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Three-dimensional time and frequency-domain theory of femtosecond 
x-ray pulse generation through Thomson scattering 

 
Winthrop J. Brown and Frederic V. Hartemann 

Lawrence Livermore National Laboratory, Livermore, California 94550 
 
 The generation of high intensity, ultra-short x-ray pulses enables exciting new experimental 

capabilities, such as femtosecond pump-probe experiments used to temporally resolve material structural 

dynamics on atomic time scales. Thomson backscattering of a high intensity laser pulse with a bright 

relativistic electron bunch is a promising method for producing such high brightness x-ray pulses in the 10-

100 keV range within a compact facility.  While a variety of methods for producing sub-picosecond x-ray 

bursts by Thomson scattering exist, including compression of the electron bunch to sub-picosecond bunch 

lengths and/or colliding a sub-picosecond laser pulse in a side-on geometry to minimize the interaction 

time, a promising alternative approach to achieving this goal while maintaining ultra-high brightness is the 

production of a time correlated (or chirped) x-ray pulse in conjunction with pulse slicing or compression. 

We present the results of a complete analysis of this process using a recently developed 3-D time and 

frequency-domain code for analyzing the spatial, temporal, and spectral properties an x-ray beam produced 

by relativistic Thomson scattering. Based on the relativistic differential cross section, this code has the 

capability to calculate time and space dependent spectra of the x-ray photons produced from linear 

Thomson scattering for both bandwidth-limited and chirped incident laser pulses. Spectral broadening of 

the scattered x-ray pulse resulting from the incident laser bandwidth, laser focus, and the transverse and 

longitudinal phase space of the electron beam were examined. Simulations of chirped x-ray pulse 

production using both a chirped electron beam and a chirped laser pulse are presented.  Required electron 

beam and laser parameters are summarized by investigating the effects of beam emittance, energy spread, 

and laser bandwidth on the scattered x-ray spectrum. It is shown that sufficient temporal correlation in the 

scattered x-ray spectrum to produce sub-100 fs temporal slice resolution can be produced from state-of-the-

art, high-brightness electron beams without the need to perform longitudinal compression on the electron 

bunch. 

 

PACS number(s): 41.60.-m, 52.59.-f, 52.38.-r 

 
I. INTRODUCTION 

 
 The use of short laser pulses to generate high intensity, ultra-short x-ray pulses 

enables exciting new experimental capabilities, such as femtosecond pump-probe 

experiments used to temporally resolve the structural dynamics of high-Z materials on 

atomic (femtosecond) time scales [1-2].  In particular the unique conditions of atomic-

scale interaction have led to a recent experimental push to develop high brightness, 
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femtosecond, hard x-ray sources.  The energy levels relevant to the inner-shell electron 

properties, which are responsible for the most fundamental atomic-scale effects, require 

photon energies well above those generated by modern ultra-fast laser systems.  

Furthermore, the short timescales associated with atomic motion, tens to hundreds of 

femtoseconds, require shorter pulses than those provided by synchrotron-based x-ray 

sources.  The development of a system capable of making measurements on these scales 

would open up regions of currently under-explored science, such as phase transitions in 

materials under shock loading and chemical reaction dynamics.  The most promising 

methods for generating tunable, sub-picosecond, very high brightness electromagnetic 

radiation at short wavelengths (< 1 Angstrom) rely on either coherent radiation produced 

by an x-ray FEL, such as the planned Linac Coherent Light Source (LCLS) [3], or 

incoherent production through relativistic Thomson scattering, which has previously been 

employed for time resolved diffraction measurements at LBNL [4,5], and is currently 

being investigated at several laboratories around the world [6-11]. Additionally, a 

growing number of research groups worldwide are exploring different x-ray production 

mechanism such as ultra-fast, laser driven Kα sources [12], and electron bunch slicing in 

synchrotrons [13].  While coherent radiation sources generate higher power and narrower 

spectral bandwidths when compared to incoherent scattering, the Thomson source’s 

potential for high peak brightness with a relatively compact and affordable system make 

it an attractive alternative for many applications.   

 In this paper, we employ a newly developed three-dimensional (3-D) time and 

frequency-domain code to examine in detail the use of Thomson scattering as a means of 

producing high brightness, femtosecond x-ray pulses, and, in particular, the production of 

chirped x-ray pulses.  The ability to produce time-correlated (chirped) x-ray spectra 

within a single pulse would be desirable for ultimately improving the resolution of pump-

probe time resolved diffraction experiments. It has previously been proposed, for 

example, that chirped x-ray pulses could be used to obtain a series of time correlated 

measurements within a single Laue diffraction pattern, while eliminating the relevance of 

timing jitter between the pump and probe pulses [14].  Slicing of chirped x-ray pulses has 

also been proposed as a method of seeding very short pulses into a two stage X-ray FEL 

[15] to produce very high brightness, ultra-short pulses. In addition, strained crystal [16] 
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or grating compressor [17] pulse compression schemes could be used to compress a 

chirped x-ray pulse without suffering the photon losses inherent in pulse slicing. 

 While the theory of Thomson backscattered radiation is well known and has been 

well documented [18-24], there remains a need to have a complete three-dimensional 

time resolved computational capability for the full determination of the temporally and 

spatially resolved spectra and intensity distributions produced from a Thomson 

interaction of arbitrary geometry.  This capability is crucial for both the design of 

Thomson scattered x-ray sources, as well as future experiments and applications utilizing 

such sources. In this paper, we present a newly developed fully three dimensional time 

and frequency-domain code used for calculations of Thomson backscattering of a short, 

intense laser pulse with a relativistic electron bunch. This is accomplished by employing 

the Thomson differential cross section generalized for relativistic interactions, derived 

from the standard electron rest frame differential cross section and employing appropriate 

Lorentz transformations of the incident laser pulse into the rest frame, and of the 

scattered photons into the lab frame. The 3-D code developed using this approach was 

designed to enhance existing computational capabilities, namely a 3-D frequency-domain 

code developed by Hartemann [18]. In particular, the new code is well suited for 

analyzing time dependent spectra of the x-rays produced from linear Thomson scattering, 

and hence is ideally suited for the study of chirped x-ray pulse production.  To our 

knowledge, the analysis presented in this paper is the first detailed investigation of 

chirped x-ray pulse production through Thomson scattering. 

 The remainder of this paper is divided into 5 sections. In Sec. II, a derivation of 

the relativistic differential cross section is presented for the case of a single photon 

incident on a single electron for arbitrary interaction geometries. While considering only 

a single electron and photon, the treatment is made as general as possible for easy 

inclusion of the 6-D phase space of both the laser and electron beams later in the paper. 

In Sec. III, a brief overview of the properties of Thomson backscattered radiation is 

presented, and simple approximate forms of the x-ray intensity angular distribution are 

introduced for clarity.  In Sec. IV, the treatment is expanded to include the spectral 

broadening resulting from the finite laser bandwidth, perpendicular k-vector distribution 

resulting from the finite laser focus, the electron beam energy spread, and the finite 
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electron beam emittance. In Sec. V, an overview of the time and frequency-domain code 

developed from the theory presented in Secs. II-IV is presented.  Finally, in Sec. VI, 

simulations of chirped x-ray pulse production and slicing are presented. Two different 

methods for the chirped x-ray pulse production are contrasted: 1) collision of a chirped 

electron bunch with a bandwidth-limited laser pulse in a head-on geometry and 2) 

collision of a mono-chromatic electron bunch with a chirped laser pulse in a side-on 

geometry.  It is shown that sub-100 fs x-ray pulses can be produced utilizing pulse slicing 

techniques, showing promise as a powerful method for achieving atomic time scale 

resolution in dynamic diffraction experiments.  In a companion paper, the 3-D theory is 

benchmarked against experimental data obtained at LLNL’s PLEIADES facility. 

  

II. INTRODUCTION TO THOMSON SCATTERING 

 

 Thomson backscattered photons are produced when an electron beam collides 

with a photon beam (i.e., laser). In the Thomson limit, the incident photon has a very 

small energy compared to the electron rest mass, and hence, the scattered photon has the 

same energy as the incident photon in the electron rest frame. For the case of an electron 

distribution at rest, the total number of scattered photons per unit time is simply the 

overlap integral of the product of the total Thomson cross section multiplied by the flux 

of incident photons, leading to 

 

( ) ( ) 3, ,s eN c n t n t d dtγ′ ′ ′= σ∫ r r r  ,                  (1) 

 

where c is the speed of light, σ is the total Thomson cross section, and ( ),n tγ′ r  and  

( ),en t′ r  are the photon and electron density in the electron beam rest frame. To 

generalize this for a relativistic electron beam, it can be noted that the total number of 

scattered photons is Lorentz invariant, and that the above expression can be expressed 

covariantly as the integration of the product of the electron four current, ( )1,e eJ ecnµ = β , 

and the photon four flux, ( )1,cn cµ
γΦ = ωk  resulting in [19]  
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( ) ( )4 31 , ,s e e
cN J d x c n t n t d dt

ce
µ

µ γ
σ  = Φ = σ − ω 
∫ ∫ β k r r ri  .               (2) 

 

For scattering from a single electron, ( ) ( ),e en t t= δ  r r , where re(t) is the position of the 

electron at time t. Thus, the rate of scattered photons from a single electron becomes 

 

( )( )1 ,s
e e

dN cc n t t
dt γ

 = σ − ω 
β k ri               (3) 

 

Likewise, the rate of photons scattered into a given solid angle is given by 

 

( )1 ,s
e e

dN c dc n t
d dt dγ

σ = − Ω ω Ω 
β k ri ,              (4) 

 

while the rate scattered per unit frequency is given by 

 

( ) ( )1 1 ,s
e e e s

s s

dN c d c dc n c n t g
d d dt d d dγ γ

σ σ   = − = − δ ω − ω θ      ω Ω ω Ω ω ω Ω   
β k β k ri i ,       (5) 

 

where d dσ Ω  is the differential cross section for Thomson scattering, sω  is the angular 

frequency of the scattered photon, and ( )g θ  is the relativistic Doppler upshift of the 

scattered photon, which is dependent on both the angle, θ , between the observation 

direction and the electron direction, as well as the angle between the electron direction 

and the incident photon.  Equation (5) describes the complete temporal, spectral, and 

spatial properties of the scattered x-ray distribution, and is the basis for the time and 

frequency-domain code presented in this paper. The validity of Eq. (5) requires the 

scattering remain linear, which means the normalized vector potential within the laser 

pulse, given by a0 = eA/mc, where m is the rest mass of the electron, is much less than 

unity.  In addition, it is assumed there is no recoil of the electron, implying the incident 

photon energy in the electron’s rest frame is much less than the electron rest mass.  It is 
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also noted that the calculations presented in this paper assume the background motion of 

each electron through the incident laser pulse is ballistic, which is a good approximation 

provided the two above conditions are met, and the plasma oscillation period (1 pω ) of 

the electron beam is much longer than the interaction time, which implies that space-

charge effects can be neglected. 

