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Abstract.
Over the last several years, significant progress has been made in the use of crystal level material models in simulations

of forming operations. However, in Lagrangian finite element approaches simulation capabilities are limited in many cases
by mesh distortion associated with deformation heterogeneity. Contexts in which such large distortions arise include: bulk
deformation to strains approaching or exceeding unity, especially in highly anisotropic or multiphase materials; shear
band formation and intersection of shear bands; and indentation with sharp indenters. Investigators have in the past used
Eulerian finite element methods with material response determined from crystal aggregates to study steady state forming
processes. However, Eulerian and Arbitrary Lagrangian-Eulerian (ALE) finite element methods have not been widely utilized
for simulation of transient deformation processes at the crystal level. The advection schemes used in Eulerian and ALE
codes control mesh distortion and allow for simulation of much larger total deformations. We will discuss material state
representation issues related to advection and will present results from ALE simulations.

INTRODUCTION

In the context of crystal scale continuum models of ma-
terial behavior, localization and deformation heterogene-
ity, while often of interest, pose substantial hurdles to
simulation efforts. This is particularly true for multi-
phase materials and for materials with large anisotropy
at the crystal level [1, 2, 3]. But deformation heterogene-
ity also poses difficulties for simulations of relatively
isotropic single phase materials, especially when large
macroscopic strains are of interest.

Three dimensional remeshing provides one possible
remedy. However, general remeshing is challenging in
the face of domains with internal material boundaries and
a detailed representation of the material state. Eulerian fi-
nite element methods offer another route by which prob-
lems with heterogeneous deformation may be tackled.
These methods may be viewed as performing continuous
remeshing, with well developed capabilities for track-
ing material boundaries. Progress on advection schemes
and boundary determination methods has been sufficient
to allow for simulations of problems in micromechanics
[4, 5, 6]. Issues do remain related to the advection of lat-
tice orientation and other tensorial state variable descrip-
tors, and these issues are partially addressed in the work
presented here.

A crystal level material model is developed and im-
plemented in an Eulerian finite element framework. The

model allows for elastic and thermal lattice distortion and
for restricted slip crystal plasticity. While it is in many
situations appropriate to specialize models to small elas-
tic strains, as is done in [7], Eulerian finite element pro-
grams are often used to simulate dynamic loading con-
ditions. Such loading conditions can produce large pres-
sures and thus large lattice strains. For this reason, we
employ a logarithmic lattice strain measure and allow
bulk deformation of the lattice to be large.

Example simulations are conducted to demonstrate the
model capabilities under quasi-static and dynamic con-
ditions. The quasi-static simulations are conducted for
channel die compression of a single crystal of metastable
orientation, corresponding to the work reported in [8]
and [9]. The material is compressed to a 90% reduction
in height and, due to initial small perturbations in the
lattice orientation, the crystal lattice orientation breaks
up into alternating layers of the two ‘copper’ texture
components. Results are compared to experimental find-
ings and Lagrangian simulation results reported in [8].
Dynamic simulations of shock induced void collapse
serve to demonstrate the large pressure capabilities of the
model.



CRYSTAL LEVEL MATERIAL MODEL

In many regards the material model is similar to exist-
ing models for deformation of elasto-viscoplastic crys-
tals [10, 7]. However, in contrast to many other models,
both elastic and thermal deformation of the lattice are
combined into a single lattice stretch in the multiplica-
tive decomposition of the deformation gradient. Another
key difference is that the state variables are stored in a
form amenable to advection. As the model is similar to
others existing in the literature, we outline its features
and implementation below but do not discuss it in detail.

Multiplicative decomposition of the deformation gra-
dient takes the form

F � V � R � Fp (1)

where V is symmetric and embodies both elastic and
thermal lattice straining; R is the lattice rotation; and Fp

is deformation due to dislocation glide. We then have

L � Ḟ � F � 1 � V̇ � V � 1 � V � L̂ � V � 1 (2)

L̂ � Ṙ � RT � R � L̄ � RT , L̄ �
n

∑
α � 1

γ̇α � s̄α � m̄α � (3)

with Equation (3) including the standard restricted slip
assumption for the kinemetics of crystal plasticity.

Due to its advantageous properties in decoupling bulk
and distortional deformation, a logarithmic form is used
for the lattice strain measure: Ê � ln � V � . The relation

τ̂ � f � � Ê 	 e � (4)

governs the elastic response, with τ̂ � Ĵσ and Ĵ �
det � V � . In this relation, temperature could be substituted
for the internal energy e.

