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Smart Nanostructures from Computer Simulation: Final Report
Jeffrey C. Grossman and Andrew Williamson

Purpose:

This project had two main objectives. The first major goal was to develop new,
powerful computational simulation capabilities. It was important that these tools
have the combination of the accuracy needed to describe the quantum
mechanical nature of nanoscale systems and the efficiency required to be
applied to realistic, experimentally derived materials.  The second major goal was
to apply these computational methods to calculate and predict the properties of
quantum dots – initially composed of silicon, but then of other elements – which
could be used to build novel nanotechnology devices. The driving factor of our
purpose has been that, through the development and successful application of
these tools, we would generate a new capability at LLNL that could be used to
make nanostructured materials “smarter”, e.g., by selectively predicting how to
engineering specific, desired properties.

Activities:

To carry out the necessary work to successfully complete this project and deliver
on our goals, we established a two-pronged effort from the beginning: (1) to work
on developing new, more efficient algorithms and quantum simulation tools, and
(2) to solve problems and make predictions regarding properties of quantum dots
which were being studied experimentally here at Livermore.  Below, we highlight
the main activities and accomplishments in each of these areas.

Algorithmic development and enhancement of simulation tools:

We have integrated 3 separate quantum simulation codes in such a manner that
they work together and can read one another’s input and output. This was a
crucial first step as the three codes play a unique and important role in our
simulations.  In particular, the quantum Monte Carlo (QMC) code is used to
calculate highly accurate total energies, which can be used to determine binding
energies, optical excitation energies, and reaction pathway energies.  The
planewave density functional theory (DFT) code is used to provide accurate
structural and dynamical properties, and also to predict correct trends of
materials properties.  The output of the DFT code is needed as input to the QMC
code.  We also integrated an empirical pseudopotential code, which is used to
calculate optical properties of larger systems.  As a result, we created a
comprehensive quantum simulation suite of simulation codes that serves as a
powerful means to carry out a wide range of calculations.

We have developed a new algorithm in our QMC calculations that changes the
way the method scales with the number of particles in the system from N3 to N



(see attached paper 1).  As a result, our new, LLNL linear scaling QMC code can
be applied to much larger systems.  As an example, using the old algorithm, if a
10-atom system took 10 minutes to simulate, a 100-atom system would take 2.8
days to simulate.  Using our new algorithm, a 100-atom system would take only
100 minutes or 1.7 hours.  This improvement has greatly enriched our ability to
apply one of the most accurate ab initio methods (QMC) to real nanoscale
systems which are of interest to experimentalists and designers of nanoscale
devices.  We have also carried out an extensive benchmarking of the QMC
approach, calculating the binding energy of 55 different molecules (see attached
paper 2). This helps to standardize the QMC method and determine its broad
applicability and near chemical accuracy.

Application to Nanoscale Systems: Silicon and Germanium Quantum Dots

One of our first major applications of these simulation tools was to predict and
understand the optical properties of silicon quantum dots (see attached papers
3,4). There is enormous academic and industrial interest in the ability of silicon
nanoparticles to emit visible light as the size of the particles is made smaller.
Since it is extremely challenging both to reliably fabricate silicon quantum dots
and to measure their optical characteristics, this is an ideal problem for accurate
quantum simulations.  In addition, there are several experimental efforts at LLNL
dedicated to studying these same systems for use as efficient optical tags or
sensors.  We have carried out a comprehensive analysis of the optical properties
of these quantum dots in their diamond structure phase as a function of size up
to 2 nm, and we have determined that the effect of a single contaminant atom on
the surface of the nanoparticle such as oxygen can dramatically alter its optical
properties. These results, and other predictions we have made regarding the
surface chemistry of silicon nanostructures, have helped explain recent
experimental efforts, and have already become a benchmark in the theoretical
community.

In addition to the effects of surface chemistry, we have considered the impact of
the synthesis process on the resulting optical properties (see attached paper 5).
Specifically, we carried out dynamical simulations using DFT molecular dynamics
to reproduce several different synthesis techniques. The optical properties of the
resulting structures were then computed using QMC and compared with the
corresponding experiments.  We found, surprisingly, that completely amorphous
nanoparticles can still have emission and absorption in the visible spectrum, and
that these non-symmetric particles would be more robust to changes in the
surface chemistry than their symmetric counterparts. These are the first ever,
accurate simulations using ab initio methods of the dynamical processes involved
in real experiments.  This is also an excellent example of the benefit of coupling
different quantum simulation methods to address a single problem (DFT for the
dynamics and QMC for the optical properties).



Technical Outcome:

The technical outcome of our LDRD project is that we have developed a powerful
new capability at LLNL to investigate the properties of nanostructure systems
and devices.  As an example, we have resolved a number of important questions
regarding the structural, optical and electronic properties of silicon and
germanium nanoparticles.  Perhaps more importantly, we have devised a unique
combination of quantum simulation tools with enhanced performance that are
generally applicable to a wide range of activities.  Using these simulation tools
we are able to accelerate the design of smart, functional nanoscale materials by
providing valuable predictions and interpretations to nano-device designers.
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Linear Scaling Quantum Monte Carlo Calculations

A. J. Williamson, Randolph Q. Hood, and J. C. Grossman
Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550

(May 21, 2001)

A method is presented for using a maximally localized Wannier functions to introduce sparsity into the Slater
determinant part of the trial wavefunction in quantum Monte Carlo calculations. When combined with an efficient
numerical evaluation of these localized orbitals, the dominant cost in the calculation, namely the evaluation of
the elements of the Slater determinant, scales linearly with system size. This technique is applied to the accurate
calculation of the total energy of hydrogenated silicon clusters and carbon fullerenes containing 20-1000 electrons.

PACS: 71.15.Dx, 71.15.Nc

Over the past two decades, considerable progress has
been made using quantum Monte Carlo (QMC) methods
to calculate the electronic structure of realistic materials
[1]. One of the great strengths of QMC has been the
combination of favorably “soft” scaling as N3, where N
is the number of electrons, and high accuracy (e.g., exact
exchange plus a full many-body description of correlation
effects). Mean field methods such as Hartree-Fock and
density functional theory possess a similar N3 scaling,
but may lack the desired level of accuracy. On the other
hand, quantum chemistry approaches such as configura-
tion interaction or coupled cluster may achieve a high ac-
curacy, but typically scale as N5−7 leading to prohibitive
sizes even at only a few atoms.

A number of algorithmic developments have made rou-
tine the application of fixed-node diffusion Monte Carlo
(DMC) to small molecular and periodic solid systems
[2–7]. Despite these and many other successful appli-
cations, QMC calculations for realistic atomic systems
have been limited to studying systems with a few tens
of atoms. This restriction arises from both the N3 scal-
ing already mentioned and a much larger prefactor than
present in typical mean field calculations. The N3 scaling
is due to from the fact that to calculate the elements of
the Slater determinant associated with a given configu-
ration of electronic coordinates requires N orbitals to be
evaluated for each of the N electrons and the cost of each
orbital evaluation scales as the number of basis functions
which is itself proportional to N [8]. The large prefactor
arises from the large number of determinants evaluations
that need to be performed to achieve a small enough
statistical error bar. This prefactor can be dramatically
improved by reducing the number of basis functions per
electron by choosing more efficient basis sets. However,
to date, the N3 scaling has always remained, and the
system size limitation is governed by this scaling.