 

A.  Derivation of rest frame differential cross section 

 

 A general expression for the differential cross section in Eq. (5) can be derived by 

first transforming the wave vector of the incident photon into the electron’s rest frame. 

The corresponding rest frame differential cross section can then be transformed back into 

the lab frame.  We begin by considering the rest frame.  If we represent the incident laser 

polarization vector as ′α , then the differential cross section is given by [25]: 

 

22
0

d r
d

σ ′ ′=
′Ω

η αi ,                                     (6) 

 

where ′η  is the scattered photon polarization vector, and r0 is the classical electron 

radius. ′η  can be separated into two perpendicular components.  One, 1′η , is in the plane 

defined by the observation vector, ′n , and photon wave vector ′0k . The other, 2′η , is in 

the plane perpendicular to both ′0k  and 1′η , where [25] 

 

( )1 cos cos sin sine x e y e z e′ ′ ′ ′ ′ ′ ′ ′= θ φ + φ − θη e e e                                                                         (7) 

 

and 

 

2 sin cosx e y e′ ′ ′ ′ ′= − φ + φη e e    .                          (8)      

 

Using Eqs. (6)-(8) and summing over final polarization states yields the non-relativistic 

Thomson cross section for an arbitrary linearly polarized incident photon, resulting in 
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( ) ( ) ( )
( ) ( ) ( )

( )

2 2 2 2 2 2 2 2
2

0

1 1 cos sin 1 sin sin 1 cos

2 cos sin sin sin 2 cos cos sin

2 cos sin sin

x e e y e e z e

x y e e e e x z e e e

x z e e e

d
dr

σ ′ ′ ′ ′ ′ ′ ′ ′= α − φ θ + α − φ θ + α − θ
′Ω

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− α α φ θ φ θ − α α θ φ θ

′ ′ ′ ′ ′− α α θ φ θ

.                   (9)   

 

 To make Eq. (9) practical for relativistic beams, it is desirable to express the 

components of the rest frame incident laser polarization vector in lab frame coordinates. 

We consider a stationary lab frame (x, y, z) in which an electron beam is traveling in the 

+z direction and a laser beam is incident at an angle 0θ with respect to the –z direction in 

the x-z plane ( 0θ  = 0 corresponds to a head-on collision).  To generalize the interaction 

for arbitrary linear polarizations, the laser polarization vector is defined by its azimuthal 

angle pφ  about the laser wave vector k0, defined in a rotated coordinate system (xL, yL, zL 

), where the zL is chosen to be anti-parallel to the laser wave vector k0.  For 0pφ = , the 

laser is polarized in the x-z plane.  

 To facilitate the inclusion of three dimensional effects resulting from the electron 

and laser focus, the direction of the individual electrons and incident photon wave vectors 

are assumed to deviate slightly from the average directions defined above.  As shown in 

Fig. 2(a), the direction of each incident photon wave vector will be specified by an 

additional rotation xξ  about the y axis, and a rotation yξ  about the xL axis.  Likewise, an 

electron lab frame (xe, ye, ze), defined such that the ze axis is collinear with the individual 

electron direction, will be specified by a rotation xeξ  about the y axis and an angle yeξ  

about the xe axis [Fig. 2(b)]. 

 Further, to simplify the Lorentz transformations to and from the electron rest 

frame, our approach will be to first calculate the differential cross section in the electron 

lab frame, and then rotate back to the stationary lab frame. We begin by calculating the 

components of the electric field from the laser polarization in the rotated electron lab 

frame. In the laser frame, the polarization vector has non-zero components in the xL and 

yL directions only such that  
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0

0

0

0

cos

sin
sin

sin

xL p

yL p

xL p

yL p

E E
E E
cB E
cB E

= φ

= φ

= φ

= − φ

    .                                                                      (10) 

where E0 is the magnitude of the laser electric field.  It is straightforward to perform the 

consecutive coordinate rotations to obtain these components in the electron lab frame, 

resulting in 

 

( )1 1
e ey ex Lx Ly L

− −=E E� � � �  ,                                                                                               (11) 

 

where  

 

( ) ( ) ( )

( ) ( ) ( )

0 0 0
1 1

0 0 0

cos sin sin sin cos
0 cos sin

sin sin cos cos cos

x x y x y

Lx Ly y y

x y x x y

− −

 θ +ξ − θ +ξ ξ θ +ξ ξ
 = ξ ξ 
 − θ +ξ − ξ θ +ξ θ +ξ ξ 

� �  ,                  (12) 

 

and 

 

 

cos 0 sin
sin sin cos cos sin

sin cos sin cos cos

xe xe

ey ex xe ye ye xe ye

xe ye ye xe ye

 ξ − ξ
 = − ξ ξ ξ − ξ ξ 
 ξ ξ ξ ξ ξ 

� �     .                     (13) 

 

Defining 0x xθ ≡ θ +ξ , Eq. (11) leads to  
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( ) ( )

( )

( )( )
( )

( )( )

0
0

0

0

cos cos sin sin sin

cos sin sin

sin cos cos sin sin cos

cos sin cos

sin sin cos cos cos sin

xe
p x xe p y x xe

ye
p x xe ye

p y ye y ye x xe

ze
p x xe ye

p y ye x xe y ye

E E
E
E
E

E
E

= φ θ −ξ − φ ξ θ −ξ

= φ θ − ξ ξ +

φ ξ ξ + ξ ξ θ − ξ

= − φ θ − ξ ξ −

φ ξ ξ θ − ξ − ξ ξ

,                                              (14) 

 

and correspondingly, for the magnetic field, 

 

( ) ( )

( )

( )( )
( )

( )( )

0

0

0

sin cos cos sin sin

sin sin sin

cos cos cos sin sin cos

sin sin cos

cos sin cos cos cos sin

xe
p x xe p y x xe

ye
p x xe ye

p y ye y ye x xe

ze
p x xe ye

p y ye x xe y ye

cB
E

cB
E

cB
E

= φ θ −ξ + φ ξ θ −ξ

= φ θ − ξ ξ −

φ ξ ξ + ξ ξ θ − ξ

= − φ θ − ξ ξ +

φ ξ ξ θ − ξ − ξ ξ

,                                                  (15) 

 

where E0 represents the magnitude of the incident electro-magnetic wave. 

 The E and B fields can now be transformed to the electron rest frame to find the 

polarization vector ′α . Since the electron beam direction is defined to be in the +ze 

direction, this requires only a one dimensional boost, leading to [25] 

 

( ) ( )        x x y y y x z zE E c B E E c B E E′ ′ ′= γ − β = γ + β =                                    (16) 

 

where the prime denotes the electron rest frame. The rest frame polarization vector can 

now be calculated using the expression                           
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0

i
i

E
E

′
α =

′
    .                                                 (17) 

 

The normalization factor in Eq. (17) is easily determined by employing the invariance of 

the normalized vector potential magnitude ( 0 0a a′ = ), leading to  

 

0 0
0

0 0 0

1 ( , , , )x y xe ye
E c g
E

 ′ω ′= = γ − ≡ θ ξ ξ ξ ′ ω ω 
β ki ,                                                              (18) 

 

where the transformation of the laser wavelength from the lab frame to the rest frame has 

been employed, and the quantity g ′ has been defined to be the ratio of the incident photon 

energy in the rest frame to the photon energy in the lab frame. In terms of the rotated 

electron and photon coordinate angles, g ′ is expressed as 

 

( ) ( ) ( ){ }1 cos cos sin sin 1 cosx xe y ye y ye x xeg  ′ = γ + β θ − ξ ξ − ξ + ξ ξ − θ − ξ   
                 (19) 

 

Combining Eqs. (14), (15), and (17) – (19) results in the following expressions for the 

laser polarization vector in the electron’s rest frame. 