For metals of cubic symmetry, it is typically accept-
able to assume that the distortional lattice strains are
small even when the bulk strains are large. Together with
the use of the logarithmic lattice strain measure, this fact
allows for substantial simplification of the model.1 First
define a � � det � V �
� 1 � 3 such that V � aV � and det � V � � �
1. Then

ln � V � � ln � a � I � ln � V � � (5)

and we have tr � ln � V � �
� � ln � det � V � �
� � 0 so that
tr � ln � V �
� � ln � det � V �
� as expected.

Ê � is directly related to the deviatoric part of the stress
and the stress is restricted in magnitude by plastic defor-
mation mechanisms. Therefore, it is safe to assume that
Ê ��� ln � V � � is always small. Defining V��� I � ε � , ε �
too is always small and ln � V � � is approximately equal

1 A fully large strain version of the model has been implemented and
tested, but due to space considerations we do not include results here.

to ε � . As tr � ln � V � �
� � 0, tr � ε � � is approximated as zero.
Decomposing V according to

V � I � ε � a � I � ε � � (6)

we have ε ��� ε �
��� 1
a ε � . All together, the lattice strain

measure is approximated by

Ê � � 1
a

ε � , tr � Ê � � ln � det � V �
��� (7)

As a further approximation related to the lattice stretch,
we use

V
� 1 � 1

a
� I � ε � ��� (8)

The trace of Ê depends directly on the determinant of V
and no approximations are used calculating tr � Ê � .

Using the equivalence between internal and external
work rates, the resolved stress on a slip system α is
found to be, under the small deviatoric lattice strain
assumption,

τα � τ̂ : � ŝα � m̂α ��� (9)

The small deviatoric lattice strain assumption also allows
for appreciable simplification of the calculations. This is
particularly true when components of the lattice strain
and its rate are computed in a frame that rotates with the
lattice. Details of the calculations, including the time in-
tegration scheme and material tangent stiffness calcula-
tion, are omitted for space reasons.

As a final note on the material model, the logarithmic
lattice strain measure allows for the use of a variety of
equations of state for the pressure-volume-temperature
relationship. In the shock loading results presented be-
low, a Grüneisen equation of state is used.

ADVECTION OF CRYSTAL LEVEL
STATE VARIABLES

The simulations discussed below are conducted in
Raven, a multi-material two dimensional arbitrary
Lagrangian-Eulerian (ALE) finite element program.
Raven makes use of an ‘operator split’ method for the
Lagrangian and Eulerian steps of the calculation. During
the Lagrangian step, the mesh follows material and
becomes distorted. In the Eulerian or ‘advection’ step,
the solution on the distorted mesh is mapped to the
new mesh. This new mesh may either be the original
undistorted mesh or a mesh which follows a general
motion.

During advection, a given state variable value in an el-
ement becomes a weighted average of the value in that
element and its neighbors. The weights depend on the
velocity field around the element and on the type of ad-
vection scheme. Raven uses the van Leer MUSCL algo-
rithm [11] for material transport (advection). Details of



FIGURE 1. Normalized quaternion averaging procedure.

advection schemes are not described here – the interested
reader is referred to the comprehensive review paper by
Benson [12]. The Lagrangian part of the program follows
the standard formulation used in many Eulerian finite el-
ement programs and makes use of reduced integration
with hourglass control.

If the advection scheme is to return meaningful results
for the post-advection state variables, the variables must
be stored in such a way that weighted averages are mean-
ingful. For scalar state variables, such as an average dis-
location density, no special precautions need to be taken.
However, the lattice strain and the lattice orientation are
tensorial and require more care.

First consider the lattice orientation, represented as the
rotation relating a fixed coordinate frame and the lattice
frame – that is as an element of SO � 3 � . The lattice ori-
entation may be parameterized using quaternions, which
are the numbers

Q ��� q0;q � with q ��� q1 q2 q3 � � (10)

A quaternion with unit norm is called normalized:

�
Q
� 2 � q2

0
� � q � 2 � 1 (11)

and normalized quaternions reside on the unit 4-sphere,
H4. To parameterize SO � 3 � , let x ��� q0 q1 q2 q3 ��� H4
and identify antipodes ( � x and � x). Metrical proper-
ties of the parameter space are such that a meaningful
weighted average of orientations is obtained from

m � x̄�
x̄
� where x̄ � ∑

i
w � i 	 x � i 	 (12)

with weights w � i 	 . Figure 1 contains a graphical represen-
tation of this process, reduced to the 3-sphere for visual-
ization purposes. Because antipodes on H4 parameterize
the same orientation, some care must be taken in storing
the parameters for advection. Assuming the lattice orien-
tation does not change by a large angular amount over a
time step, the sign of the normalized quaternion is chosen
to be the one giving closest alignment to the beginning
of step normalized quaternion. While both antipodes are
acceptable parameterizations, the averaging that occurs
during advection is meaningful only for quaternions that

are clustered on H4. For further details related to average
orientations using quaternions, see [13, 14]. The book
by Altmann [15] contains a more general discussion of
quaternions.

