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In this paper, the adaptive optics (AO) system at the W. M. Keck Observatory
is characterized. We calculate the error budget of the Keck AO system operating
in natural guide star mode with a near infrared imaging camera. By modeling the
control loops and recording residual centroids, the measurement noise and band-
width errors are obtained. The error budget is consistent with the images obtained.
Results of sky performance tests are presented: the AO system is shown to deliver
images with average Strehl ratios of up to 0.37 at 1.58 um using a bright guide star
and 0.19 for a magnitude 12 star.
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1. Introduction

Adaptive optics (AO) has found widespread use in astronomical settings to compensate for atmo-
spheric turbulence and telescope aberrations.! 3 At the W. M. Keck Observatory, there are identical
adaptive optics systems on the Keck I and Keck II telescopes.? Keck I is used only for interferometry
and hence does not have a science camera, while Keck II supports a number of instruments. This
paper characterizes the performance of the Keck II adaptive optics system operating with a natural
guide star when used with the NIRC2 (near infrared) camera in imaging mode. The performance
of the Keck I adaptive optics system is very similar.

Characterization of AO systems has been undertaken at other observatories.> It is important
to understand the performance of the AO system under different atmospheric conditions and guide
star brightnesses in order to predict the science output of an observation. It is also a good exercise
to perform in conjunction with an AQ optimization effort: knowledge of the error terms leads
naturally to their elimination or mitigation. Finally, understanding the performance of current AO
systems will lead to better design and implementation of future systems.

The remainder of the paper is as follows. Section 2. outlines the Keck AQO system and its
components. This is followed by an error budget in Sect. 3., experimental results in Sect. 4. and
conclusions are drawn in Sect. 5..

2. Keck adaptive optics system

In this section, the components of the Keck AO system are described and analyzed. In particular,
factors that affect performance are emphasized.



The Keck AO system consists of a tip/tilt mirror (TT), a 349-actuator Xinetics deformable
mirror (DM) and a dichroic beamsplitter that directs the visible light to the 20x20 subaperture
Shack-Hartmann wave-front sensor (WFS) and the infrared light to the science camera. There are
also two control loops driving the TT and DM.

The fact that the Keck telescope is on an alt/az mount with the adaptive optics system on
a Nasmyth platform means that as the telescope tracks a star, the image rotates on the science
camera. To compensate for this, there is an image rotator located before the AO system, which
keeps the image steady as the telescope tracks an object but causes the pupil to rotate on the wave-
front sensor camera and on the DM. Because the pupil is not circular, but a serrated hexagon, the
illuminated subapertures change with time. At any given time, 240 out of the 304 subapertures are
active and used to reconstruct the wave-front. The other subapertures are discarded as they have
little or no illumination.

The science camera is a 1024x1024 pixel infrared camera with numerous filters. It also has
spectroscopic and coronographic capabilities. The camera has a sub-arraying capability that can
be used to reduce the exposure time to as short as 8 ms with three seconds between consecutive
exposures. The plate scale can be selected to be 10, 20 or 40 milliarcseconds.

In addition to science camera images, there are two other forms of data at our disposal to
characterize the AO system. Telemetry consists of the values of any quantity used by the AO
system and is streamed at a rate of 10-20 Hz. This is useful for detecting trends over long periods
of time. Telemetry is used by the AO system for many operations, such as off-loading focus to the
telescope. Diagnostics refers to 1000 consecutive samples of the output of most values calculated by
the wave-front controller, such as the centroids and the voltage applied to the DM or TT. Writing
the diagnostics to disk typically takes about 10 seconds, depending on how much data is stored.

There is also an atmospheric characterization tool that estimates Fried’s parameter, r9,° from
open- or closed-loop telemetry or diagnostics online.10

A. CCD

The wave-front sensing CCD is a Lincoln Labs MIT 64x64 CCD. The readout electronics consists
of four amplifiers, one for each of four 64x16 strips. There are 3x3 pixels corresponding to each
subaperture, consisting of a 2x2 pixel quad cell with a guard band between adjacent subapertures.
In order to compute the error in estimating the centroid of the WFS spots, some physical parameters

of the CCD need to be determined.