 

 

( )( )
( ) ( )

cos cos 1 sin sin cos cos1

sin sin sin sin

p x xe y ye y ye
xe

p x xe y ye
g

  φ θ −ξ +β ξ ξ +β ξ ξ −  ′α =
′  φ θ − ξ ξ + β ξ 

                        (20) 

 

( )( )
( )( )

cos sin sin sin1
sin cos sin sin cos cos

p x xe ye y

ye
p x xe y ye y ye

g

 φ θ − ξ ξ + β ξ +
 ′α =

′   φ θ − ξ β + ξ ξ + ξ ξ  

                               (21) 

 

 

and 
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( )
( )

cos sin cos1
sin sin cos sin cos sin

p x xe ye

ze
p y ye x xe y yeg

 φ θ −ξ ξ + �−′  �α =
′γ  �φ ξ ξ θ − ξ − ξ ξ � � �

                                       (22) 

 

Equations (20)-(22) express the normalized components of the polarization vector in the 

electron beam rest frame in terms of the laser and electron direction, the electron beam 

energy, and laser polarization.  It is interesting to note that z′α  approaches zero as γ  

becomes very large. Thus, for 1γ� , the photon will be incident in the ez′−  direction, 

irrespective of the incident angle in the lab frame.  It is also worth noting that Eqs.(20)-

(22) can be simplified significantly in the plane-wave approximation ( 0x yξ = ξ = ), 

resulting in 

 

( )
( )

0

0

cos cos cos1
sin sin sin

p x xe ye
xe

p ye x xe
g

  φ θ −ξ +β ξ − ′  α ≈
′ β φ ξ θ − ξ  

,                                  (20b) 

 

( )
( )
0

0

cos sin sin1
sin cos cos

p x xe ye

ye
p x xe yeg

 φ θ −ξ ξ + �
′  �α ≈

′  �φ β θ − ξ + ξ � � �

,                                                           (21b) 

 

and 

 

( )0cos sin cos1
sin sin

p x xe ye
ze

p yeg
 φ θ −ξ ξ −�−′α ≈  �′γ φ ξ � �

 .                                                         (22b) 

 

B.  Transformation of incident and scattered photon wave vectors 

 

 Equations (20)-(22) in conjunction with Eq. (9) express the differential Thomson 

cross section in the electron rest frame in terms of the interaction geometry in the lab 

frame. The next step is to transform this expression to the electron lab frame (xe ,ye, ze). 

To accomplish this, we consider the transformation of the incident wave-vector ( 0 cω , 

k0) from the lab frame to the rest frame: 
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0 0
0c c

′ω ω = γ − 
 

β ki ,                                                                                                        (23) 

0
0 0k k

c
ω ′ = γ −β 

 
� �

,                                                                                                         (24) 

and 

 

0 0k k⊥ ⊥′ =   ,               (25) 

 

where β  is the electron velocity normalized to the speed of light.  The lab reference 

frame is once again defined with respect to the electron beam direction (see Fig. 2(b)), 

such that Eq. (23) can be rewritten as 

 

0

0

( , , , )x y xe yeg
′ω ′= θ ξ ξ ξ

ω
.                                                                                                  (26)                              

 

where g ′ is the quantity previously defined in Eq. (18). 

 Within the rest frame, the scattered photon direction will be defined by the wave-

vector ( )ˆ ˆ ˆsin cos sin sin coss
s e e e e e e e ex y z

c
′ω′ ′ ′ ′ ′ ′ ′ ′ ′= θ φ + θ φ + θk , where e′θ  and e′φ  specify the 

scattered photon direction about the positive ez′  axis (see Fig. 1). Since only the Thomson 

limit is being considered, the scattered photon frequency s′ω  is taken to be equal to the 

incident frequency 0′ω .  The scattered photon energy in the rest frame, s′ω , is expressed in 

terms of the photon energy in the lab frame, sω , by once again using the Lorentz 

transformation from the lab frame to the rest frame: 

 

( )1 coss s s
s ec c c

′ω ω ω = γ − = γ −β θ 
 

β ki  ,                                                                     (27) 
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where eθ  is the angle of the scattered photon with respect to the ze axis in the electron lab 

frame.  Appling the Thomson limit approximation and inserting Eq. (26) into Eq. (27), 

leads to 

 

( )( ) 2 2
0

( , , , ) 2 ( , , , )
( , , , , )

11 cos
x y xe ye x y xe yes

x y xe ye e
ee

g g
g

′ ′θ ξ ξ ξ γ θ ξ ξ ξω = ≡ θ ξ ξ ξ θ ≈
ω + γ θγ −β θ

 .       (28) 

 

For a head-on collision ( 0x y xe yeθ = ξ = ξ = ξ = ), it is seen that the energy of the scattered 

photon is maximally upshifted by a factor of 24γ , while for a side-on collision, the 

upshift is 22γ .  It is also seen that the scattered photon energy distribution is the familiar 

Lorentzian function of observation angle eθ  with a FWHM equal to 1 γ . 

 The scattered photon direction in the rest frame can be expressed in terms of lab 

angles by transforming sk back into the rest frame.  Using the analogs of Eqs. (24) and 

(25)  we obtain 

 

( ) coscos cos
1 cos

s e
e e

s e

ω θ −β′θ = γ θ −β =
′ω −β θ

   ,                                                                        (29)                               

 

( )
sin cossin cos
1 cos

e e
e e

e

θ φ′ ′θ φ =
γ −β θ

   ,                                                                                      (30)                             

 

and 

 

( )
sin sinsin sin
1 cos

e e
e e

e

θ φ′ ′θ φ =
γ −β θ

   .                                                                                       (31) 

 

where eφ  is the azimuthal angle about ze in the electron lab frame.  Eqs. (29)-(31) can be 

inserted into Eq. (9) to obtain the rest frame differential cross section in lab frame 

coordinates. To get an expression for the lab frame differential cross section, we have 
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( )
( )( )
2

2

cos 1
cos 1 cos

e

e e

dd d d d d
d d d d d d

 ′θ′σ σ Ω σ σ −β = = =
′ ′ ′  Ω Ω Ω Ω θ Ω −β θ 

                                           (32) 

Here, ( ) ( )sin cosd d d d dΩ = θ θ φ= − θ φ, and we have used the fact that d d ′φ= φ .  This 

expression, along with Eqs. (9) and (29)-(31), lead to the expression for the lab frame 

differential cross section, given by 

 

( ) ( )( )
( )

( ) ( )
( )( )

( ) ( )
( )( )

( )
( )

( ) ( ) ( )
( )( )

( )( ) ( ) ( )
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d
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   −β θ φ θ φ θσ    ′ ′θ φ = α − + α −
   Ω −β γ −β θ γ −β θ   

  θ −β φ φ θ
 ′ ′ ′+α − − α α   −β θ γ −β θ  

θ −β φ θ
′ ′− α α

( )( )
( )( ) ( ) ( )

( )( )2 2

cos sin sin
2  .              (33)

1 cos 1 cos
e e e

y z

e e

θ −β φ θ
′ ′− α α

γ −β θ γ −β θ
 

 Note that while the cross section has been expressed as a function of only the 

observation angles θe and φe, the dependence on the initial interaction geometry 

( ,  ,  ,  x y xe yeθ ξ ξ ξ ) is implicit in the components for the polarization vector (Eqs. (20)-

(22)). Finally, we wish to express this cross section in the stationary lab frame coordinate 

system (x, y, z). To accomplish this, we consider the transformation from the electron lab 

frame (xe, ye, ze) to the stationary lab frame (x, y, z). Noting that re = r, and 

 

cos sin
sin sin
cos

x r
y r
z r

= φ θ
= φ θ
= θ

   ,                                          (34) 

 

and performing the transformation 

 

( )e ey ex=r r� �  ,                                  (35) 
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we have the following expressions for the relevant trigonometric terms in the rotated 

electron frame used in Eq. (33) in terms of the stationary laboratory frame coordinates 

( ,  )θ φ and the relative electron direction ( ,  )xe yeξ ξ : 

 

cos sin cos sin cos cos sine e xe xeφ θ = φ θ ξ − θ ξ   ,                                                             (36) 

 

sin sin sin sin cos

cos sin sin cos cos cos sin
e e ye

ye xe xe ye

φ θ = φ θ ξ

− φ θ ξ ξ − θ ξ ξ
,                                                               (37) 

 

and 

 

cos cos cos cos

sin sin sin cos sin sin cos
e xe ye

ye xe ye

θ = θ ξ ξ

+ φ θ ξ + φ θ ξ ξ
  .                                                                (38) 

 

Eq. (33) combined with Eqs. (36)-(38) and (20)-(22) completely describe the probability 

distribution of scattered photons in the lab frame for the collision of a relativistic electron 

with a photon at arbitrary incident angle and polarization. 

 

III  GENERAL PROPERTIES OF THOMSON SCATTERING 
 

 
The cross-section described by Eq. (33) can be used to present a brief review of the basic 

properties of Thomson scattering. We consider the case of a single electron 

( 0xe yeξ = ξ = ) colliding with a plane wave ( 0x yξ = ξ = ) incident at an angle θ0 with 

respect to the electron direction. As discussed in Section 1, the rate of scattered photons 

per unit solid angle will be proportional to d dσ Ω  such that 

 

( ) ( ) ( )
0

d, ,
d

sdN F t
d dt ω

σθ φ = θ φ
Ω Ω

                                                          (39) 

 

where 
0

Fω  represents the incident photon flux and is given by [see Eq. (4)] 
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( ) ( )
0 0

0

1 ,e e
cF t c n t tω γ

 
= −     ω 

β k ri                                   (40) 

 

Figures 3 and 4 illustrate the characteristics of the differential cross section for the case of 

a head-on collision ( 0 0θ = ), with polarization in the x direction. To illustrate the 

differences between the cross section for a non-relativistic and relativistic electron, two 

cases ( 1γ =  and 2γ = ) are illustrated. For the case of the non-relativistic electron, the 

scattered photon density follows that of a dipole radiation pattern, with the density being 

uniform in the plane perpendicular to the incident polarization vector (y-z plane), and 

with the density falling to zero in the direction of the polarization vector in the x-z plane.  