Sharp jumps in lattice orientation may occur at grain
boundaries, and averaging over such boundaries is un-
desirable. Averaging lattice orientation across a phase
boundary is meaningless. These situations are avoided
in multi-material Eulerian finite element codes, such as
Raven, through the introduction of material boundaries.
Such boundaries allow for distinct regions of material
and the state in these distinct regions does not mix during
advection.

The remaining tensorial state variable describes the
stretch of the crystal lattice. It is intimately associated
with changes in lattice plane spacing and thus it is tied
to the orientation of the lattice itself. We therefore store
the components of the strain in the lattice frame for ad-
vection. In order to reduce round-off errors, it is actu-
ally the components of ε � V � I which are advected. If
there were other tensorial state variables tied to the lat-
tice, such as a tensor describing some feature of the dis-
location density, we would store their components in the
lattice frame as well.

CHANNEL DIE COMPRESSION
SIMULATIONS

As an example application of the crystal level material
model in an ALE finite element code, we consider chan-
nel die compression of an aluminum single crystal to
a height reduction of 90%. This corresponds to a true
strain of roughly � 2 � 3. In analogy to rolling, the exten-
sion direction will be called the rolling directly (RD), the
compression direction will be called the normal direction
(ND), and the constrained direction will be called the
transverse direction (TD). As in [8], the nominal initial
lattice orientation is chosen so that a 
 100 � crystal direc-
tion is aligned with ND and a 
 011̄ � direction is aligned
with RD. From the experimental results in [8], we know
that high angle misorientation boundaries tend to develop
with their normals aligned with ND, providing some jus-
tification for plane strain simulations of the deformation.

In the Lagrangian finite element simulations in [8], el-
ements are badly distorted by a strain of � 1 � 2, leading to
inaccuracies in the solution quantities. In contrast, we are
able, with Raven, to simulate the full strain history with-
out adverse effects from element distortion. As the ex-
periments in [8] were performed under quasi-static con-
ditions, the simulations in Raven neglect inertial terms.
At the finite element level, an implicit solver is used, and
the tangent stiffness matrices from the material model
are used in forming the finite element stiffness matrices.



The deformation is restricted to the RD-ND plane and on
both ND-normal mesh faces we apply mirror boundary
conditions. On the left RD-normal face we apply a mir-
ror boundary condition and the right RD-normal mesh
face is traction free. The mesh remains regular through-
out the deformation, and follows the deformation in an
average sense. Along the right RD-normal mesh face,
material may flow in and out of the mesh due to hetero-
geneities in the deformation. The state of material flow-
ing into the mesh is obtained by extrapolation. The mesh
is composed of 160 elements along RD by 40 elements
along ND.

Note that while the deformation is restricted to a plane,
the model described above and its implementation are
fully three dimensional. Plastic deformation occurs by
slip on the twelve standard � 111 � 
 110 � slip systems for
face centered cubic crystals.

The nominal initial lattice orientation is metastable un-
der the applied deformation mode. When perturbed away
from the nominal orientation, the crystal’s lattice will ro-
tate toward one of two stable texture components as the
material deforms. In order to begin this process, we per-
turb the lattice orientation in each finite element by a ran-
dom amount of magnitude less than 0 � 2 �

about the TD
axis. As in [8], we also conduct simulations for pertur-
bations about an initial orientation which is rotated by
3 � 5 �

about the compression axis (ND). This corresponds
more accurately to the actual starting lattice orientation
for the experiments in [8]. In this case, the redundant slip
system activity required to achieve a net in-plane defor-
mation mode slows the rate of lattice reorientation.

As the material deforms, the lattice orientations tend
toward one of two ‘copper’ type texture components.
These two components are apparent in Figure 2, which
shows the orientation distribution function (ODF).

Misalignment of the nominal initial orientation by 3 � 5 �
is enough to produce noticeable differences in lattice re-
orientation rates. These differences are apparent in Fig-
ure 3, which shows the peak pole figure intensity and its
orientation for the aligned and misoriented conditions.

At the beginning of the simulations, a reduction in
peak intensity indicates a spreading in the texture compo-
nents and the development of transition regions between
the peaks in the ODF. As the deformation continues, the
lattice orientations begin to collect at the stable texture
components, and the pole figure peak intensity increases
again. Lattice reorientation rates are slower in the mis-
oriented case, due to increased redundant slip system ac-
tivity, and intermediate lattice orientations are not elimi-
nated as quickly.