1. ADU per electron

The CCD intensities are not measured in photons but in analogue-to-digital units (ADUs). The
probability distribution of the number of photons detected by the CCD obeys Poisson statistics,
with the variance being equal to the expected number of photons. This property is used to compute
the electrons per ADU conversion factor. Wave-front sensing images were captured at the highest
frame rate with different neutral density filters. Each frame was normalized to remove overall
intensity fluctuations between frames with the same filter. It can be assumed that the variation
from frame to frame is due to intensity fluctuations in the light source rather than the fluctuations
in photon detection. Then the images were flat-fielded. The slope of the graph of the variance of the
pixel intensities versus the mean pixel intensity gives the inverse of the electrons per ADU factor,
which takes a value of 1.99.

2. Linearity

The CCD has two amplifier gains. The most commonly used mode has a gain of 1.99 electrons per
ADU. The other mode, which has a gain of 4.00 electrons per ADU, is only used on the brightest



stars. Saturation of the WFS CCD occurs about 2000 ADU per pixel, corresponding to a guide
star of magnitude 4.5. For brighter stars, a neutral density filter may be used to limit the light on
the wave-front sensor.

The third of the four CCD amplifiers exhibits non-linear behavior. The ADU/electron ratio
for that CCD strip increases gradually from about 60% of its maximum value in the limit where
there is no light, to almost 100% at about 150 counts per ADU. Since the read noise in electrons
does not change, the effect of the read noise is greater. We have ensured that no subaperture is
straddled by the third CCD strip and a neighboring one.

8. Dark current

To find the dark current, dark frames were captured at different frame rates. The mean intensity was
recorded and plotted as a function of exposure time. The slope of the graph gives the dark current,
4470 electrons/pixel/second. Dark current is strongly dependent on temperature and the CCDs are
Peltier cooled to 267 K (-6° C). The measured dark current is consistent with its theoretical value:

Tgark = AT3/? exp|— E,/2KT), (1)

where Ig,i is the dark current, £, = 1.2 eV is the silicon band gap energy, T' is the tempera-
ture in Kelvin, k is Boltzmann’s constant and A is a proportionality constant equal to 2.15x10%
e~ s 1pixel 'K —3/2 according to Lincoln Labs.

4. Read noise

For a dark frame at 672 Hz, the dominant signal is read noise. Removing the contribution from the
dark current, we obtain a read noise standard deviation of 6.5 electrons/pixel/readout.

B. Lenslets

The lenslets are 20x20 acrylic lenslets from Adaptive Optics Associates with a pitch of 200 um.
There are three sets of lenslet arrays available, with focal lengths of 2.0, 5.0 and 7.9 mm, corre-
sponding to design plate scales of 2.44, 0.98 and 0.62 arcsec/pixel respectively. The measured plate
scales, however, are 2.4, 0.8 and 0.5 arcsec/pixel.

The WFS spot size is a very useful quantity to determine because it is needed to convert the
centroid measurements into angles-of-arrival. Knowing how the size of the spot changes due to
turbulence is very important to eliminate dynamic calibration errors, optimize the loop gains and
calculate the measurement noise and bandwidth errors.

To find the size of the spots on the WF'S, we displace the spot over a range of values and measure
the centroid, as shown on Fig 1. The maximum slope, m, of the “displacement in arcseconds versus
centroid” plot is related to the full-width-half-maximum (FWHM) of a Gaussian spot by
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The spot can be shifted by scanning the artificial light source across the focal plane and measuring
the centroids.!? The displacement of the spot is found by multiplying the displacement of the light
source by the plate scale at the focal plane. An alternative way of scanning the spot is to close
the DM and TT loops and add a range of constants between, say, -0.1 to 0.1 to all of the x (or y)
centroid offsets. The displacement of the spot is then measured with the science camera, which has
an extremely well calibrated plate scale. The latter method has the advantage that it can also be
used to measure the spot size on the sky using a guide star.

The FWHM spot sizes on the light source were found to be 1.25, 0.52 and 0.40 arcsec for the
2.4, 0.8 and 0.5 arcsec plate scales respectively. This compares with a diffraction-limited spot size

FWHM = (2)



Fig. 1. Transfer curve between the angle-of-arrival in arcseconds and the mean centroids.
The plot is generated by displacing the white light source in the y-direction.
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of 0.23 at 700 nm. The discrepancy is well explained by postulating that the measured intensity
is a convolution of a diffraction-limited spot and a Gaussian with a FWHM of half a pixel. The
blurring of the spot is almost certainly due to charge diffusion and the extent of the charge diffusion
is consistent with other measurements of similar CCDs.!? The effect of the charge diffusion on the
spot size increases with increasing plate scale.