In this letter we present, for the first time to our knowl-
edge, QMC scalings that are linear in the number of elec-
trons over a wide range of sizes (20-1000 electrons). We
form QMC wavefunctions with significant sparsity in the
Slater determinant by choosing single particle orbitals
derived from the Maximally Localized Wannier function

construction [9]. A combination of a real space trunca-
tion of these functions and a representation in a numeri-
cal basis that is independent of system size, results in an
improvement in scaling from N3 to N . We demonstrate
this O(N) scaling for large hydrogenated silicon clusters
and carbon fullerenes. Our results show that it is now
feasible for QMC to routinely study systems containing
up to 1000 electrons.

The introduction of sparsity into the Slater determi-
nant part of the wavefunction is similar in concept to
the introduction of sparsity into the overlap matrix of
the Löwdin states in linear scaling density functional ap-
proaches [10,11]. However, the application of linear scal-
ing to the quantum Monte Carlo formalism is not fraught
with the same technical difficulties that have plagued
linear scaling density functional approaches. Firstly, in
QMC the Hamiltonian is not constructed from a self-
consistent charge density, it is fixed. Therefore, when
the MLW functions are truncated this does not affect
the conservation of charge and introduce noise into the
Hamiltonian. Secondly, the requirement to invert the
overlap matrix in linear scaling density functional cal-
culations imposes a large prefactor on these methods,
such that the cross-over point with traditional N3 scal-
ing techniques occurs around 1000 atoms. In our linear
scaling QMC approach, the prefactor is the same as for
the traditional N3 implementations and so the benefit is
immediate.

In our QMC approach [1–5,12], we adopt the standard
Slater-Jastrow trial wavefunction,

Ψ = D↑D↓ exp

 N∑
i

χ(ri)−
N∑
i<j

u(rij)

 , (1)

where D represents a Slater determinant, ri and rij cor-
respond to electron positions and separations, N is the
number of electrons, χ is a one-body function, and u
is a two-body correlation factor. The Slater determi-
nant is constructed from a set of single particle states,
Dij = φi(rj). In our calculations, the states {φi} are ob-
tained from an LDA calculation using the JEEP code
[13], which uses a plane wave basis set with periodic
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boundary conditions. We then use a conjugate gradient
algorithm to search for the unitary transformation of the
LDA eigenstates which yields Wannier functions with the
maximum localization [9,14]. These Maximally Localized
Wannier (MLW) functions are determined by the chem-
istry of the system and the procedure is analogous to the
Boys localization procedure commonly used in quantum
chemistry [15]. For finite systems the spread functional
that is minimized becomes equal to [

〈
(r−Rn)2

〉
]1/2,

where Rn is the centroid of the MLW function. All QMC
results presented here were performed using the CASINO
code [12]. As the value of a determinant is unchanged by
a unitary transform, the QMC energy evaluated with a
set of MLW functions is numerically identical to that ob-
tained from the original LDA orbitals. The orbitals used
in the MLW functions can be occupied or unoccupied
states in an insulator, semiconductor, or metal [16], and
may correspond to ground or excited states.

Once the MLW functions have been constructed, there
are two important steps we can implement to take advan-
tage of the localized nature of these functions and reduce
the QMC scaling. Each step reduces the scaling by an
order of N .

First, we define a cutoff radius, Rcut, beyond which the
MLW function is truncated to zero. This truncation in-
sures that each electron only falls within the cutoff radius
of a subset, M , of the MLW functions. For hydrogenated
silicon clusters this number is typically M ∼ 35. There-
fore, when the system size increases beyond M atoms,
the number of orbitals φi(r) required to be evaluated for
each electron is fixed at M and the cost of the evaluating
the Slater determinant then scales as MN2.

To determine appropriate values for Rcut, we require
the truncated MLW function, φMLW

trunc , to reproduce at
least 99.9% of the norm of the original MLW function,∫
|φMLW
trunc (r)|2dr > 0.999 and the contribution to the ki-

netic energy from the Slater determinant should have an
error of less than 0.1%. In Fig. 1 we plot the fixed node
diffusion Monte Carlo (DMC) energy for SiH4 obtained
with different values of Rcut. Since SiH4 has Td symme-
try, all four MLW functions are symmetry equivalent and
the same value of Rcut is applied to each MLW function.
In addition, we plot the norm of the truncated MLW
function as a function of Rcut. Fig. 1 shows that the
DMC algorithm is stable over a wide range of values of
Rcut, i.e. truncation of the tails of the MLW functions
does not significantly affect the nodal structure of the
Slater determinant. In all the systems we have studied
so far, the DMC energy is well converged for a value of
Rcut chosen to reproduce a norm of 0.999.

A second step we take to improve the scaling is to re-
move the dependency of the number of basis functions
on the number of electrons. Again taking advantage of
the highly localized nature of the MLW functions, we
choose to evaluate the MLW functions using 3 dimen-
sional cubic splines [17,18]. In so doing, each orbital

φi(r) is evaluated by a single spline interpolation and
the cost of evaluating the Slater determinant then scales
as MN , i.e. a linearly scaling algorithm. The number
of spline grid points, Ngrid, was chosen to be consistent
with the plane wave cutoff in the original LDA calcula-
tion, Ngrid = 2Rcut

√
Ecuthereforet/2π, where Ecut is the

plane wave cutoff in Rydbergs. For the systems we have
studied, Rcut is independent of system size and hence
the total memory required to store the spline grids for
all orbitals grows only linearly with system size. This
is in contrast to conventional implementations where the
total storage grows as N2, due to the growth of the basis
set with system size.

It is interesting to note that other basis sets for rep-
resenting the MLW functions could lead to a similar re-
duction in scaling. For example, one could expand the
MLW functions in a Gaussian basis and impose a cutoff
radius on the evaluation of the Gaussians. However, for
the systems studied here, the MLW functions represent
the covalent bonds in the system and an expansion in
atom or Wannier function centered Gaussians requires
very high angular momentum components to faithfully
describe the MLW function.