For the relativistic case, the scattered photon density is collimated in the direction of the 

electron beam in a cone of angular full width half maximum (FWHM) roughly equal to 

1 γ .  However, the probability distribution is broader in the plane perpendicular to the 

plane of polarization than in the plane parallel to it, with the intensity in the parallel plane 

having both a central strong intensity peak on axis, corresponding to the scattered 

photons from the forward direction in the rest frame, and the much smaller side-lobe 

intensity peaks corresponding to the photons in the backward direction in the rest frame. 

Note that in Figs. 3 and 4, θ  is plotted from −π to π, where negative values of θ  

correspond to a 180 degree rotation of the φ coordinate. 

 While Figs. 3 and 4 provide detailed information on the photon density, it is often 

desirable to express the scattered x-ray beam in terms of the energy density, since this is 

often what is directly measured. To this end, the scattered x-ray intensity distribution can 

be obtained by simply multiplying Eq. (39) by the energy of the scattered photon, 

resulting in 

 

( ) ( ) ( ) ( )0 0
d, , ,
d

sdU t g F t
d dt ω

σθ φ = ω θ θ φ
Ω Ω

�                          (41) 
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The scattered energy density is plotted in Fig. 5 for the case of a relativistic electron with 

γ = 2. The intensity profile is somewhat narrower than the photon probability distribution 

due to the fact that lower energy photons correspond to the photons with the larger 

divergence angles from the electron direction.  It is also worth noting that the outside 

lobes evident in the x-z plane of the photon probability distribution are less significant in 

the energy intensity distribution.   

 For the case of an off-axis photon incident angle (e.g. side-on collision), the 

differences in the intensity/probability profiles are minor for a sufficiently relativistic 

electron.  This fact is obvious when considering that in the rest frame of the electron, the 

incident angle of the incoming photon scales roughly as 1 γ , closely simulating a head-

on collision for a sufficiently relativistic beam.  However, if the photon is polarized in the 

plane of incidence, there will be slight offset in the photon/intensity distribution in this 

plane.  This is seen in Fig. 6.  On the other hand, it can be seen from Eq. (33) that if the 

photon polarization is perpendicular to the plane of incidence of the collision (i.e. 

0x z′ ′α = α = ), then the photon probability distribution is independent of incidence angle 

for all electron beam energies. 

 By utilizing the approximate independence of the scattered photon probability 

distribution on the incident photon polarization in the high γ limit, a greatly simplified 

expression for the cross section can be obtained. If we take the case 0x zα = α = , and we 

once again assume 0xe ye x yξ = ξ = ξ = ξ = , then for 1γ� , Eq. (26) becomes  

 

( )
( )

( )
( )

2 22
2 2

0 2 22 2 2 2

44 1 sin
1 1

d r
d

 θ γσ γ  ≈ − φ
 Ω + θ γ + θ γ 

                                 (42) 

 

while the scattered intensity distribution becomes 

 

( ) ( )( )
( )

( )
( )

( )
2 24

0 2
0 0 3 22 2 2 2

48 1 cos
1 sin

1 1
sdU F t

d dt ω

 θ γγ + β θ
 ≈ ω − φ
 Ω + θ γ + θ γ 

�  .                                    (43) 
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Eqs. (42) and (43) will be approximately correct for an arbitrary linear laser polarization 

provided the coordinate axis is defined such that 2φ= π  corresponds to the plane of 

polarization, and 1γ� .  In this case, the scattered intensity profile in the plane 

perpendicular to the laser polarization is described by a cubed Lorentzian with intensity 

FWHM of 1 γ .  In the plane parallel to the laser polarization, the intensity profile is 

described by a superposition of a cubed Lorentzian and a Lorentzian to the fifth power, 

where the scattered intensity will go to zero at 1θ = γ , and the FWHM will occur at 

0.635θ ≈ γ . 

 

IV SPECTRAL BROADENING FROM 3 DIMENSIONAL EFFECTS 

 

 The strict correlation between scattering angle and wavelength implies that, in 

principle, the spectrum produced from Thomson backscattering can be very narrow at a 

given observation angle. However, the three-dimensional aspects of the interaction 

geometry will, in reality, lead to significant broadening of the spectrum at a given 

observation position. In Sec. IV A, the spectral broadening due to the finite bandwidth in 

the laser pulse will be introduced into the theory.  In Sec. IV B, the effects from the 

perpendicular k vector components within the laser focus will be considered. Finally, in 

Sec. IV C, the spectral broadening due to the energy spread and transverse emittance in 

the electron beam will be considered.  

 

A. Laser bandwidth 

 

Thomson scattering is often performed with a short (ps to fs) laser pulse.  Consequently, 

the amount of bandwidth in the incident laser pulse can become a significant quantity. 

For the case of a Fourier transform limited laser pulse, the 1/e2 width of the photon 

frequency distribution will be given by the Fourier limit relation  

 

0 0 2t∆ω ∆ =  ,                                           (44) 
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where 0t∆  and 0∆ω  are the 1/e2 temporal and spectral widths, and a Gaussian distribution 

has been assumed.  To generalize to the case of chirped pulses that are not Fourier-

transform limited, both the center wavelength of the laser pulse and the spectral width 

can be expressed as function of the longitudinal position within the laser pulse, ( )tζ , 

with the time-dependent spectral density distribution given by 

 

( )( ) ( )
( )( )

( )

2
0

2
0 0

22 1, , expn tω

 ω− ω ζ
 ω ∆ω ζ = −
 π ∆ω ζ ∆ω ζ
 

                                                   (45) 

 

where ( ) Lt z ctζ = + , where zL is measured along the rotated laser frame corresponding to 

the average k vector of the laser pulse, and nω  is the probability distribution for a photon 

within the laser beam having a wavelength corresponding to ω.  The time-dependent 

photon spectral density flux for the scattered x-rays [Eq. (5)], now becomes 

 

( ) ( ) ( ) ( )( )0 0
d , ,
d

s
i s i i

s

dN F t n g d
d d dt ω ω

σ= θ φ ω ∆ω δ ω − ω θ ω
Ω ω Ω∫  .               (46) 

 

This expression can be integrated using the relation 

 

( )( ) ( )
( )

s
i

s i

g
g

g

 ωδ ω − θ δ ω − ω θ =
θ

  ,                (47) 

 

resulting in  
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 .              (48) 
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Similarly, the time dependent energy spectral density flux is given by 

 

( ) ( )
( )

( )
( ) ( )

( )

2

0

0 0 2
0 0

d 2,2 d exp

s

s

s

gdU F t
d d dt ω

  ωσ  − ω ζ θ φ θ  Ω= ω ζ − Ω ω π ∆ω ζ ∆ω ζ 
 
 

� .                          (49) 

 

Thus, the percent bandwidth of the scattered x-rays due to the above mechanism is equal 

to the percent bandwidth of the incident laser pulse, such that 

 

0

0

s

s

∆ω ∆ω≈
ω ω

.                          (50) 

 

B. Laser focus effects 

 

Equations (48) and (49) contain the spectral and temporal information for the Thomson 

scattered radiation from a single electron colliding with collimated photons (or an electro-

magnetic wave in the plane wave approximation). To include non-plane wave effects in 

the calculation, we consider the distribution of perpendicular k-vector components within 

the laser pulse focus as representing the spread in the direction of the incoming photons, 

while representing the laser focus within the paraxial approximation [26,27]. 

 We begin by considering the spatial distribution of photons near the laser beam 

focus. In so doing, a central laser frame (xL, yL, zL) is defined such that the zL axis 

corresponds to the direction opposite the direction of the average wave vector in the laser 

pulse, 0k .  Recalling that the laser pulse is assumed to be incident at an angle 0θ  in the x-

z plane, we have  

 

 ( ) ( )( )0 0 0 0 0ˆˆ ˆsin cosLk z k x z= − = − θ + θk .                             (51) 

 



  

 - 21 - 

The expression for the photon density in the paraxial approximation is given by  
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r

 

(52), 

 

where Nγ represents the total number of photons in the pulse, zRx and zRy represent the 

Rayleigh range of the laser focus in the x and y dimensions respectively, and nγ  is in 

units of photons/(unit length)3. In Eq. (52), it is assumed that the laser focus occurs at zL = 

0. To convert the expression from the laser frame to the un-rotated lab frame, we simply 

replace xL, yL, and  zL with the following relations: 

 

( ) ( )

( ) ( )

0 0

0 0

cos sin   ,
 ,

and
cos sin  .

L

L

L

x x z
y y

z z x

= θ − θ
=

= θ + θ

                                                                                           (53) 

 The Rayleigh range of the laser focus is given by the expression [26] 

2
0

R 2
0

z w
M

= π
λ

                                                             (54) 

where w0 is the 1/e2 intensity radius in x or y, 0λ  is the average wavelength of the laser 

pulse, and M2 > 1 determines how close the focus is to being diffraction limited.  Using 

the analogy of the Rayleigh range to the beta function of a particle beam focus, it is 

possible to express an effective 1/e2 “emittance” of the laser beam as [26] 

2
0

L 0 0
M w wλ ′ε = =

π
,                                    (55) 
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where 0w′ ≡ ∆ξ  is the 1/e2 width of the divergence of the laser beam, and, consequently, 

the 1/e2 width in the distribution of photon directions at the focus.  For a sufficiently soft 

focus, 
0

x
x

k
k

∆∆ξ =  and 
0

y
y

k
k

∆
∆ξ = , and 

( )
22

2 2

222, exp exp yx
k x y

x y x y

f ⊥

 − ξ − ξξ ξ =     π∆ξ ∆ξ ∆ξ ∆ξ   
         .                                                    (56) 

where 
0

L
x

xw
ε∆ξ = .  The distribution is normalized such that 

( ), 1k x y x yf d d⊥ ξ ξ ξ ξ =∫∫  .                                                                                               (57) 

 It should be noted that for a coherent beam, the distribution of k⊥  represents the 

spread in the direction of each photon in the beam, rather than simply the collective 

spread of all the photons.  This differs from the physical interpretation of the electron 

beam divergence (next section), in which it is relatively accurate to assume that each 

electron in the bunch has a well defined direction in comparison to the ensemble average 

of the electron beam direction as a whole.   