Under average seeing conditions (rg=20 cm), the average spot size increases relative to the
spot using the white light source by 25% and 70% for the 2.4 and 0.8 arcsec plate scales.

Usually, the 2.4 arcsec plate scale lenslets are used, because the spot size does not change
angular extent much in the presence of turbulence. Also, essentially all the light is detected by the
quad cells and does not leak out. However, the larger the angular extent of the spot, the higher the
noise on the wave-front slope estimates. Although the error in the centroid estimate is independent
of spot size, the wave-front slope corresponding to this error is inversely proportional to the spot
size. Hence, when the guide star is faint and the seeing is relatively good, the 0.8 arcsec plate scale
is preferred. The 0.5 arcsec plate scale is never used.

When the DM is nominally flat, the RMS centroid measurements are 0.11 centroids (0.068
arcsec) on the 2.4 arcsec plate scale and 0.13 centroids (0.028 arcsec) on the 0.8 arcsec plate
scale. These centroid errors are randomly distributed and are believed to stem from the lenslets
themselves. As a result of these aberrations and also aberrations on the science camera leg, the
wave-front sensor operates off null. The penalties paid for operating off null are an increase in noise
because the WFS is no longer operating in the steepest part of the transfer curve (Fig. 1) and
dynamic calibration errors explained in Sect. 3.F. due to the changing spot size.

The corners of the lenslets are optically conjugate to the four neighboring actuators in what
is commonly called the Fried configuration.!!

C. Deformable mirror

The Keck AO system consists of a Xinetics 349-actuator deformable mirror (DM). Oppenheimer
et al. investigated the influence function of this mirror.!® The influence function describes the
optical effect of the deformation of the mirror when one volt is applied to the pre-amplifier. It
has been calibrated at Keck Observatory in three ways: by measuring the wave-front directly with
an interferometer, by reconstructing the wave-front from the centroids when an actuator is poked
and by adding a known defocus and reading the position of the actuators. The influence function,



S(z,y), can be well approximated using the difference of two Gaussians:

wy —(@?+y?)| | w —(2? +9%)
S = 0.470 . 3
(z,y) (2#0% exp l 207 + om0l exp %07 X pm (3)
The values for the constants are: w; = 2, wo = —1, o1 = 0.54 subapertures and oo = 0.85

subapertures. It is apparent that the behavior of the DM is more complex than a linear sum of the
influence functions of the actuators. For example, if all the actuators have the same voltage applied
the DM produces piston, which is not predicted by Eq. (3).25

D. Calibration

Calibrating an AO system well is crucial to obtain good performance on the sky. Here, a brief
description of the most important calibration procedures is presented with some procedures reported
in more detail elsewhere.!® The calibrations are performed using a white light source that is 10 ym
(13.8 milliarcsec) in diameter and located at the focus of the telescope.

1. DM to lenslet registration

It is important to have the correct registration between the DM and the lenslet. Otherwise, the
waffle mode, where actuators are lined up in a checkerboard pattern, would be observed on the
DM when the the loop is closed. The algorithm used to perform the DM-to-lenslet registration is
adapted from a paper by Oliker.!4 It involves putting waffle on the DM and moving the lenslets so
as to minimize the the signal sensed by the WFS.

2. Focusing the WFS CCD

Previously, the CCD was focused by defining the focus to be the position of the CCD where the
steepest transfer curve (see Fig. 1) occurs. It is easy to show that this is indeed the best focus when
there is no charge diffusion on the CCD but differs greatly from the true focus in the presence of
charge diffusion. Instead, a waffle pattern is introduced into the DM. This is equivalent to adding 45°
astigmatism to each lenslet. If the CCD is out of focus, then the spots on the WF'S will be elongated
along one diagonal and not the other. At the best focal position, the spots will be symmetrical.

3. System matriz generation

The system matrix relates the motion of each actuator to the centroids produced at the WFS. It
is calculated by moving each actuator by £0.2 um and recording the difference in the centroids.
Centroids corresponding to subapertures that are more than twice the subaperture spacing away
from the actuator are set to zero to reduce the level of noise. The actuator motion is chosen such
that it yields a good signal-to-noise ratio in the centroid measurements while ensuring that the the
WES is operating in its linear range.