To demonstrate the improved scaling resulting from
our spline interpolated, truncated MLW functions, we
plot (Fig. 2) the CPU time on a 667MHz EV67 alpha
processor required to move a single configuration of elec-
trons a single time step for a series of hydrogenated sil-
icon clusters and carbon fullerenes, ranging in diameter
from 0.3 to 2.0 nm. Three different basis sets used to
expand the original LDA wavefunctions are compared:
(a) the truncated MLW functions interpolated using cu-
bic splines, (b) a 6-31G* quality Gaussian basis set, and
(c) a plane wave basis with 11 Rydberg energy cutoff.
Figure 2 shows that the computational cost of evaluating
the LDA wavefunctions in a plane wave basis scales as
approximately N3. The exact scaling is determined by
the volume of the supercell chosen for each system. The
computational cost of the Gaussian basis also scales as
N3, but with a smaller prefactor as the number of ba-
sis functions per atom is much smaller. We have tested
implementing a fixed cutoff on the evaluation of these
Gaussian basis functions which would in principle reduce
the scaling to N2. However, the long range tails of the
Gaussians mean that the N2 regime is not reached for
these system sizes. The calculations using the truncated
MLW functions demonstrate that the CPU time required
to move a single configuration of electrons scales approxi-
mately linearly with the number of electrons. In the case
of the hydrogenated silicon clusters the deviation from
linearity in the MLW curves is mainly due to differing
ratios of hydrogen to silicon atoms, i.e. the surface to
volume ratio; for the carbon fullerenes it is due to differ-
ent strain in the clusters requiring slightly different cutoff
radii for the MLW functions. Note that, for the systems
we compared (SiH4 and Si5H12) DMC total energies are
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within statistical error bars for all three basis sets.
Once the cost of evaluating the elements of the Slater

determinant has been reduced to an O(N) scaling, it is
interesting to ask how large a system one can study be-
fore other parts of the algorithm will begin to dominate
and the linear scaling will be lost. For the Si211H140 sys-
tem (984 electrons) approximately 10% of the calculation
involves parts of the algorithm that scale as N2 and N3,
namely evaluating the electron-electron and electron-ion
interactions, calculating the two-body term in the Jas-
trow function [u(rij) in Eq.(1)] and updating the value of
the determinant after moving an electron. The electron-
ion interaction can be rewritten with the sum over ions
precomputed so the local part scales as O(N). The non-
local contribution already scales as O(N) due to the cutoff
in the range of the interaction. The electron-electron in-
teraction can be rewritten to scale as O(N) by writing
it as a sum of short and long ranged pieces [1,7], or us-
ing Greengard’s multipole expansion [19]. The Jastrow
function can also be cast into an O(N) form by using a
cutoff based on the electron-electron separation [20]. To
update the Slater determinant we adopt the procedure
based on storing the inverse of the transpose of the ma-
trix from Ref. [21]. This procedure traditionally scales as
N3. Our introduction of sparsity into the Slater deter-
minant allows us to significantly reduce the prefactor for
this N3 term. We believe that in larger systems where
the determinant is increasingly sparse it should be possi-
ble to reformulate the determinant update procedure to
utilize this sparsity and obtain a better size scaling. In
summary, our algorithm yields a size scaling that is prac-
tically linear up to 1000 electrons. The relatively minor
algorithmic improvements outlined above will extend this
linear regime to several thousand electrons. However,
even with 1000 electrons, the time limiting step is per-
forming the initial LDA calculation to generate the single
particle orbitals.

Note, if one is interested in the total energy of a sys-
tem, then an additional factor of N should be included
to account for the increase in the variance of the total
energy with the number of electrons. If one is interested
in per electron quantities, such as the binding energy of
a bulk solid then the increase in the variance of the to-
tal energy is canceled by the increase in the number of
electrons and the cost of calculating a per electron energy
with a given error bar would indeed scale linearly with
our method.

To illustrate the range of systems that can now feasibly
be studied within QMC using truncated MLW functions
in the Slater determinant, we have calculated total en-
ergies of a series of carbon fullerenes. In Fig. 3 we plot
the binding energy per atom of C20, C36, C60, C80, C180

fullerenes. Line (a) shows the binding energies calculated
using LDA, line (b) shows the binding energy calculated
within fixed node DMC. The LDA calculations were per-
formed at the Γ point of the Brillouin zone, using a cutoff

of 40 Rydbergs. The same pseudopotentials were used
in the LDA and DMC calculations. The single particle
orbitals for the DMC calculation were obtained by per-
forming the MLW transform described above on the LDA
eigenstates. Figure 3 shows that the LDA binding ener-
gies smoothly approach the bulk LDA binding energy for
graphite as the size of the cluster increases. Comparison
with the DMC results shows that the LDA overestimates
the binding energy for each of the clusters. The general
trend within DMC is similar to LDA, again asymptot-
ically approaching the bulk binding energy with larger
cluster size. In addition, the DMC calculations find that
the binding energy per atom in C60 is anomalously large
for its size. While initially surprising, this result provides
additional support for the high stability of C60. This re-
sult will be further discussed in a future publication.

In conclusion, we have demonstrated a method for
using maximally localized Wannier functions to intro-
duce sparsity into the Slater determinant part of the
trial wavefunction in quantum Monte Carlo calculations.
When combined with an efficient numerical evaluation
of these localized orbitals, the cost of evaluating the
Slater determinant is reduced to scaling linearly with
system size for hydrogenated silicon clusters and car-
bon fullerenes containing 20-1000 electrons. Utilizing
this linear scaling, it is possible to use quantum Monte
Carlo methods to study system sizes that could previ-
ously only be examined within mean field methods. This
development opens the possibility of accurately studying
the effects of exchange and correlation in a range of sci-
entifically and technologically important systems such as
quantum dots, nanodevices, biological molecules, and the
materials science of solids.
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JCG and AJW acknowledge the financial support of the
Lawrence Livermore Fellowship program. This work was
performed under the auspices of the U.S. Department of
Energy by the University of California, Lawrence Liver-
more National Laboratory under contract No. W-7405-
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FIG. 1. The dependence of the norm of the truncated MLW
function and the fixed node DMC energy on the cutoff radius,
Rcut of the MLW functions. DMC statistical error bars are
smaller than the symbols.

FIG. 2. Computational cost of moving one configuration
of electrons within diffusion Monte Carlo for SiH4, Si5H12,
Si35H36, Si87H76, Si123H100, Si211H140, C20, C36, C60, C80,
C180.

FIG. 3. Binding energy per atom of carbon fullerenes as a
function of the number of atoms. DMC statistical error bars
are smaller than the symbols. For comparison, we have added
an estimated 0.18 eV zero point energy to the bulk diamond
experimental binding energy (7.37 eV) [22].
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Quantum Monte Carlo Calculations for the Pople Set 

Jeffrey C. Grossman 

Lawrence Livermore National Laboratory, P. 0. Box SOB, Livermore, CA 94550. 

(February 14, 2002) 

Abstract 

Fixed node diffusion Monte Carlo (FN-DMC) atomization energies are 

calculated for a benchmark set of 55 molecules. Using single determinant 

trial wavefunctions, comparison with experiment yields an average absolute 

deviation of 2.9 kcal/mol, placing this simplest form of FN-DMC roughly at 

the same level of accuracy as the CCSD(T)/aug-cc-pVQZ method. However, 

unlike perturbative wavefunction expansion aproaches, FN-DMC is applicable 

to systems containing thousands of valence electrons. For the Pz molecule, 

a number of possible sources of error are explored in detail. Results show 

that the main error is due to the fixed-node approximation and that this can 

be improved significantly with multi-reference trial wavefunctions. It is also 

shown that for some molecules in the set a significant contribution to the error 

may be due to the use of pseudopotentials. 