 Integrating over all incident k⊥ , the expression for the photon spectral density 

flux becomes 
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 
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∫∫

i

        (58)  

Note that for the case of a plane wave, 0x y∆ξ = ∆ξ = , and Eq. (58) reduces to Eq. (48). 

The primary effect of the non zero spread in k⊥  is to broaden the spectrum of the 

scattered x-rays at a given observation direction. This is apparent from Eq. (19), which 
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shows the dependence of the upshift of the photon frequency in the electron beam rest 

frame on the relative direction between the photon and electron. For the case of a head-on 

collision, this broadening will scale quadratically with k⊥ , making this effect small, and 

in many cases, negligible compared to the spectral broadening from other causes, such as 

laser bandwidth (see Fig. 7). In terms of the focal spot size, this broadening can be 

expressed as 

0

22
0

00

1
4 4

s x

s w
 ∆ω ∆ξ λ≈ =  ω π 

                                 (59) 

for a head-on collision, where w0 is the 1/e2 intensity radius, and M2 was assumed to be 

equal to unity.  On the other hand, for a side-on collision, the scattered x-ray energy is 

much more sensitive to k⊥ , as is illustrated in Fig. 8.  For this case 

0

0

090

s
x

s w
∆ω λ≈ ∆ξ =
ω π

 .             (60) 

As will be demonstrated later, however, even if the interaction geometry is not head-on, 

the spectral broadening induced by the spread in k⊥  will for most cases be insignificant 

compared to that induced by the finite electron beam emittance. Thus, except for the 

cases of an extremely strong laser focus or a very low emittance electron beam, a plane 

wave approximation is generally adequate for determining the Thomson x-ray spectrum. 

 

C.  Spectral broadening from the electron beam 

 

 Until now, only scattering from a single electron has been considered. In reality, 

Thomson scattering is performed with a beam containing many electrons.  In this 

treatment, we assume the x-rays are incoherently scattered from the electron bunch. 

Consequently, the calculated total x-ray spectrum will simply be a linear superposition of 

the spectrum produced by each individual electron. Spectral broadening of the x-rays will 

occur from 1) the spread in energy of the electrons in the bunch, and 2) the finite 

divergence of the beam at the interaction.  
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 Since the scattered x-ray energy scales as the square of the electron beam energy, 

the spectral broadening at a given observation angle due to the electron beam energy 

spread can be expressed as 

  

( )
( ) 2s

s

∆ω θ ∆γ≈
ω θ γ

 ,          (61) 

 

where sω  is the average scattered x-ray energy at the observation angle θ  and γ  is the 

average relativistic Lorentz factor of the electron beam.  For a high quality electron beam, 

the rms energy spread is typically on the order of 0.1%.  Consequently, the effect will 

most likely be comparable to smaller than the spectral broadening due to the laser pulse 

bandwidth for collisions with short (< 1 ps) laser pulses.  

 A potentially much more significant contribution to the spectral broadening of the 

x-ray pulse is the finite electron beam emittance. The small value of the Thomson cross 

section dictates that both the electron bunch and the laser pulse be focused to a very small 

spot size (< 100 µm) to produce a large number of back scattered x-rays.  For an electron 

beam of rms geometric emittance, xε , the rms divergence of the electrons at the beam 

waist will be given by 

 

2
x xe

ex
ex

′
ε ∆ξσ = ≡
σ

                       (62) 

 

where exσ  is the rms spot size in the x dimension at the electron beam focus, and xe∆ξ  is 

the 1/e2 divergence of the electron beam (assuming a Gaussian distribution). Eq. (62) is 

directly analogous to the Eq. (55) describing the spread in k⊥  for the laser focus. 

However, the effect on the scattered x-ray spectrum is quite different. In the relativistic 

limit, the x-rays are scattered primarily in the direction of the electron, and not that of the 

incoming photon. Thus, while the spreading due to k⊥∆ is primarily a result of a shift in 

the maximum scattered photon energy due to the slight change in the relative incident 

angle between the electron and the incident wave vector, the primary broadening 
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mechanism from the electron beam divergence results from a shift in the center direction 

of the scattered x-ray distribution for each electron, resulting in a corresponding spread in 

x-ray energies at any given observation point. From Eq. (28), the on axis spectral 

broadening can be estimated for small electron beam divergence angles for the case of 

head-on interaction geometry by replacing θ  with 2 2
xe ye∆ξ + ∆ξ , and expanding to first 

order in ( )2 2 2
xe yeγ ∆ξ + ∆ξ  to obtain 

 

( )
0

2 2 2

0, 0
2

x

xe yes

s θ = θ=

γ ∆ξ + ∆ξ∆ω ≈
ω

  .                                      (63) 

 

Including the effects of the laser bandwidth and divergence, as well as the electron beam 

energy spread, we have for the on axis spectrum for a head-on collision: 

  

( )
0

2 24 2 2 2 2 2 2 22
0

2 2
00, 0

4
4 8

x

xe ye xL yL xe yes

s θ = θ=

γ ∆ξ + ∆ξ  ∆ξ + ∆ξ + ∆ξ + ∆ξ∆ω ∆ω∆γ≈ + + +  ω γ ω 
.        (64) 

 

 More rigorously, the effect of the electron beam focus on the differential cross 

section, and hence, the scattered photon spectral density flux, can be obtained by 

integrating over all the electrons in a given 6-D distribution, ( ),, , (0)e xe ye e ef ξ ξ γ r . The 

photon spectral density flux now becomes 

 

( ) ( ) ( ), , 3
,

, , ,, , ,
, , ( ) se xe ye sT s

e e xe ye e e xe ye e
s s

dN tdN t
N f t d d d d r

d d dt d d dt
ξ ξ θ φ ωθ φ ω

= ξ ξ γ ξ ξ γ
Ω ω Ω ω∫ r ,         (65) 

 

where Nse represents the photons scattered by a single electron (Eq. (58)), Ne is the total 

number of electrons in the bunch, and ( ),, , (0)e xe ye e ef ξ ξ γ r  is the 6-D phase space 

probability distribution.  
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 The time and frequency-domain code presented in this paper represents 

( ),, , (0)e xe ye e ef ξ ξ γ r  with a group of macro-particles rather than an analytic expression. 

This allows more general electron distributions to be considered, as well as enabling the 

simulation of electron beams produced from particle dynamics codes. The total number 

of photons per unit solid angle per unit photon energy for an electron bunch colliding 

with a laser beam can then be calculated by summing Eq. (58) over all the electrons in the 

bunch, such that 

 

( ) ( ), , , , ,, , , se xe ye sT s e

es s

dN tdN t q
d d dt e d d dt

ξ ξ θ φ ωθ φ ω
=

Ω ω Ω ω∑                                                               (66) 

 

where qe is the charge represented by the macro-particle, and the subscript e has been 

employed to denote each macro-particle in the calculation. 

 

V.  TIME AND FREQUENCY-DOMAIN CODE DESCRIPTION 

 

 Equation (66) represents the basic algorithm of the 3-D time and frequency-

domain code. In its most general form, the program calculates the number of photons 

scattered into a given solid angle and range of sω  at each time step by summing over all 

incident k⊥  within the laser pulse. This will be performed for all the electrons in the 

bunch, which are represented by a series of macro-particles with charge equal to qe.  The 

background motion of the electron through the laser pulse is assumed to be ballistic.  The 

temporal information of the x-ray pulse is determined by calculating the time of flight of 

the scattered photon to a detector at a specified distance to the interaction at each time 

step in the simulation. Spatial information of the scattered x-ray pulses is determined by 

performing this calculation for several different observation directions specified by θ  

and φ. To review the assumptions inherent in the 3-D time and frequency-domain code, 

we state that 1) the normalized vector potential of the incident laser pulse, eA/mc, is much 

less than one, 2) the incident photon energy in the electron’s rest frame is much less than 
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the electron rest mass (i.e. 2
0 mc′ω� � ), and 3) the scattered x-ray wavelength is much 

shorter than the size of the electron bunch (i.e. incoherent scattering). 

  There are a few simplifications that can be made under some circumstances to 

significantly reduce the amount of computation.  One is to make the assumption that the 

incident laser pulse is a plane wave. For this case, no integration of the incident k-vectors 

is performed, and Eq. (58) becomes 
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                 (67)         

 

 Another simplification is the assumption that there is no temporal dependence of 

the average wavelength of the incident laser pulse (i.e., it is bandwidth-limited in time). 

Under this circumstance, rather than calculating everything at each time step, the time 

integration can be separated out of the calculation of the spectral and angular dependence 

of the scattered x-ray distribution, resulting in only one required evaluation of the cross 

section for each scattered frequency and solid angle for each electron in the bunch. In this 

case, the time integration of Eq. (58) will result in 

 

 

 



  

 - 28 - 

( ) ( )

( )
( )

( )
( )

, ,
0

2

0

2
00

, ,

d 2, , , , , , , , ,2 d, exp
, , , ,

se xe ye s

s

s

xe ye x y xe ye x y
k x y x y

xe ye x y

dN
F t dt

d d

g
f d d

g

ω

⊥

ξ ξ θ φ ω
=

Ω ω

  ω σ − ω ξ ξ ξ ξ θ φ  ξ ξ ξ ξ θ   Ωξ ξ − ξ ξ π ∆ω∆ω ξ ξ ξ ξ θ  
 
  

∫

∫∫

, 

(68) 

 

where the time dependence of the central laser frequency 0ω  and the bandwidth 0∆ω has 

been removed.  Under this assumption, the temporal information of the scattered x-rays is 

obtained by assuming all the photons scattered into a given direction by a single electron 

arrive at the detector at the same time.  