4. Image sharpening

There are aberrations on the imaging leg that are not sensed by the WFS and vice versa. In the
absence of any external aberrations, one would want the DM to have the shape that maximizes the
Strehl ratio. Image sharpening refers to the process of finding this optimum shape of the DM. The
non-common path aberrations are calibrated as follows. First, the DM is flattened using a WYKO
phase-shifting interferometer: The phase on the DM is measured with the interferometer and a
voltage applied is to cancel the measured phase.'® Unfortunately, the interferometer does not see
some of the actuators at the edges and these cannot be flattened properly. Next, the phase diversity

algorithm of Loefdahl and Scharmer!® is employed to remove the Zernike polynomials'” up to Zis.



Typically, 100 nm of RMS wave-front are applied to the DM in order to correct for any aberrations
in the imaging leg and in the common path. The algorithm reduces the total wave-front error seen
on the artificial source from 150 nm to 113 nm. These numbers take into account the finite size of
the source. The phase diversity algorithm is only applied to images taken at one location in the
camera using one filter. Hence, there are additional field- and filter-dependent wave-front errors.

Once the optimum shape is found, it is placed on the DM and the centroids measured by the
wave-front sensor are defined to be the centroid origins. In closed-loop operation, the DM and TT
mirror are driven in such a way to null the difference between the centroids and the centroid origins.
Hence, upon immediately closing the loops, the DM should not move.

Under average atmospheric conditions (rg = 20 cm), the spot obtained using the 2.4 arc-
sec/pixel plate scale increases in size from 1.25 arcsec to 1.55 arcsec. Before going to the sky, the
centroid offsets are scaled by 0.8 to account for the increase in spot size. If the beacon is an extended
source, such as a planet, or if the 0.8 arcsec/pixel plate scale is used, then the centroid offsets are
scaled even more. Unfortunately, the spot size is constantly changing as the seeing changes. It
is intended that in the near future, the spot size will be monitored in real time using telemetry
readings of the DM voltages.'®

E. Signal processing

1.  Reconstruction matrizc

As previously mentioned, the pupil rotates as the telescope tracks an object and the illuminated
subapertures change with time. Every time the pupil rotates one degree, the calculation of a new
reconstruction matrix is triggered. Until recently, the matrix inversion of the influence matrix, H,
was performed using an SVD algorithm.!® This has been replaced by a Bayesian reconstructor that
uses the covariances of Kolmogorov turbulence, Cy4 and the relative noise in subaperture, W, as
prior information. There is a parameter, o, that can be adjusted depending on the signal-to-noise
ratio. The reconstructor, R, is given by2°

R=(H"W'H+aC;)y TH'W™. (4)

This would be the optimal reconstructor in the open-loop case; simulations and extensive sky testing
have demonstrated that it also performs very well in closed loop. The reason why it works well
is that the inversion of the system matrix is regularized, so that noise in the centroids leads to
smaller actuator motions. The new reconstructor has resulted in an increase in the Strehl ratio
corresponding to the elimination of 100 nm of wave-front error (in quadrature) for bright guide
stars. The most salient difference is the elimination of the four spots in a square pattern in the
image indicative of unsensed waffle on the DM. The magnitude of the improvement increases as
the guide stars get fainter, because « is increased to further suppress the noise at the expense of
suppressing some signal.

2. Prame rate and delay

The wave-front controller can operate at frame rates in the range of 55 to 672 Hz. The upper limit
is set by the combination of the camera readout time and the speed at which the computers can
multiply the reconstructor matrix by the centroid measurements. There are separate control loops
for the TT and the DM. The compute delay times, from the time that the CCD is read until the
time that the TT and DM voltages are updated, are 1.65 ms and 2.13 ms respectively.



8. Loop gains and compensator

Each of the control loops has its own controller. The T'T loop is a straight integrator with a variable
loop gain, kpr, and a fixed gain scaling of 0.8:

y[nl = y[n — 1] + 0.8kTru[n], (5)

where y[n] is the output from and u[n] is the input to the controller at time n. The transfer function

can be written as 0.8k
OKTTZ
H = -~ 6
Tr(2) =~ (6)
where z is the complex Z-transform variable. The DM loop has a double pole compensator with
the following temporal response:

eln] = —weln— 1]+ kpmuln] (7)
y[n] = lyln—1]+eln], (8)

where e[n] is an intermediate quantity. The transfer function is

kEpmz2

M) = & e )

(9)
The compensator, whose function is to increase the bandwidth of the controller,?! has its weight,
w, set to 0.25. The leak factor, I, set to 0.999 for bright stars and 0.99 otherwise, ensures that
invisible modes do not build up in the DM. The loop gain, kpy, is also variable.