I. INTRODUCTION 

Benchmark sets of molecules have proven to be a useful tool for gauging the accuracy 

and predictive abilities of a given computational method. The Pople set of 55 molecules, 

representing a broad range of chemical environments and originally grouped together to fit 

the semi-empirical Gaussian-1 (Gl) [l] and Gaussian-2 (G2) [2] theories, has become very 
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popular for such purposes. Computed G1 energies for this set of molecules have a mean 

absolute deviation EMAD from experiment of 1.6 kcal/mol and a maximum deviation of 7.4 

kcal/mol. These two numbers have become a standard benchmark for electronic structure 

approaches, including further G-n theories [3] as well as other state-of-the-art approaches 

such as the coupled cluster approximation with single, double, and perturbationally included 

triple excitations (CCSD(T)) [4,5], and density functional theory (DFT) methods [6,7]. 

Recently, the quantum Monte Carlo (QMC) approaches have been shown to provide 

highly accurate results when applied to a wide range of chemical systems (e.g., atoms, 

molecules, solids, nuclei, etc.) to calculate a wide range of properties (e.g., binding energies, 

reaction pathway energetics, optical gaps, momentum densities, etc.) . A number of factors 

make QMC, which relies on a stochastic solution of the many-body Schrodinger equation, a 

highly attractive alternative to the more traditional mean-field and wavefunction expansion 

based techniques. Similar to the mean-field methods such as DFT, the computation time 

required in QMC scales as N3 where N is the number of particles in the system. Yet, 

more closely related to post-Hartree-Fock wavefunction expansion methods, QMC solves 

the full 3N-dimensional Schrodinger equation directly, allowing for explicit evaluation of 

electron correlation. Typically, within the diffusion Monte Carlo (DMC) variant the method 

recovers N 95% of the total valence correlation energy. Furthermore, very recent algorithmic 

developments have shown that QMC can be implemented to scale linearly as the number of 

particles, with no loss of accuracy, by applying a unitary transform to localize the single- 

particle orbitals [8]. The combination of high accuracy and the ability to study systems with 

thousands of valence electrons makes QMC a very promising approach. 

Despite the successes of QMC, comparisons with experiment have not been made sys- 

tematically for a large data set, and the accuracy of QMC approaches has yet to be measured 

against a well-defined benchmark such as the G2 set. Recently, Manten and Liichow have 

approached the subject of genera.1 accuracy for a small set of molecules and molecular re- 

actions using all-electron fked-node DMC [9], and found accuracies for reaction energetics 

comparable to CCSD(T)/cc-pVTZ. Indeed, such studies are necessary and long overdue to 
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answer many questions regarding the overall consistency and predictive capability of the ap- 

proach. For example, when QMC is referred to as “highly accurate,” what exactly is meant? 

How big is the fixed-node error, on average? It is of great practical importance to answer 

these types of questions for a standard benchmark set of molecules such that one may better 

guage the accuracy of QMC as well as develop further understanding of its limitations and 

methods for improvement. 

In this work, results are presented for atomization energies calculated by single deter- 

minant, pseudopotential, hed-node diffusion Monte Carlo (FN-DMC) for the 55 molecules 

in the G2 set. The average absolute deviation is 2.9 kcal/mol with a maximum deviation 

from experiment of 14 kcal/mol. These results support claims that QMC provides near 

“chemical” accuracy; however, it is also apparent that consistent accuracy of less than 1-2 

kcal/mol is challenging within FN-DMC. Possible sources of error include: atomic orbital 

basis set, determinantal basis set, geometry, pseudopotentials, and zero-point energy. For 

the P2 molecule, a detailed investigation of some of these potential sources of error has 

been carried out. Results show that one of the main sources of error is in the fixed node 

approximation which can be systematically improved by including multiple determinants in 

the QMC trial wavefunction. Another significant source of error for this particular case is 

in the use of pseudopotentials. 

11. METHOD 

In our QMC approach [lo-141, we use the variational Monte Carlo method to find an 

optimized correlated many-body trial function. .This trial function is a product of Slater 

determinants and a correlation factor [15]. In the Slater determinant part, we employ natural 

orbitals (NO) rather than Hartree-Fock or density functional orbitals [ll]. To eliminate most 

of the remaining variational bias we use the diffusion Monte Carlo method, which is based on 

the property that the operator e-rH, where H is the Hamiltonian, projects out the ground 

state of any trial function with the same symmetry and non-zero overlap. All QMC results 
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presented here are from the diffusion Monte Carlo approach. 

Atomic cores are treated with Stevens-Basch-Krauss (SBK) effective core potentials 

[16] for all atoms except hydrogen. The natural orbitals are derived from small multi- 

configuration self-consistent field (MCSCF) calculations that include 15-30 virtual and all 

occupied valence orbitals in the active space. 

FN-DMC calculations for all 55 molecules were carried out using a single determi- 

nant trial wavefunction except when noted. For multi-determinant FN-DMC calculations, 

weights from MCSCF were used. In each case a single particle basis of quality similar to 

6-311++G(2dY2p) was employed. Geometries were taken from the original G1 set [l], i.e., 

optimized within MP2/6-31G(d). In order to make accurate comparisons with experiment, 

FN-DMC calculations were carried out for a long enough time to obtain stochastic error bars 

of < 1 kcal/mol (typically 0.2-0.4 kcal/mol). Careful time-step studies were performed for 

several cases and conservative time-steps were used for the entire set (i.e., DMC acceptance 

ratios were always greater than 99%). 

All Hartree-Fock and MCSCF calculations in this work were performed using the 

GAMESS quantum chemistry package [17]. 

111. RESULTS FOR THE POPLE SET 

The experimental data reported here are taken from a combination of NIST-JANAF ta- 

bles [l8] and Huber and Herberg [19], in the same manner as Ref. [5]. Experimentally mea- 

sured atomization energies for the Pople set range from 17 kcal/mol (Naz) to 709 kcal/mol 

(CzHa). Most experimental errors are small (i.e., < 0.5 kcal/mol), although several are some- 

what larger (e.g., CS has an experimental error of 6 kcal/mol[18]). To compare with theory, 

zero point energies are taken from experiment when available and from the calculations of 

Ref. [5] otherwise. For several species experimental errors are unavailable. 

Calculated FN-DMC atomization energies for the 55 G2 molecules are shown in Tab. 

I. For each molecule, both the experimental and calculated binding energies are listed. 
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Error bars are shown for experiment and theory (calculational error bars originate from the 

statistical sampling inherent in the DMC energy evaluation). 