 For many cases, both the plane wave and bandwidth-limited approximation are 

valid, which can reduce the computation time by 2 to 3 orders of magnitude. In this case 
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(69) 

 

Note that for the purposes of the output of the code, θ and φ are defined to be the angle 

specified by the transverse position of the detector and the distance of the detector from 

the interaction “point”, which is defined to be the origin of lab frame coordinate system.  

Due to the finite interaction size, this does not strictly correspond to the exact direction of 

all the scattered photons characterized to be at this observation angle. For most cases, 

however, the detector will be far away from the source (on the order of a meter), so the 

source size, which is usually less than 100 µm, will have a negligible effect on the 

observed spectrum.  
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 As an illustrative example, we consider the case of a 50 MeV ( 100γ ≈ ) electron 

beam focused to an rms spot size of 20 µm colliding head-on with an 800 nm laser pulse 

in the plane wave approximation. The laser pulse has a 1/e2 pulse width of 1 ps, and the 

energy spread of the electron beam is assumed to be negligible. Fig. 9 shows the 

calculated on axis spectrum for the case of both nxε = 1 mm-mrad and nxε = 2 mm-mrad, 

where nxε  is the normalized rms emittance of the electron bunch. For the 1 mm-mrad 

case, the width of the x-ray spectrum is dominated by the laser bandwidth, and hence the 

shape of the spectrum is a symmetric Gaussian about the peak. For the 2 mm-mrad 

example, the emittance of the beam is beginning to take over, characterized by the low 

energy tail in the distribution. Fig. 10 presents a more complete picture of the scattered x-

rays. A false color image of the case of spectral energy density (energy/mrad2/eV) is 

plotted vs. scattered x-ray energy, sω , and divergence angle, θ , in the plane 

perpendicular to the laser polarization.  Note that the scattered spectrum is significantly 

narrower on axis.  This fact, in conjunction with the larger number of photons scattered 

on axis, lead to a much larger spectral brightness in this direction than in the off axis 

directions. 
 

 

VI.  CHIRPED X-RAY PULSE PRODUCTION AND FEMTOSECOND PULSE 
SLICING 

 
 The capability to provide complete temporal and spectral information of the x-ray 

beam produced in a Thomson interaction makes the 3-D time and frequency-domain code 

ideal for the study of chirped x-ray pulse production. The production of chirped x-rays 

would be of great benefit to ultra-fast dynamic diffraction experiments, enabling fs x-ray 

pulse production through either pulse slicing by Bragg and/or multi-layer 

monochromators [15], or pulse compression with strained crystals [16] or grating 

compressors [17]. In addition, chirped x-ray pulses could be used to obtain a series of 

time correlated measurements within a single Laue diffraction pattern, while eliminating 

the relevance of jitter between the pump and probe pulses [14].  
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 The maximum temporal resolution provided by a chirped pulse is determined by 

the ratio of the uncorrelated spectral bandwidth su∆ω , defined to be the minimum 

spectral width at a single longitudinal position within in the pulse, to the total, or 

correlated, spectral bandwidth, sc∆ω (see Fig. 11).  The minimum x-ray pulse length 

achievable through slicing or compression, slicet∆ , will be given by  

 

0
su

slice
sc

t t∆ω∆ ∆
∆ω

∼               (70) 

 

where 0t∆  is the 1/e2 intensity width of the total x-ray pulse.             

 Two possible methods for producing chirped x-ray pulses through Thomson 

scattering are: 1) preparing an energy chirped electron bunch, and 2) preparing a chirped 

laser pulse (Fig. 12). In the first method, the electron bunch can be chirped by passing it 

through an accelerator section near the zero crossing of the RF wave. In this case, the 

average energy gain through the section will be zero, but a linear correlation between 

time and energy will be induced in the electron bunch. Subsequently, when the electron 

bunch collides with the laser pulse, the x-rays, which are automatically time correlated 

with the electrons, will also receive a chirp. Since the scattered photon energy scales as 

the square of the electron beam energy, the correlated energy spread of the x-rays, sc∆ω , 

will be given by  

 

2sc c

s

∆ω ∆γ
ω γ

∼                       (71) 

 

where γ  is the average electron beam relativistic Lorentz factor, sω  is the average 

scattered photon energy at a given observation direction, and c∆γ  is the correlated energy 

spread of the electron bunch. 

 For the second case (chirping of the incident laser pulse), sc∆ω , will depend on 

the interaction geometry. For a head-on collision, each electron will sample the entire 

laser pulse (assuming the laser pulse is short compared to the Rayleigh range), and hence 
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will radiate the entire Doppler upshifted spectrum of the laser pulse. However, if the 

interaction occurs at 90 degrees, different electrons will sample different temporal 

positions within the laser pulse, and if the laser pulse is chirped, will radiate different 

spectra. To maximize this effect, the width of the laser focus should be small compared to 

its duration so as to minimize the longitudinal range sampled by each electron in the 

bunch. However, the spectral broadening due to the laser focus becomes more significant 

in a side-on collision (see Sec. 3(b)), which will limit how small the interaction spot size 

can be without significantly increasing the uncorrelated spectral width of the scattered x-

rays. 

 

A.  Chirped x-ray production with an energy chirped electron bunch 

 To produce a chirped electron beam, the electron bunch is first accelerated to 

relativistic energies in an RF accelerator. Subsequently, the bunch, with pulse duration 

specified in terms of RF degrees, e∆ϕ , is injected at the zero crossing of the RF wave in a 

later accelerator section. This will impart a correlation between the energy of the 

electrons and the phase, which is corresponds directly with time. Since the electron bunch 

is already relativistic, the output pulse length will be largely unaltered from the input 

pulse length, resulting in a chirped electron bunch. If the maximum energy gain by the 

accelerator section is represented by m∆γ , and the input electron beam energy is 

represented by γ , then the fractional correlated energy spread at the output of the 

accelerator section will be given by 

c m
e

∆γ ∆γ ∆ϕ
γ γ

∼                                                                                                                 (72) 

where e∆ϕ  is typically a few RF degrees. If we assume a typical accelerating gradient of 

10 MV/m for a standard S-band (2.85 GHz) accelerator, a chirp of 0.17 MeV per meter of 

accelerator per picosecond of electron bunch duration will be achieved. 

 Ideally, the electron beam energy chirp expressed in Eq. (72) will result in the 

corresponding x-ray energy chirp expressed in Eq. (71).  For this to actually be achieved, 

however, the competing spectral broadening effects resulting from the uncorrelated 
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energy spread of the electron beam, the laser pulse bandwidth, and the electron beam 

emittance must be minimized (see Eq. 64).  It can be expected that the maximum 

reasonable value for c∆γ  will only be a few percent of the average electron beam energy 

due to constraints of the chromaticity of the final focus optics, as well as the limited 

accelerator length available to perform the chirping. Thus, to maximize the x-ray beam 

chirp, which will be characterized by the ratio of the correlated x-ray spectral width, 

su∆ω , to the uncorrelated spectral width su∆ω , these competing spectral broadening 

effects should be much less than 1%, i.e. 

1%su sc

s s

∆ω ∆ω
ω ω

� ∼  ,                                (73) 

 The uncorrelated electron beam energy spread is typically less than 0.1%, and the 

broadening due to the laser bandwidth should meet the requirement of Eq. (73), provided 

the bandwidth-limited pulse length is longer than about 1 ps, which is still within the 

Rayleigh range of a typical laser focus.  Thus, the primary challenge to satisfying Eq. 

(73) is the minimization of the spectral broadening due to the electron beam emittance. In 

order for this to be achieved, the transverse divergence of the electron beam at the 

interaction point, xe∆ξ , must be much less than overall x-ray beam divergence, given 

approximately by 1 γ , or, using Eqs. (73) and (63),  

 

2
2

2 sc
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s

∆ω∆ξ
γ ω

�   .                                                  (74) 

 

Assuming an electron beam of energy 50 MeV with a 1% rms energy chirp, an rms 

divergence angle of much less than 2 mrad will be required to achieve adequate spectral 

sharpness to resolve the x-ray chirp.  In terms of the normalized rms emittance and the 

final focus spot size, Eq. (73) becomes 
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where xfσ  is the rms size in x of the electron beam focus.  Assuming an rms spot size of 

less than 50 µm is desired for the Thomson interaction, it is seen from Eq. (63) see that 

an rms normalized emittance of much less than 10 mm-mrad will be required. While 

challenging, the electron bunch parameters required to produce a highly correlated x-ray 

spectrum should be achievable. For example, electron beam emittances as low as 1 mm-

mrad with bunch charges of several hundred pico-Coulombs have been demonstrated at 

Brookhaven National Laboratory [28].   

 For the calculations presented here, the particle dynamics code PARMELA was 

used to simulate the electron bunch production at the PLEIADES facility at LLNL [11]. 