The optimum loop gains depend on the turbulence strength and speed, the extent and bright-
ness of the guide star and the frame rate. In routine operation, the loops gains and the frame rate
are set using a look-up table that has the median number of ADUs per subaperture per second as
its only input. We plan to implement real-time gain optimization using centroid telemetry.

3. Error budget
A. Strehl ratio

A figure of merit often used to characterize the error of an AO system is the Strehl ratio, S.
It is defined as the ratio of the maximum value of the measured point-spread function over the
maximum value of the diffraction-limited point spread function. The Strehl ratios of all the images
were calculated using a window with a diameter of 2 arcsec.

The Strehl ratio is related to the wave-front errors via the Maréchal approximation,3

S = exp[—ai] exp[—ai], (10)

where 03) is the wave-front phase variance and U>2< is the variance of the log-normal amplitude at
the pupil plane. An AO system with a single wave-front corrector conjugate to the ground can only
correct the wave-front phase aberrations. Hence the goal of the AO system is to minimize the wave-
front error. In this section, the individual wave-front error terms are presented. The phase error is
inversely proportional to the wavelength, so the Strehl ratio increases with increasing wavelength.
In engineering tests, the filter used was H continuum, a narrow band filter centered at 1.58 ym with
a 1% passband. A short wavelength enables one to more easily discern performance changes in real
time, as the image quality varies more than for the longer wavelengths. All Strehl ratios quoted in
this paper correspond to 1.58 um. Strehl ratios at other wavelengths can be estimated using Eq.
(10). All the wave-front errors are root-mean-squared (RMS) errors.



B. Scintillation

The result of propagating an aberrated wave-front from height h above the telescope to the primary
mirror of the telescope is that the wave-front aberrations, when propagated, give rise to changes in
the amplitude of the wave. Consider the atmospheric turbulence to be located at a single layer so
that the C2 profile can be written as a delta function at height h. Then, for an infinite aperture, it
can be shown that the log-normal amplitude variance is given by?2

o2 = 0.563k™/h%/0C2(h), (11)

where k = 27/ is the wavenumber. Using the relationship
-3/5
ro = (0.423k%C%, (1)) / (12)

we obtain

o2 =0.288 (\/E/ro)s/ . (13)

Analytic calculations?? and numerical simulations by the authors using Fresnel propagation both
show that this result also holds for large astronomical telescopes.

As an example, consider the hypothetical case of a turbulent layer with an r¢ value of 20 cm
at 500 nm and 80 cm at 1.58 um located 3 km above the ground. Substituting into Eq. (13) gives
U>2< = 0.0048. The reduction in Strehl, using Eq. (10), is 0.48%. Since virtually all the atmospheric
turbulence is below a height of 10 km and the log-amplitude variance depends on h5/6, we conclude
that the effect of scintillation is negligible compared to that of the wave-front phase.

C. Camera errors

The Strehl ratio measured on the artificial light source after image sharpening is 0.77, corresponding
to 130 nm of wave-front error. However, the light source can be resolved and its extent reduces the
Strehl by the same amount as 64 nm of wave-front aberrations. Hence, the actual wave-front error
is 113 nm. Figure 2 shows the phase error after image sharpening computed using the Gerchberg-
Saxton phase retrieval algorithm.?3 Because of the symmetry of the aperture, there is an ambiguity
about the sign and the orientation of the phase so it is difficult to feed back this information in the
image sharpening process.?* It can be seen that most of the residual error consists of high-order
aberrations. We intend to use this information to improve the image quality.

Fig. 2. Phase map of the residual error after image sharpening.




D. Fitting error

The fitting error is defined to be the component of the wave-front that cannot be corrected by the
deformable mirror. There are two sources of error that the DM has to correct for: the atmospheric
turbulence and the telescope error. This error depends on the spacing between the actuators, the
influence function of the actuators, the spatial power spectrum of the wave-front aberrations induced
by the turbulence and the telescope.

Using the influence function described by Eq. (3), it was found by simulation that the RMS
fitting error, orrr, for Kolmogorov turbulence is equal to 33.2r; 5/6 nm. The general form of the
fitting error is given by?3

d\%% A

oFIT = \/af (%) o (14)

where d is the spacing between the actuators, A is the wavelength at which r¢ is measured and af

is a constant that depends on the influence function. The value of a; calculated here is 0.46, which
is higher than the range of 0.28 to 0.34 presented in Hardy for a continuous-plate mirror.?