The largest error between FN-DMC and experiment occurs for the SO2 molecule, where 

the discrepancy is 14 kcal/mol. This makes SO2 a somewhat special case as the next largest 

error in the set is only - 8 kcal/mol. The sensitivity of the atomization energy of SO2 to 

the single particle basis has been studied carefully for the CCSD(T) approach [5,20,21]. In 

particular, it was found that SO2 showed very slow convergence with respect to standard 

correlation consistent basis sets (e.g. , CCSD(T)/aug-cc-pVQZ is 10 kcal/mol underbound) , 

and that the addition of tight d and f functions on sulfur improved the convergence consid- 

erably. For the FN-DMC method employed here, additional tight d and f functions on sulfur 

in the generation of the trial function did not improve the energy. Because this molecule is 

somewhat larger and its error is so much greater than any other case, additional studies and 

ways for improving the FN-DMC result for SO2 are relegated to a separate study. 

After S02, the molecules with the biggest discrepancy from experiment are P2, C10, CN, 

LiF, and NO, with errors -8.2, -8.0, -7.6, +7.5, and -7.1 kcal/mol, respectively. Averaging 

over all molecules in the set yields a fairly good agreement between FN-DMC and experi- 

ment, with a mean absolute deviation of 2.9 kcal/mol (excluding SO2 lowers this number to 

2.5). 

It is interesting to compare the FN-DMC results against other quantum chemical ap- 

proaches. Previous studies have compared a number of DFT methods for the G2 test set, 

including local density approximation (LDA) and a variety of generalized gradient approx- 

imations (GGA) [6,7]. As expected, LDA overbinds for every molecule in the set (except 

LiF), with EMAD - 40 kcal/mol. The GGAs offer significant improvements over LDA, with 

the best functionals (B3LYP and B3PW91) giving EMAD N 2.5 kcal/mol. It was shown that 

the key ingredient to achieving this result was in the 3-parameter B3 exchange function [22], 

which uses a semi-empirical fit to incorporate a fraction of the exact Hartree-Fock exchange. 

It was also noted that while EMAD for a larger 93-molecule test set using the same B3 func- 

tional was only 1 kcal/mol higher than for the original 55-molecule test set, the maximum 
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deviation was doubled to 20 kcal/mol. This significantly larger range of error is evidence 

that accuracy trends in DFT methods are not always systematic and must be checked; a 

given functional working well for one problem does not necessarily imply it will work as well 

for another. 

CCSD(T) has proven to be the most accurate ab initio electronic structure technique 

when applied with large basis sets to small molecules. Recent CCSD(T) calculations for at- 

omization energies of the 55 G2 molecules provide a wealth of valuable information regarding 

the accuracy of ccsD(T)  [4,5]. It was found that CCSD(T)/aug-cc-pVQZ has EM AD=^.^ 

kcal/mol which is very similar to the FN-DMC results presented here. Using the CCSD(T) 

complete basis set limit, by extrapolating a series of correlation consistent basis sets, reduces 

EMAD by half to 1.3 kcal/mol. It would be interesting to attempt to formulate and apply 

such extrapolation techniques to FN-DMC. 

Part of the advantage of having data for a benchmark set of molecules is the ability to 

look for trends within the set. There are several possible reasons for the errors in the present 

FN-DMC results (see discussion in next section), so it may be difficult to identify a single 

quantity or property that points to a trend. Indeed, as shown in Table 11, a comparison of 

the 27 worst case molecules with the 28 best case ones does not seem to yield any visible 

trends for a number of properties; if anything, the trends appear to be counterintuitive. For 

example, one might expect closed-shell systems with large gaps to be, on average, better 

represented by a single Slater determinant. The results here show that while both subsets 

are mostly closed-shell in character, the better-performing half of the G2 set has more open- 

shell molecules, and the average gap over the closed shell cases is actually smaller than 

the same average over the worse half of the set. One might also guess that the weights of 

excited state determinants from MCSCF calculations may tend to be larger for the poorer 

performers (meaning that the true wavefunction is better represented with a multi-reference 

description). However, we find that the average weights are very similar, with only a very 

slight, essentially insignificant, difference (0.080 vs. 0.075) between the two subsets. 

It is also interesting to note that the average error among the worst 27 cases is negative 
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at -2.7 kcal/mol, while the same average for the best 28 molecules is nearly zero at +0.2 

kcal/mol. This difference may be indicative of the following general tendency. If FN-DMC 

fails to describe the atom and molecule with the same degree of accuracy, it is far more 

likely that the larger error will be made on the molecule. 

IV. IMPROVEMENT OF THE P2 MOLECULE 

As mentioned, all of the FN-DMC results listed in Table I are obtained from trial wave- 

functions using a single slater determinant built from natural orbitals. In order to probe 

the main source of discrepancy from experiment, one can examine how changes to this trial 

wavefunction impact the FN-DMC result. For such a study, we choose one of the worst 

case molecules, P2, since its relatively small size allows for a number of thorough tests to be 

carried out. 

A. Pseudopotentials 

One possible source of error is due to the use of pseudopotentials. Although in this work 

the SBK [16] pseudopotentials are employed, a number of other types of pseudopotentials 

are available. Furthermore, in addition to the method of construction, there are different 

theories on which the psuedopotential can be based. For example, SBK pseudopotentials 

are based on Hartree-Fock, but others can be made from LDA, GGA or other correlated 

theories. A test on different pseudopotentials within FN-DMC would be interesting but 

is beyond the scope of the present work. Here we compare the SBK pseudopotential vs 

all-electron for Hartree-Fock, LDA, and several GGA atomization energies. 

Results for the pseudopotential and all-electron atomization energies of P2 are shown in 

Tab. 111. In each case the dimer bond distance was reoptimized within the given method. 

Large basis sets (22~22~15d/22~22p15d) were used in order to ensure convergence to within 

0.1 kcal/mol in the atomization energy. Note that the pseudopotential and all-electron 
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Hartree-Fock energies are in excellent agreement, as expected since the SBK pseudopoten- 

tials were generated using the Hartree-Fock theory. On the other hand, the LDA results 

show a large discrepancy of 8.6 kcal/mol between the pseudopotential and all electron at- 

omization energies. This discrepancy is much smaller for the BPW91 and B3LYP methods, 

3.2 and 1.1 kcal/mol, respectively. Note that for all of the methods shown in Table I11 the 

pseudopotential atomization is less than the all-electron value. 

Based on these results, it is likely that the FN-DMC error, which is also negative, is 

partially due to an error in the pseudopotential. However, it is difficult to quantify this er- 

ror since an all-electron FN-DMC calculation would contain additional contributions to the 

fixed-node error from the core electrons; therefore, making a comparion between pseudopo- 

tential and all-electron FN-DMC is somewhat ambiguous. Nonetheless, we can estimate 

that the error in FN-DMC due to the pseudopotential lies in between LDA and HF and 

given the GGA results is most likely around 2 kcal/mol. This error is in good agreement 

with previous work that estimated the errors related to the use of pseudopotentials in QMC 

calculations for transition metals by comparing accurate coupled cluster valence-only and 

all-electron results [23]. 

B. Geometry 

The impact of how the P2 bond distance is optimized is another important test in our 

attempt to improve the energy. Forces are still challenging to evaluate within QMC, although 

there has been recent progress [24,25]. In the case of the P2 dimer, only a single bond distance 

needs to be optimized which can be done easily with a series of total energy calculations. 