The accelerator consists of several major components, including an S-Band photocathode 

RF gun and four 2.5 meter S-Band accelerator sections.  The accelerator sections run at 

gradients up to 10 MV/m.  In the simulation, the electron beam is accelerated through the 

first 3 sections up to an average energy of 50 MeV, while the last section is used to 

induce an energy chirp in the electron beam by injecting 90 degrees ahead of the RF 

crest. In addition, for this particular case the electron beam was also injected near the 

zero crossing in the first accelerator section, resulting in additional chirping and some 

longitudinal compression of the bunch. The longitudinal phase space and time integrated 

transverse phase space of the simulated electron beam at the interaction location are 

shown in Fig. 13.  The rms bunch length is 0.7 ps, and the correlated rms energy spread is 

1.3 %, while the uncorrelated energy spread is 0.014%.  The normalized rms emittance is 

0.7 mm-mrad.  The electron beam focus was simulated using a 25 cm focal length 

quadrupole triplet, indicating the beam could be focused to an rms spot size of 35 µm 

with an rms divergence angle of only 0.25 mrad. 

 To simulate the production of Thomson x-rays, the macro-particle coordinates 

from the PARMELA simulation were loaded into the time and frequency-domain 

Thomson code. The interaction geometry was taken to be that of a head-on collision, with 

the laser pulse having a 1/e2 intensity pulse duration of 0.5 ps, and focused to a 1/e2 

radius of 36 µm. Due to the insensitivity of the x-ray spectrum to the laser focus 

parameters in the head-on geometry, the plane wave approximation was invoked in the 

calculation to speed up computation time.  
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TABLE I.  Summary of the simulated electron beam parameters at the interaction. 
Parameter Description Value 

E average beam energy 50 MeV 
Q bunch charge 0.1 nC 

nxε  rms normalized emittance 0.7 mm-mrad 

xfσ  rms spot size 35 µm 

tσ  rms duration 0.7 ps 

c∆γ  1/e2 correlated energy spread 2.6% 

u∆γ  uncorrelated energy spread 0.028% 

xe∆ξ  1/e2 divergence 0.5 mrad 
 

 The results of the calculations are summarized in Table II.  The total x-ray dose is 

about 107 photons, with an average on axis x-ray energy equal to about 60 keV.  The 

calculated on-axis x-ray spectrum is shown in Fig. 14. It is seen that excellent 

time/energy correlation is present, with a ratio of the correlated to uncorrelated spectral 

width equal to about 20:1. The longitudinal structure in the x-ray intensity is due to the 

longitudinal dependence of the focal spot position within the electron bunch.  

 Also shown in Fig. 14 is the result of a simulation of pulse slicing by spectral 

filtering of the x-ray pulse.  This can be accomplished through Bragg reflection with a 

bent crystal monochromator.  This process was simulated by multiplying the scattered 

intensity at each wavelength by a Lorentzian attenuation factor with a FWHM of 0.1% 

about the center frequency of 60 keV.  This corresponds roughly to a Bragg reflection 

from a LiF crystal (200) tilted at 3.0 degrees to the x-ray beam direction. The resulting 

FWHM pulse duration for the filtered x-ray pulse, assuming sufficient radial collimation, 

is only about 70 fs, about a factor of 20 down from the initial duration of 1.4 ps.  Note 

that the increase in uncorrelated spectral width due to the finite radial collimation of the 

x-ray beam scales as roughly ( )2 2rγθ , where rθ  is the angular half width of the 

collimation cone. For the example under consideration, where su s∆ω ω  is equal to 0.3%, 

and γ  is about 100, the radially integrated spectrum should be about the same as the on 

axis spectrum for rθ  < 0.5 mrad, implying only a modest increase in the duration of the 

sliced x-ray pulse.   This effect is illustrated in Fig. 15. 
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TABLE II.  Chirped Thomson x-ray beam parameters. 

Parameter Description Value 
Ns Total x-ray dose 107 

( )0sω θ =  on axis x-ray energy 60 keV 

sc∆ω  1/e2 correlated spectral width 4.9 % 

su∆ω  Uncorrelated spectral width 0.32 % 

st∆  1/e2 duration 1.4 ps 

ft∆  Minimum sliced duration 70 fs 
Nsf Photons in sliced pulse (0.1 mrad) ∼ 20 
wγ∆  1/e2 source size 36 µm 
B Brightness of source 1019 ph./s/mm2/mrad2/0.1%b.w. 

 

 

 The collimating and slicing process required to produce the short, monochromatic 

x-ray pulses will typically reduce the number of photons in the x-ray pulse by a factor of 

about 104-105, depending on the percentage acceptance of the slicing optic used (typically 

10-3 - 10-4) and the acceptable radial width of the collimation. For the cases studied 

above, the photon dose will vary from approximately 101-103 depending on the initial 

collimation imposed on the x-ray pulse, highlighting the inherent inefficiency of the pulse 

slicing method. However, due to the extremely small pulse duration, low angular 

divergence, and narrow bandwidth, the brightness of the source is still very high, about 

1019 photons/s/mm2/mrad2/0.1%b.w.  More efficient methods of pulse compression, like 

pulse compressions with strained crystals [16] or grating compressors [17], could 

potentially lead to even higher brightness x-ray pulses. 

 

B. Simulation of Chirped x-ray production with a chirped laser pulse 

 

 Chirped x-rays can also be produced by colliding an electron bunch with a 

chirped laser pulse. This can be performed in a side-on (θ0 = 900) collision geometry, in 

which case the portion of the laser pulse seen by each electron will depend on the 

longitudinal position within the electron bunch. The minimum spectral width radiated by 

each electron will be determined by the slice bandwidth of the chirped laser pulse, 
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defined to be the bandwidth at a given longitudinal position in the pulse, given 

approximately by 

 

0 min

0 0

2u

c c

t
t t

∆ω ∆≈ =
∆ω ∆ ∆ω ∆

 ,                                (76) 

 

where ∆ω0 is the total bandwidth of the laser pulse, ∆tmin is the bandwidth-limited pulse 

length, ∆tc is the chirped pulse length, and ∆ω0u is the slice (or uncorrelated) bandwidth 

of the laser pulse. For cases where the chirped pulse length is much greater than the 

bandwidth-limited pulse length, the center frequency as a function of time, t, within the 

laser pulse can be expressed as 

 

( )0 0 0
c

tt
t

ω ≈ ω ± ∆ω
∆

  ,                                 (77) 

 

where the sign indicates a positive or negative chirp. The fractional bandwidth seen by 

each slice of the electron bunch will be proportional to the ratio of the laser beam waist to 

the bunch length. Thus, the larger the focal spot of the laser, the larger the uncorrelated 

spectral width of the scattered x-ray pulses. However, if the focal spot becomes too small, 

the spectral broadening due to the perpendicular k-vectors in the laser focus will become 

significant [see Sec. IV B], which will place a limit on how small the laser focus can be 

made. The total uncorrelated width of the scattered x-ray spectrum, neglecting 

broadening effects of the electron beam, can be estimated to be 
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  ,                             (78) 

  

where w0 is the 1/e2
 intensity radius of the laser pulse at the focus, and ∆ωsu is the 

uncorrelated bandwidth of the x-rays scattered by a single electron. The first term in Eq. 

(78) represents the broadening due to the transit of the electron through the finite laser 
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focus spot, the second term is the broadening from ∆k⊥ , while the last term represents 

∆ω0u.  In addition to minimizing ∆ωsu, in order to maximize the total x-ray dose, it will be 

necessary to limit ∆tc to about the same pulse duration as the electron bunch.  Combining 

these three effects places relatively severe limitations on the ability to produce a chirped 

x-ray pulse.  The minimum sliced pulse duration can be estimated from Eqs. (78) and 

(70) to be 
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,                                    (79) 

 

where it has been assumed that the laser pulse duration is less than or equal to the 

electron bunch duration, and hence, the total x-ray bandwidth radiated by the electron 

beam is comparable to the Doppler upshifted bandwidth of the laser pulse.  

 We consider a 100 fs bandwidth-limited laser pulse stretched to a 1/e2 pulse 

length of 1.5 ps.  The pulse is taken to collide side-on with a 50 MeV electron beam of 

identical pulse width, emittance and focal spot as previously considered (Table I), though 

in this case the electron bunch is not chirped.  To minimize the spectral broadening 

described by Eqs. (78) and (79), the 1/e2 spot size of the laser focus was a chosen to be 

100 µm.  After simulations with several spot sizes, this was determined to be close to the 

optimum for minimizing the sliced pulse duration.  Fig. 16 shows the on axis time 

resolved x-ray spectrum before and after pulse slicing. While a clear correlation between 

the x-ray energy and time is apparent, the uncorrelated spectral width is much more 

significant in this case than with the previous example. As a result, the effectiveness of 

pulse slicing through spectral filtering is diminished, with only a modest shortening of the 

rms pulse duration from about 0.53 ps to 0.33 ps.  Additionally, both the photon flux and 

brightness are decreased from the previous example by about a factor of 20.  

 Generally, it can be concluded that colliding a chirped electron beam with a laser 

pulse is a much more effective method for producing chirped x-ray pulses than utilizing a 

chirped laser pulse.  However, it is seen that a moderate time/energy correlation can be 

achieved by the use of a chirped laser pulse in a side-on geometry. In some circumstances 
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this may be useful for providing moderate pulse slicing or compression of Thomson 

scattered x-ray pulses. For example, when the electron bunch is sub-ps in duration, 

energy chirping may not be practical, and the use of a chirped laser pulse may be the 

most beneficial approach for producing a chirped x-ray pulse. 

 

VII. CONCLUSIONS 

 

             The development of a femtosecond, hard x-ray source capable of probing inner 

shell electron properties on atomic time scales would open up regions of currently under-

explored science, such as phase transitions in materials under shock loading and chemical 

reaction dynamics. Thomson backscattering of an intense laser pulse with a high 

brightness electron beam is a promising means of meeting the demanding specifications 

of such an x-ray source.  In this paper, a recently developed 3-D time and frequency-

domain code for simulations of linear Thomson scattering for arbitrary interaction 

geometries has been applied to the study of chirped x-ray pulse production and ultra-fast 

pulse slicing.  The code employs a generalized relativistic Thomson differential cross 

section and was designed to enhance existing computational capabilities, and will be 

beneficial for both the design of Thomson scattered x-ray sources, as well as future 

experiments and applications utilizing such sources.  In particular, the new code is well 

suited for analyzing time dependent spectra of the x-rays produced from linear Thomson 

scattering, and hence is ideally suited for the study of chirped x-ray pulse production.  