The Keck primary mirror consists of 36 hexagonal segments. Each segment has low-order
aberrations and a dimple in the center resulting from the manufacturing process. In addition, there
are stacking (piston) and pointing (tip/tilt) errors of each segment relative to its neighbors. It is
estimated that after phasing the mirror segments,?6 there are about 110 nm of wave-front residual
error. The telescope fitting error, orgr, after correction by the DM was found to be 60 nm by
simulating the errors on the primary mirror of the telescope: It is not possible to correct well for
the segment discontinuities. The segments are not routinely phased before an AO run so this error
could be higher.

E. Bandwidth and noise errors

The bandwidth errors are due to the finite sampling rate of the atmospheric turbulence and the
delay between the centroid measurements and the DM and TT command updates. The source of
the noise errors is the uncertainty in the centroid estimates due to the finite number of photons
on the WFS. To calculate these error terms, a good model of the temporal response of the control
loop is required.

1. Modeling the dynamic performance of the AO system

The wave-front controller is described in detail in Johansson et al.2” and the features of the controller
required in the model are simply stated here. A schematic of the TT and DM feedback loops for
the Keck AO system is displayed in Figure 3. Both loops have a similar form, but the compensators
and the compute delays differ.

The transfer functions of the individual blocks are as follows:2!

e Camera stare and the zero-order hold with period T*:

Hstare(s) = Hzou(s) = 1_6);—2,[_311]- (15)

e Compute delay with delay time 7:
HpEgLAy (s) = exp[—s7]. (16)

The compensator block is modeled by substituting z = exp[sT] into the discrete compensator of
Egs. (6) and (9). In the above equations, s = i27 f is the complex frequency variable and f is the



Fig. 3. Schematic of the control loop. The diagnostics measure the centroids straight after
the addition of the noise and the mirror is driven by the signal coming from the ZOH.
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frequency. In what follows, all the blocks will be written with f as the argument, since f has a
more intuitive meaning than s and is computed directly from the discrete Fourier transform (DFT)
of the diagnostics.

The transfer function of the entire feedback arm of either the TT or DM loop, H(f), can be
written as the product of the transfer function of all the blocks:

H(f) = Hsrtare(f)Hperay (f)Hrrom(f)Hzou(f)- (17)

There are two inputs into the control system: the noise, N(f), which is assumed to have the same
power at all temporal frequencies and the turbulence, X (f). Likewise, there are two outputs, the
mirror position, M(f), and the residual mirror commands obtained from the diagnostics, D(f).
The position of the diagnostics in the control loop is just after the addition of the noise, while
the mirror position is just after the zero-order hold. The residual DM commands are obtained by
matrix multiplying the reconstruction matrix with the residual centroids. Likewise, the residual T'T
commands are obtained by taking the average of the x and y centroids. For notational simplicity,
we consider the noise to be input before, rather than after, the stare. This assumption has little
impact on the transfer functions of the control loops.
The transfer function relating the the mirror position to the the turbulence and noise is

M) = 1 o (XU + N, (19)

while the diagnostics power spectrum is given by

1

D(f):TH(f)

(X(f) + N (/) (19)

The measurement noise wave-front error, onoisg, is due to noise in the centroid measurement
propagating to the mirror, N(f)H(f)/(1+ H(f)). The square of its value is

IROISE = /_o:o ‘HLEJ;()JC)

2

IN(f)[*df. (20)

Since the noise only has power at discrete frequencies, Eq. (20) can be rewritten as

H
UI%IOISE = Z ‘l-l-(f.{()f)

2

IN(HP, (21)

10



where the summation is over all the sampled discrete frequencies.

The bandwidth error, ogw, is due to the turbulence that is not compensated by the AO system,
X(f)/(1+ H(f)). The diagnostics measure this term with an added noise term due to the noise on
the centroid measurement propagating through the control loop:

X()+ N(f)

PO=" 1 a)

(22)

Assuming that the noise and the bandwidth errors are statistically uncorrelated, the bandwidth
squared error is

2
| X (f)|2df

v = [ rmp

|N(f)|2) df

Q

2
)3 (ID(f)I2 -7 IN(f)I2) . (23)

It follows that knowledge of the transfer function of the AO loop, H(f), and the power spectra of
the diagnostics, |D(f)|?, and of the noise, [N (f)|?, can be used to calculate both the bandwidth
and the noise error terms.