Fig. 1 shows FN-DMC energies for the P2 molecule at varying bond distances. Note that 

the optimal FN-DMC bond distance is 0.035 A shorter than the MP2/6-31G(d) value. The 

difference in energy between these two structures is N 0.5 kcal/mol. This small difference 

indicates that the sensitivity of atomization energy to geometry is fairly minimal in this case 

and is not a large source of the error from experiment. 
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Since the geometry correction is an order of magnitude less than the missing binding 

energy, we focus on the quality of the nodal structure which is likely to have a far greater 

impact. The FN-DMC nodes are determined entirely by the nodes of the Slater determi- 

nant(s) which are constructed with single-body orbitals. There are a number of ways in 

which one can easily at least attempt to improve upon these nodes. First, the accuracy of 

the single-body orbitals may be improved by increasing the atomic orbital basis sets. Sec- 

ond, the orbitals themselves can be taken from any number of theories (i.e., Hartree-Fock, 

LDA, GGA, NO, etc.), some of which may lead to better nodes than others. Third, the 

determinantal basis can be expanded to include more than a single determinant. 

C. Single-Particle Orbitals 

For pseudopotential calculations, it is generally assumed that the fixed-node error is not 

effected much by the quality of the atomic orbital basis, as long as the basis is sufficient (Le., 

6-311G" quality or better). For Pz, 3 atomic orbital basis sets were tested: 17s17p2d/4s4p2d, 

27s27p3d/6s6p3d, and 32s32p8d/8s8p4d. Contractions for these basis sets were least squares 

fit to the orbitals of the exact Hartree-Fock solution for the P pseudo-atom. Uncontracted 

exponents were chosen to optimize the energy of the Hartree-Fock dimer. For each case 

FN-DMC total energies were computed with statistical error bars less than 0.0001 au. All 3 

basis sets give the same total energy within error bars, indicating the relative insensitivity 

of the nodes to the atomic orbital basis in this case. It may be interesting to carry out this 

same kind of test systematically for other molecules in the set, although that is beyond the 

scope of the present work. Further, these atomic orbital basis set tests were performed with 

single determinant trial functions; it is possible that the effect of the atomic orbital basis 

becomes more important as the trial function is expanded to include multiple determinants. 

A number of different single-particle orbitals have been used in the past to construct 

the Slater determinant part of QMC trial wavefunctions. In some cases, it was found that 

NO offer a slight improvement in the nodes over Hartree-Fock orbitals [ll]. Other times, 
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DFT orbitals may be more appropriate. It is difficult to predict a priori which orbitals are 

better suited to a given system. In many cases, the resulting differences tend to be rather 

small. Table IV lists the total energy of the P2 molecule using a single Slater determinant 

built from 5 different kinds of orbitals: Hartree-Fock, NO, LDA, BPW91, and BSLYP. Note 

that using the NO gives a small (N 0.7 kcal/mol) improvement over Hartree-Fock, and the 

LDA and GGA orbitals are slightly better (N 1.0 kcal/mol) than NO. While it is interesting 

that in this case the DFT orbitals are best, they only account for 1 of the 8 kcal/mol FN- 

DMC error found with NO. Of course, other single-body orbitals could be used, however it 

appears that, like geometry, the choice of single-body orbitals is a small contribution to the 

discrepancy with experiment. 

D. Multiple Determinants 

Another way to  change and possibly improve the nodal surface of the trial QMC wave- 

function is to use more than a single Slater determinant. Just as an expansion of the deter- 

minantal basis increases the variational freedom in the wavefunction and therefore lowers the 

total energy in post Hartree-Fock calculations, multi-determinantal trial wavefunctions can 

lead to  better nodes which lower the FN-DMC total energy [26]. In general, however, a given 

determinantal expansion that improves the variational energy does not always lead to a sim- 

ilar improvement in the nodal surface. In fact, recent work has shown that MCSCF-based 

trial functions may not improve the FN-DMC energy [27] and in some cases can even worsen 

the fixed node error [28]. It has also been suggested recently that multi-determinantal trial 

functions based on pair natural orbital CI wavefunctions may improve the nodal surface 

more effeciently than MCSCF-based trial functions 6 [29]. 

Table V shows the total FN-DMC energies for P2 using several different multi-reference 

trial functions. In each case, determinants were taken from an MCSCF calculation in which 

all occupied electrons were singly and doubly excited into a given number of virtual states. 

The number of resulting determinants corresponds to a threshold of 0.01 for the weight 
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of the configuration state functions (CSF) to keep. Weights of these determinants in the 

FN-DMC calculations are taken to be the same as the MCSCF weights. Of course, these 

weights may not be ideal since they are taken from a minimization of the total energy which 

may not always correspond to improving the nodal surface. Nonetheless, MCSCF weights 

provide a good starting point and can help guide us in selecting the determinants. 

Note that the energies are improved using a multi-reference trial function based on MC- 

SCF orbitals and weights. Using a single determinant of MCSCF orbitals gives the same 

FN-DMC energy as Hartree-Fock orbitals, slightly higher than the NO single determinant 

energy (see Tab. IV). Taking excitations into just the first three virtual states lowers the 

FN-DMC energy by 2.1 kcal/mol compared with a single determinant. 

In going from 3 to 8 virtual states in the MCSCF calculation, the FN-DMC energy 

is improved yet again rather substantially. With a 167- determinant wavefunction, the 

FN-DMC energy is 4.3 kcal/mol lower in energy than a single determinant. The additional 

improvement may be due to the fact that the 167-determinant expansion includes excitations 

into d-like orbitals not present in the smaller 54-determinant run. This explanation is 

in good agreement with previous work which found that significant improvement in the 

nodal structure of several atoms [30] and the N2 molecule [31] relied on the inclusion of 

determinants with excitations into d states. 

The largest determinantal expansion listed is for 269 determinants from an MCSCF 

calculation that included excitations into 16 virtual states. The energy for this case is only 

slightly improved (0.3( 1) kcal/mol) compared to the 167-determinant case. This makes 

our best multi-determinant FN-DMC energy roughly 4.1 (1) kcal/mol lower than the single- 

determinant NO result listed in Tab I. 

Further excitations into more virtual states in the MCSCF calculations do not lead to 

further improvements in the FN-DMC energy. This may be partly due to the fact that 

we use here the same cutoff (0.01) for the CSF weights in all cases. As the number of 

virtual states increases, the total number of determinants increases and the weights of each 

determinant decrease. (This is also the reason why the number of determinants decreases 
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for the last two rows of Tab. V). Such an explanation cannot be complete, however, since 

the energy is improved in going from 25 to 40 virtual states (245 to 223 determinants). 

We have so far only examined the improvement in total energy of the Pz molecule. Of 

course, to compute the atomization energy one must also know the energy of the P atom. 