Spectral broadening of the scattered x-ray pulse resulting from the incident laser 

bandwidth, laser focus, and the transverse and longitudinal phase space of the electron 

beam were examined. While chirped x-ray pulse production using both a chirped electron 

beam and a chirped laser pulse were presented, it was shown that the most promising 

method for producing chirped x-rays capable of sup 100 fs time resolution involved the 

used of an energy chirped electron beam at the interaction.  The primary limitation on the 

ability to produce chirped x-ray pulses using this method is the uncorrelated spectral 

broadening due to the electron beam emittance. Generally, it can be expected that the 

normalized rms emittance of the electron bunch should be on the order of 1 mm-mrad if 

both a well defined temporal x-ray energy correlation and a sizable photon flux are 
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desirable. Simulations of the x-ray production from a collision of an energy chirped, 50 

MeV, 0.1 nC, 0.7 mm-mrad electron bunch, and an 800 nm, 500 mJ laser pulse resulted 

in an x-ray pulse with excellent temporal energy correlation, with a minimum sliced pulse 

duration of about 70 fs FWHM, and a peak spectral brightness in excess of 1019 

photons/s/mm2/mrad2/0.1%b.w.  Such an x-ray source would provide significant 

improvement over the time resolution provided by other tunable, hard x-ray sources.  

While the total photon dose resulting from the slicing process is modest, the application 

of x-ray pulse compression schemes could lead to a much larger peak x-ray flux.  

Additionally, it is conceivable that a sliced x-ray pulse from a Thomson source could be 

used to seed and x-ray FEL, in congruence with proposed two-stage FEL schemes.  

Finally, we note that the theory and computer code described in this paper have been 

benchmarked against experimental data obtained at LLNL’s PLEIADES facility.  These 

results are described in detail in a companion paper. 
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Figure Captions 

FIG. 1.  Thomson interaction geometry in the electron rest frame. 

 

FIG. 2.  (a)Illustration of laser incident direction and polarization. α  is the direction of 

the polarization vector of the laser, where pφ  represents the rotation angle of α  about the 

zL axis. (b) Illustration of the electron incident direction. The electron beam is incident 

along the z axis, but the direction of each electron deviated by the angles specified by xeξ  

and yeξ . 

 

FIG. 3.  Scattered photon density vs. scattering angle ( θ ) from the z axis in the x-z plane 

(solid line) and y-z plane (dotted line) for the case of an electron at rest and an x polarized 

photon incident along the negative z axis.  

 

FIG. 4.  Scattered photon density vs. scattering angle ( θ ) from the z axis in the x-z plane 

(solid line) and y-z plane (dotted line) for the case of a relativistic electron ( 2γ = ) 

traveling along the z axis and an x polarized photon incident along the negative z axis. 

 

FIG. 5.  Scattered energy density vs. scattering angle ( θ ) from the z axis in the x-z plane 

(solid line) and y-z plane (dotted line) for the case of a relativistic electron ( 2γ = ) 

traveling in along the z axis and an x polarized photon incident in the negative z direction. 

 

FIG 6.  Scattered photon density from a relativistic electron ( 5γ = ) in the x-z plane 

produced by an x polarized photon for the case of head-on interaction (solid line) and a 

side-on interaction (dotted line). 

 

FIG. 7.  On axis x-ray spectrum produced by a 100γ =  electron colliding head-on with an 

800 nm laser pulse with a bandwidth corresponding to a 0.5 ps 1/e^2 pulse width for the 

case of a plane wave (dots), 20 µm laser focus (dark blue line), 10 µm laser focus (green 

line), and 5 µm laser focus (light blue line). 
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FIG. 8.  On axis x-ray spectrum produced by a 100γ =  electron colliding side-on with an 

800 nm laser pulse with a bandwidth corresponding to a 0.5 ps 1/e^2 pulse width for the 

case of a plane wave (dots), 200 µm laser focus (dark blue line), 100 µm laser focus 

(green line), and 50 µm laser focus (light blue line).   

 

FIG. 9.  On axis x-ray spectrum resulting from a head-on collision of a 50 MeV electron 

beam with an 800 nm laser pulse for the case of an rms normalized emittance of 1 mm-

mrad (line) and 2 mm-mrad (dots). 

 

FIG. 10.  False color plot of the spectral density of scattered x-rays in the y-z plane 

resulting from the head-on collision of a 50 MeV electron bunch with nxε = 1 mm-mrad 

focused to an rms spot size of 20 µm with an 800 nm, 0.5 ps bandwidth laser pulse 

polarized in the x direction. 

 

FIG. 11.  Longitudinal phase space of a chirped x-ray pulse. 

 

FIG. 12.  Methods for chirped x-ray pulse production. 

 

FIG. 13.  Simulated transverse and longitudinal phase space of the electron beam at the 

interaction point. 

 

FIG. 14.  Simulated on-axis x-ray spectrum of the chirped Thomson scattered x-rays 

before (top), and after (bottom) spectral filtering. 

 

FIG. 15.  Simulation of pulse slicing by Bragg reflection showing the spatially averaged 

intensity vs. time for the case of radial collimation widths of 0.1 mrad (left), 0.25 mrad 

(middle), and 0.5 mrad (right), corresponding to FWHM pulse durations of 70, 80, and 

100 fs respectively and total photon counts of 19, 113, and 420. 
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FIG. 16. Simulated on-axis x-ray spectrum for the chirped Thomson scattered x-rays 

produced by colliding a chirped laser pulse side-on with an unchirped electron bunch, 

before (top) and after (bottom) spectral filtering. 
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FIG. 1.  Thomson interaction geometry in the electron rest frame. 
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FIG. 2.  (a)Illustration of laser incident direction and polarization. α  is the direction of 
the polarization vector of the laser, where pφ  represents the rotation angle of α  about the 
zL axis. (b) Illustration of the electron incident direction. The electron beam is incident 
along the z axis, but the direction of each electron deviated by the angles specified by xeξ  
and yeξ . 
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FIG. 3.  Scattered photon density vs. scattering angle ( θ ) from the z axis in the x-z plane 

(solid line) and y-z plane (dotted line) for the case of an electron at rest and an x polarized 

photon incident along the negative z axis.  
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FIG. 4.  Scattered photon density vs. scattering angle ( θ ) from the z axis in the x-z plane 

(solid line) and y-z plane (dotted line) for the case of a relativistic electron ( 2γ = ) 

traveling along the z axis and an x polarized photon incident along the negative z axis. 
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FIG. 5.  Scattered energy density vs. scattering angle ( θ ) from the z axis in the x-z plane 

(solid line) and y-z plane (dotted line) for the case of a relativistic electron ( 2γ = ) 

traveling in along the z axis and an x polarized photon incident in the negative z direction. 
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FIG 6.  Scattered photon density from a relativistic electron ( 5γ = ) in the x-z plane 

produced by an x polarized photon for the case of head-on interaction (solid line) and a 

side-on interaction (dotted line). 
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FIG. 7.  On axis x-ray spectrum produced by a 100γ =  electron colliding head-on with an 

800 nm laser pulse with a bandwidth corresponding to a 0.5 ps 1/e^2 pulse width for the 

case of a plane wave (dots), 20 µm laser focus (dark blue line), 10 µm laser focus (green 

line), and 5 µm laser focus (light blue line).   
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FIG. 8.  On axis x-ray spectrum produced by a 100γ =  electron colliding side-on with an 

800 nm laser pulse with a bandwidth corresponding to a 0.5 ps 1/e^2 pulse width for the 

case of a plane wave (dots), 200 µm laser focus (dark blue line), 100 µm laser focus 

(green line), and 50 µm laser focus (light blue line).   
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FIG. 9.  On axis x-ray spectrum resulting from a head-on collision of a 50 MeV electron 

beam with an 800 nm laser pulse for the case of an rms normalized emittance of 1 mm-

mrad (line) and 2 mm-mrad (dots). 
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FIG. 10.  False Color plot of the spectral density of scattered x-rays in the y-z plane 

resulting from the head-on collision of a 50 MeV electron bunch with nxε = 1 mm-mrad 

focused to an rms spot size of 20 µm with an 800 nm, 0.5 ps bandwidth laser pulse 

polarized in the x direction. 
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FIG. 11.  Longitudinal phase space of a chirped x-ray pulse. 
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FIG. 12.  Methods for chirped x-ray pulse production. 
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FIG. 13.  Simulated transverse and longitudinal phase space of the electron beam at the 

interaction point. 
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FIG. 14.  Simulated on-axis x-ray spectrum of the chirped Thomson scattered x-rays 

before (top), and after (bottom) spectral filtering. 
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FIG. 15.  Simulation of pulse slicing by Bragg reflection showing the spatially averaged 

intensity vs. time for the case of radial collimation widths of 0.1 mrad (left), 0.25 mrad 

(middle), and 0.5 mrad (right), corresponding to FWHM pulse durations of 70, 80, and 

100 fs respectively and total photon counts of 19, 113, and 420. 
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FIG. 16. Simulated on-axis x-ray spectrum for the chirped Thomson scattered x-rays 

produced by colliding a chirped laser pulse side-on with an unchirped electron bunch, 

before (top) and after (bottom) spectral filtering. 

 