2. Calculating the centroid variance

In order to estimate the noise and bandwidth errors, we must first derive the error in the centroid
estimates. Let Iy denote the background-subtracted intensity of one of the pixels in a quad cell.
Then its expected value is

E[LL] = pT, (24)

and, assuming Gaussian statistics, its variance is
Var(I1) = (p+d +b)T + o2, (25)

where T is the integration time, p, d and b are the photon, dark current and background fluxes in
electrons/pixel/second and o, is the read noise standard deviation is electrons/pixel/readout. In the
analysis that follows, d = 4470, b = 0 and 02 = 39.7. To obtain a simple expression for the variance
of the centroid estimates, two simplifying assumptions are made: that there is an equal amount of
light in each pixel (i.e., the average centroid is zero) and that the variance of the denominator in
the centroid calculation can be neglected. Then the variance of the x (or y) centroid estimate, ¢,

(or cy), is

Var(Il)
4E[[)?
Var(Il)
4(pT)?
(p+d+b)T + o2

S Ty (26)

Var(e;) =

The measured centroid variances agree with Eq. (26). From the variance of the centroids, we can
calculate the errors in the T'T and DM loops.
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3. Calculating the tip/tilt noise power spectrum

The tip (or tilt) signal sent to the compensator is the average x (or y) centroid value over the 240
active subapertures. Hence the sum of the variance of the tip and tilt estimates in centroid units
is 2Var(c;)/240. The next step is to convert this variance into units of WF error. Using Eq. (2) we
obtain the result that 1 arcsec is equivalent to 1.2 centroid units for a spot size of 1.55 arcsec. For
the Keck telescope, the RMS WF error due to a tip or a tilt of 1 arcsec is 12.68 um. Hence, the
T'T noise power spectrum is

Npr(f) = — (12'68

2
= 240 ﬁ) Var(cy). (27)

4. Calculating the deformable mirror noise power spectrum

To calculate the deformable mirror noise PSD, we must convert centroid units into wave-front
units. The residual centroids are multiplied by the reconstruction matrix, R, to convert to voltage
commands. The voltage commands are then convolved with the actuator influence function, S, to
obtain the wave-front induced by the noise. This is achieved using matrix multiplication. Finally,
since the size of the WFS spots on the sky increases by 25% relative to their size on the light source,
the wave-front must be multiplied by 1.25 (for median seeing conditions with the 2.4” plate scale
on the WFS). Since the noise on the actuator voltages are uncorrelated, we can write

|Npm(f)|? = 1.25%| RS|*Var(c,). (28)

5.  Calculating the bandwidth and noise errors

To calculate the residual power spectra, the centroids from the diagnostics must be converted into
TT and DM wave-front aberrations in exactly the same way as the noise. Then the power spectrum
of the diagnostics is taken using the DFT:

ID(f)? = IDFT[d[n]w[n]]?, (29)

where w[n| is a normalized windowing function used to avoid spectral leakage due to the non-
periodicity of d[n], the residual wave-front as measured by the diagnostics. The window must be
scaled to have unit power.

The TT and DM noise errors are calculated by inserting Egs. (27), (28) and (29) into Egs.
(21) and (23).

Plots of the TT and DM power spectral densities averaged over four sets of diagnostics taken
on June 15, 2003 are displayed in Fig. 4. The noise on the diagnostics that must be subtracted in
to obtain the bandwidth error is superimposed. For this data, the average RMS bandwidth errors
were 75 nm for the TT and 103 nm for the DM with corresponding noise terms of 9 nm and 17 nm.
The guide star is a 7.2 magnitude star. The power spectral densities are consistent with what was
is expected by modeling the transfer function of the system.?” From the plots of the power spectra,
it can be seen that there are vibration peaks at frequencies ranging from 20 to 40 Hz superimposed
on Kolmogorov turbulence.

F. Miscellaneous error

There are several other error terms that have not yet been calculated but should be part of a
complete error budget.