Therefore, it is reasonable that if multireference determinants are used for the molecule one 

should re-compute the atomization energy using a similar multideterminant wavefunction 

for the atom. A 66-determinant trial function for the P atom was generated from an MCSCF 

calculation with excitations into 24 virtual states. The energy was indeed lower than the 

single determinant FN-DMC energy, but only by 0.3 (1) kcal/mol. The best correction above, 

then, is 3.5 kcal/mol when referring to the atomization energy. 

In our quest to improve the FN-DMC atomization of the P2 molecule, we have found N 

2.0 kcal/mol (pseudopotential), 0.5 kcal/mol (geometry), 1.0 kcal/mol (single-body orbitals), 

and 3.5 kcal/mol (determinantal basis). Previous work [5] found roughly 0.8 kcal/mol in 

core-valence correlation (not included here due to our use of pseudopotentials) and a 0.2 

kcal/mol correction due to scalar relativistic effects. A sum of these individual effects would 

result in a 8.0 kcal/mol improvement in the atomization energy of Pa, bringing the error 

with experiment to -0.2 kcal/mol. Although it is not entirely clear that one can sum these 

errors (i.e., that the correction terms listed above are unrelated) it is nonetheless evident 

that a substantial improvement can be made in this case. 

Another, somewhat complicated source of error is the localization error [lo] which is 

intimately connected with the fixed-node error. It was shown that the localization error 

scales as the error in the trial function squared [lo]. Thus, with a good enough trial function, 

it is typically assumed that this error is minimal (i.e., significantly smaller than the statistical 

errorbars). However, in the current set of data we are exploring small energies with very 

small errorbars. It is likely that the 4.1 kcal/mol improvement found by expanding the 

determinantal basis is an improvement in both the nodal error and the localization error. 

To separate the two is, unfortunately, exceedingly difficult, particularly since improving the 

nodes also improves the localization error. For the purpose of this discussion, when referring 
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to the fixed-node error we mean more precisely a combination of fixed-node and localization 

errors. 

V. CONCLUSIONS 

The accuracy of the pseudopotential FN-DMC approach has been assessed for the 55 

G2 molecules. For these calculations, the method was treated in as “black box” a way as 

possible. For example, all calculations were run systematically with the same basis sets 

and type of orbital for a single determinant trial function. With such an approach, a mean 

absolute deviation of 2.9 kcal/mol was achieved. The main source of error for the P2 molecule 

was found in the fixed-node approximation, a second important error was in the use of the 

SBK pseudopotential, and smaller errors were due to geometry and choice of single-body 

orbitals. The nodes were shown to be substantially improved by using multiple determinants 

in the trial function. These results indicate that EMAD could be significantly reduced (i.e., 

by a factor of 2) if multi-reference trial wavefunctions were employed for the whole set. 

Many more careful studies are needed to understand the best means of improving the 

fixed-node error. It is our hope that the benchmark results provided in this work will aid 

in some of these studies. For example, the 5 or 10 worst case molecules could provide a 

useful laboratory for tests and improvements. Furthermore, the results presented here put 

pseudopotential single determinant FN-DMC on the map as a benchmark, with its absolute 

mean deviation now a number that can be directly compared with other methods. 
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TABLES 

TABLE I. Atomization energies (kcal/mol) for the 55 molecules in the Pople set [l]. Diffusion 

Monte Carlo (DMC) calculations and experimental (EXP) results are listed. For DMC, statistical 

error bars are given in parentheses. Experimental errors are listed in parentheses (a dash indicates 

no error was available). 

Molecule DMC EXP 

LiH 

BeH 

CH 

C H ~  ( 3 ~ 1 )  

CH2 

CH3 

CH4 

NH 

"2 

"3 

OH 

H2O 

HF 

SiH2 (lA1) 

SiH2 (3B1) 

SiH3 

SiH4 

PH2 

PH3 

H2S 

HC1 

55.3 (2) 

43.0 (2) 

79.5 (2) 

18 1.9 (4) 

169.7( 4) 

290.9 (2) 

395.0(2) 

78.2 (4) 

169.2 (4) 

276.5 (2) 

10 1.2 (3) 

2 19.4 (2) 

135.9 (2) 

145.5 (2) 

125.8 (2) 

215.1 (2) 

305.8(2) 

143.7 (2) 

224.8(2) 

172.1 (4) 

103.4(4) 

56.00( 1) 

46.90 (1) 

79.90 (2) 

179.6 (4) 

170.6 (4) 

289.3(2) 

392.5(1) 

79.0 (4) 

170.0 (3) 

276.7(1) 

101.4 (3) 

219.35 (1) 

135.2 (2) 

144.4(2) 

123.4(2) 

214(1) 

302.6 (5) 

144.7 (6) 

228.6(4) 

173.1 (2) 

102.2(5) 
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LiF 

C2H2 

C2H4 

C2H6 

CN 

HCN 

co 
HCO 

H2CO 

HzCOH 

N2 

N2H4 

NO 

0 2  

H202 

F2 

co2 
Na2 

Si2 

p2 

s2 

(312 

NaCl 

Si0 

cs 
so 

23.5(2) 

145.1(4) 

390.0 (4) 

533.5 (4) 

669.3(4) 

170.5 (4) 

302.0(8) 

253.2(3) 

269.8(4) 

357.5(5) 

483.8 (5) 

221.0(8) 

406.8(9) 

142.9 (4) 

111.7( 5) 

246.6 (3) 

32.0(8) 

379.5 (4) 

17.3 (2) 

73.3 (2) 

107.9(2) 

98.3(3) 

54.3 (2) 

98.8(3) 

186.7( 2) 

165.4( 5) 

117.6 (6) 

23.9 (7) 

138(2) 

386.9 (2) 

53 1.9 (1) 

666.3(-) 

178(2) 

301(2) 

256.2 (2) 

270(2) 

357.2(1) 

480.8(-) 

225.1(4) 

405.4(-) 

150.06(4) 

117.96(2) 

252.3 (-) 

36.9 (1) 

381.93(1) 

16.8(3) 

74.0(-) 

116.1 (5) 

100.66(7) 

57.18(1) 

97.3(5) 

190(2) 

169(6) 

123.4(3) 



c10 

ClF 

Si2H6 

CH3C1 

H3CSH 

HOC1 

so2 

55.4(4) 

53.7 (6) 

505.8 (4) 

371.6(8) 

446 .O (4) 

152.8 (4) 

240.0 (8) 

63.42(2) 

59.1( 1) 

500.1(-) 

371.0(-) 

445.1(-) 

156.3 (5) 

254.0(2) 

TABLE 11. FN-DMC Error, FN-DMC EMAD, Hartree-Fock HOMO-LUMO gap, and two largest 

CSF weights from MCSCF calculations averaged over the 27 worst and 28 best FN-DMC energies 

in the G2 set. A breakdown of the kinds of spin multiplicities is also given, where S=singlet, 

D=doublet, and T=triplet. 

