of the outgoing photon
U = vy — v1, then the angle between the photon and some arbitrary wtibne is

n-v=vcosf =y,

wherev is the component of parallel ton.. The component perpendiculards thenv, = vsin#.
Taking the differential ob cos 6 = v gives

dv cos 0 — sin Qvdl = dU”.

Usingudv = vy dvy +vdvy (which comes from the differential of = v* + v, ?) and substituting
into the equation above, results in

v
cos 6 (U—ldvl + ld/v”) — sin fvdf = dvj.
v v
Using thesin 6 andcos 6 relations, this can be simplified to
1
df = F (U”d'UJ_ — 'UJ_d'UH) .

For Gaussian measurement errors, this gives an error éstagha

1
00 = U—2\/’UH25’UJ_2 + UJ_26'UH2. (8)

If one wants the error estimator for just the unit vector pek#o the photon direction, i.en, = ¥/v,
then the above equation reducesto= v /v.

If 0d is the measurement error for each coordin@tey, z) of each pointv; and vy, then the
measurement error for the coordinates of the vectare

6UJ_ = (52}” = \/§5d

Then Equation 8 simplifies to

V2

(%

80 = Y=4d. ()]

This relation holds as long as the separation between thantes@action points is significantly larger
than the measurement resolutidh
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4.2 Numerical cross-check of error function due to positiorresolution

To check the validity of Equation 9 we performed a simple MoGarlo analysis by generating Gaus-
sian distributions for the individual coordinates of theotimteraction points that define the photon
direction. We generated 100,000 events where each cotediiaal an RMS of 0.01 mm. The mean
starting and ending locations were (0,0,0) and (0,0,1) mm.

For each event we calculate the opening angle between thermpkorection and the expected
direction. Figure 4 shows the opening angldistribution. We fit a simple Gaussian timesia
function (to account for the geometric solid angle effeotihis distribution. The parameters from the
fit along with the results from the analytic expression (Emure9) are given in Table 3. The agreement
between the fit and the analytic expression is excellent.
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Figure 5. Angular deviation of the reconstructed photordation from a simula-
tion of a single physical event sampled 100,000 times withgS&n errors for the
measured interaction locations. The fit result is supersadan the distribution.

Table 3: Opening angle comparison between the analytiazllegion and the fit to the simulation.
Sample of 100,000 events where the starting and ending icates have an RMS error of 0.01 mm.
The separation between the coordinates is 1.00 mm

Variable Fit Result| Analytic Result
6 (mrad)| 0.16 4 0.49 0.00
060 (mrad) | 14.10 £ 0.17 14.14