The wave-front sensing and reconstruction restrict the performance of the DM. For example,
while all the actuators were assumed to be independently controlled in the calculation of the fitting
errors, in actual fact many of the actuators have no neighboring subapertures and are slaved to

12
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Fig. 4. Logarithm of the power spectral density in nm?/Hz for the TT (left) and the DM
(right). The smooth line represents the noise power on the diagnostics.

the average value of their neighboring actuators. Also, because the wave-front reconstructor has no
knowledge of either the influence function of the DM actuators or the analogous response function of
the wave-front sensor, even in the absence of noise, the actuators are not driven to their optimum
values. Even if the DM had an infinite number of degrees of freedom, there would be an error
associated with the finite number of measurements.

Because the wave-front sensor measures the average wave-front slope over the subaperture, any
wave-front aberrations with a spatial frequency higher than the Nyquist criterion will be aliased to a
lower spatial frequency, resulting in an error in the wave-front estimate. This term has a magnitude
of about one third of the fitting error.?

The primary mirror segments are not phased before adaptive optics science nights; an estimate
of the alignment of the segments is needed.

There are static calibration errors: The centroid offsets, system matrix and the DM-to-lenslet
registration all have some error associated with them. In addition, there are dynamic calibration
errors. As the spot size increases due to the seeing, the offset centroids no longer correspond to
the same wave-front slope for which they were calibrated. This is accounted for to some degree by
scaling the centroid offsets, but the scaling is not exact as each spot is of a different size at any
given time.

G. Summary of error terms

In calculating the error terms, the atmospheric turbulence is assumed to be Kolmogorov,? with
a turbulence strength defined by rg. Tests have shown that the Kolmogorov model of atmospheric
turbulence describes the wave-front aberrations encountered at Keck Observatory well, with the ex-
ception of tip/tilt aberrations, which are augmented by telescope vibrations.!® Hence, the measure-
ments of 79 are made from tip/tilt-removed images or centroid diagnostics.

It is important to emphasize that the individual wave-front errors are assumed to be statistically
uncorrelated and hence their magnitudes are added in quadrature (i.e., their variances are added).
This means that small errors have a negligible effect on the total error budget in the presence of
much larger terms.

Many images and diagnostics were taken on June 15, 2003. From the Strehl of the images, the
RMS wave-front error was estimated to be 260 nm. It was estimated that r¢g at 500 nm was 18 cm.

To find all the total RMS wave-front error, the variances of all the individual terms are added
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in quadrature:

Ototal = \/O%AM +ofrr + 0teL + 0br_gw T oBm-Bw t OFT_NoISE T THM-NoOISE
= V1132 + 1392 + 602 + 752 + 1032 + 92 4 172
= 229 nm. (30)

It is reasonable to assume that the miscellaneous error terms presented in Sect. 3.F. comprise the
125 nm needed to obtain the 260 nm of error estimated from the images.
4. Experimental results

Images of a number of stars under a variety of seeing conditions were captured between May 22
and June 16, 2003.
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Fig. 5. Strehl ratio at 1.58 ym (left) and the RMS wave-front error obtained using the
Maréchal approximation (right). The points represent the mean of about 10 images and the
error bars represent the 1o spread about the mean.

Figure 5 plots the Strehl using the H continuum (1.58 pum) filter as a function of guide star
brightness and the corresponding RMS wave-front error from the Maréchal approximation. In each
case, the optimum lenslet array plate scale, frame rate and loop gains were chosen. The FWHM
of the best corrected images is 36.5 mas, while the best images on the magnitude 12 star had a
FWHM of 40 mas. By comparison, the diffraction-limited FWHM is 33.6 mas. The magnitude 13.3
star in Fig. 5 was imaged at K’ (2.12 pm) and hence is not included in the Strehl plot. The images
had exposure times of between three and 20 seconds. The limiting magnitude of the AO system is
about 14.

5. Conclusion

The AO system at Keck Observatory has been characterized. The AO system is shown to deliver
images with an average Strehl ratio of up to 0.37 at 1.58 um with a bright guide star. This corre-
sponds to an wave-front error of 260 nm. A bright guide star error budget that is consistent with
the observed image quality is presented. The major error terms on a bright guide star are the fitting
error, the deformable mirror bandwidth errors and the internal calibration error, all of which are
over 100 nm RMS. Of secondary importance are the tip/tilt bandwidth error and the telescope
aberrations. The limiting magnitude of the AQO system is 14, with rapid performance degradation
for guide stars fainter than magnitude 12.
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Fig. 6. Diffraction-limited image at 1.58 um (left), best bright star image (center) and best
image of a magnitude 12 star (right).
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