Without any constraints on the in-plane shear in the
crystals, the stable lattice reorientation is 35 � 26

�
(vertical

axis in Figure 3(b)). Mutual constraint among the regions
of material slows the approach of the lattice orientation
to this ideal value. Peak pole figure location results in

FIGURE 2. Isosurface ODF plot in Rodrigues space, with
isosurfaces at 100 and 300 multiples of a uniform distribution
(MUD); for aligned nominal initial lattice orientation; at a
strain of � 2 � 3.

Figure 3(b) indicate that lattice reorientation rates are
under-predicted, especially in the higher strain range.

A likely cause of the under-prediction of lattice reori-
entation rates is the mixing of lattice orientation from
the two stable components during to advection. The im-
plicit formulation in Raven uses reduced integration with
hourglass control, allowing some spurious fluctuations in
the velocity field and thus extra mixing of state variable
quantities. Lagrangian finite element results reported in
Figure 18 of [8] achieve better agreement with exper-
imental lattice reorientation rates out to the maximum
simulated true strain of � 1 � 2.

VOID COLLAPSE SIMULATIONS

As a second example application, we consider shock in-
duced void collapse in copper. These simulation are con-
ducted at a relatively low shock pressure of 1 � 4GPa so
that pressure effects do not completely dominate material
strength effects. The two-dimensional simulations are of
single crystals with a cylindrical void initially one mi-
cron in diameter. Three different crystal orientations give
shocks running along

�
100 � , �

110� , and
�
111� directions.

We report briefly on the variations in the response for
these three different crystal orientations. We use the MTS
model for the slip system kinetics [17], and a dislocation
density model for the material hardening. Parameters are
either taken directly from [17] or chosen to fit the exper-
imental data reported in [17].
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FIGURE 3. Evolution of (a) peak pole figure intensity and
(b) typical pole reorientation angle, with aluminum [8] data.

While the effective strain in the bulk of the material is
small, effective strains near the collapsed void are well
in excess of unity. The large strains and high strain rates
produced as the voids collapse drive up the dislocation
density. Figure 4 shows the dislocation density in the
region of the collapsed void. The shock has traveled from
left to right. In the

�
100� shock direction case, the void

has not completely collapsed. This is also the case in
which the overall dislocation density increase is smallest.

Initial configuration

�
100 �

�
110 �

�
111 �

FIGURE 4. Total dislocation density near collapsed voids.
The range is 107 (light) to 1011 cm �

2 (dark). Initial void di-
ameter is 1 micron and the whole simulation domain is 5 by 5
microns – only part of the domain is shown in the above plots.
The shocks traveled from left to right.

The contrasting lines in Figure 4 indicate the boundary
between material on the upstream and downstream sides
of the voids (that is between the two regions indicated in
the initial configuration shown in the figure). In the

�
111�

shock direction case, the shape of the void is unstable
during collapse, resulting in undulation of the contrast
line.

Higher shock pressures can result in jetting and local
melting when the void collapses, but melting did not oc-
cur in the simulation results reported here. Peak temper-
atures for the

�
100� , �

110� , and
�
111� shock directions are

648K, 982K, and 1016K respectively.



400 500 600 700 800 900

vo
lu

m
e 

fr
ac

tio
n

temperature (K)

100
110
111

FIGURE 5. Residual temperature histograms.

Figure 5 contains histograms which more clearly in-
dicate variations in residual temperature as a function of
shock direction. To emphasize the effect of the void, the
histogram bin containing the lowest temperature range,
representative of the bulk temperature, has been left out
of Figure 5. Overall, the

�
100� shock direction simulation

shows the least heating.

DISCUSSION AND CONCLUSIONS

The model and its implementation in an Eulerian finite
element context show promise. Results from the channel
die compression simulations do not compare as well to
experiments as one might hope. But efforts are under way
to implement a new integration and state storage scheme
that will eliminate the need for hourglass control.

With its large pressure capabilities and suitable state
variable storage scheme, the model presented here may
be used to simulate dynamic loading scenarios at the
crystal level. Using the model, dynamic void growth and
collapse may be investigated at the crystal level. Possible
applications of the model range from dislocation genera-
tion kinetics in shocks to hot spot formation in energetic
materials.

One can imagine many other simulation scenarios in
which the above model might be used to investigate prob-
lems which are difficult to tackle using Lagrangian finite
element methods. For example, indentation experiments
can involve large localized deformations and might be
simulated using a crystal model coupled with an Eulerian
finite element program. Shear band formation, particu-
larly with intersecting shear bands, might also be stud-
ied. In a Lagrangian finite element code, the mesh is
potentially so distorted by the first band that a second

band has great difficulty forming. Eulerian finite element
programs, together with crystal level constitutive models
and well chosen state variable storage schemes, are likely
to see increasing use in simulations of deformations in
micromechanics.
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