27 Worst 28 Best 

eavg (kcal/mol) 

EMAD (kcal/mol) 

spin multiplicities 

HOMO-LUMO gap (eV) 

ground state CSF weight 

2nd largest CSF weight 

-2.7 

5.0 

20S, 4D, 3T 

14.4 

0.959 

0.080 

+0.2 

0.9 

17S, 7D, 4T 

11.6 

0.964 

0.075 
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TABLE 111. Pseudopotential (PP) and all-electron (AE) atomization energies (kcal/mol, with- 

out zero-point corrections) for the P2 molecule using the Hartree-Fock, LDA, BPW91, and B3LW 

methods. 

Method Pseudopotential All-Electron 

Hartree-Fock 

LDA 

BPW91 

B3LYP 

37.2 

133.5 

116.2 

111.8 

37.3 

142.1 

117.3 

115.0 

TABLE IV. Total single determinant FN-DMC energy (au) of the P2 molecule for difFerent 

types of orbitals used to fill the Slater determinant. 

Orbitals Total Energy 

Hartree-Fock Orbitals 

Natural Orbitals 

LDA Orbitals 

BPW91 Orbitals 

B3LW Orbitals 

-13.0628(1) 

-13.0636 (1) 

-13.0652(1) 

-13.0652( 1) 

-13.0651 (1) 
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TABLE V. Total FN-DMC energy (au) of the P2 molecule with differing number of determi- 

nants in the trial wavefunction. The number of virtual states in the MCSCF calculation is also 

listed. For each case, all configuration state functions with weight greater than 0.01 were included. 

# of Determinants # Virtual States Total Energy 

1 

54 

1 

3 

167 

269 

8 

16 

-13.0628(1) 

-13.0660(1) 

-13.0696 (1) 

-13.0701(1) 

245 25 -13.0691(1) 

223 40 -13.0698(1) 



FIGURES 

FIG. 1. FN-DMC energy of the P2 molecule as a function of the bond distance. The solid line 

represents a quadratic fit to the QMC data. The x-axis has been shifted by the MP2/631G(d) 

bond distance. 
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Aaron Puzder, A.J. Williamson, Jeffrey C. Grossman, and Giulia Galli 
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Abstract 

We employ density functional and quantum Monte Carlo calculations to show that significant 

changes occur in the gap of fully hydrogenated nanoclusters when the surface contains impurity 

passivants such as atomic oxygen. Our results show that quantum confinement is only one 

mechanism responsible for visible photoluminescence in silicon nanoclusters and that the specific 

surface chemistry must be taken into account in order to interpret experimental results. In the 

case of oxygen, the gap reduction computed as a function of the nanocluster size provides a 

consistent interpretation of several recent experiments. Furthermore, we predict that other 

double bonded groups also significantly affect the optical gap, while single bonded groups have 

a minimal influence. 

I. INTRODUCTION 

Reducing the size of a semiconductor t o  the nanometer scale changes the physical proper- 

ties of the material in a fundamental way. For example, semiconductor nanoclusters exhibit 

an increased optical gap and narrower emission spectra compared to bulk values [l-31. In 

addition, reducing the size to  the nanometer scale causes a dramatic increase of surface 

area to  volume ratio; therefore, the physical and chemical properties of semiconductor nan- 

oclusters are greatly influenced by surface reconstruction, passivation, and ultimately by 

surface chemistry. The efficient photoluminescence (PL) observed in porous silicon [4] as 
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well as other free standing silicon nanoclusters [5-71 suggests that  these structures may be 

exploited for specific applications in which they might be integrated within existing silicon 

technologies to create nanoscale optoelectronic devices. Additionally, the biocompatibility 

of silicon make these nanoclusters ideal candidates for biotags, replacing the inefficient flu- 

orescent dyes. However, the size dependence of the optical gap is difficult to reproduce in 

silicon nanoclusters as surface effects play a prominent role. Developing a more thorough 

understanding of the electronic and optical properties of silicon nanoclusters, in particular 

the effect of the surface, is a crucial step towards the utilization of these structures for new 

technologies. 

Most experiments designed to explore the optical properties of semiconductor nanoclus- 

ters have focused on II/VI materials such as CdSe, CdS, and CdTe [1,2,8-101 as these 

clusters are easier to synthesize with a narrow size distribution and with well passivated 

surfaces. Although the effect of surface reconstructions and different passivants has not 

been studied in detail, it is generally accepted that quantum confinement dominates the 

optical properties of these II/VI clusters. In contrast, silicon nanoclusters are much less 

well characterized, and the interplay of quantum confinement and surface properties is still 

unclear. In particular, few surface sensitive probes are available, and distinguishing bulk 

effects from surface effects is difficult. Theoretical modeling [ 11-16] is challenging within 

this size regime as a full quantum mechanical description of both the core and the surface is 

required to provide accurate and predictive data. Recent studies have, in general, shown that 

the surface can affect the optical properties including gaps and radiative lifetimes (strength 

of transition) 117,181. The possibility of surface control of optical properties can provide 

opportunities to design nanoclusters with the desired properties. 

Recent studies on the role of surface chemistry on the optical properties of silicon nan- 

oclusters have reported conflicting levels of importance, ranging from minimal [ 19-22] to 

crucial [6,17,18,23]. In particular, experiments investigating the effect of oxygen in both 

porous silicon [17] and hydrogen passivated nanoclusters [18,20,21,23] have generated con- 

flicting results. Oxygen exists in many experiments as a contaminant [21,22] and may also 
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be intentionally used to saturate dangling bonds [6,17,23]. Discrepancies between exper- 

iments have arisen both with respect to the shift in the emission spectra and the changes 

in intensity when oxygen is adsorbed onto hydrogenated silicon nanoclusters. With the ex- 

ception of oxygen, very few detailed experimental studies of surface passivants have been 

undertaken to date. 

In this paper, we present ab initio calculations of a number of hydrogen passivated silicon 

nanoclusters with diameters up to 2 nm. In our calculations, we replaced one or more of 

the hydrogen atoms with a number of different passivants including oxygen, sulfur, a CH2 

group, fluorine, chlorine, and a hydroxyl group (OH). We found that double bonded pas- 

sivants significantly reduce the gap compared to that of a completely hydrogenated cluster. 

Conversely, we found that single bonded passivants have a minimal effect on the optical 

gap. Finally, we specifically present results for a common contaminant, oxygen, suggesting 

explanations for the discrepancies amongst experiments [5,20-231 and we calculate the size 

below which an “oxygen gap” will be observed. 

The rest of the paper is organized as follows: Section I1 discusses the theoretical methods 

we used to perform our calculations, Section 111 discusses the specific DFT and QMC results, 

Section IV interprets these results, and Section V offers some concluding remarks. 

11. COMPUTATIONAL METHODS 

Large scale, atomistic calculations are needed to study the surface of silicon nanoclusters 

up to  2 nm in diameter. The calculations were performed using density functional theory 

(DFT) and quantum Monte Carlo (QMC). The diameters are calculated using the approxi- 

mation D = u ( & N ) ’ / ~  where N is the number of silicon atoms and a is the lattice constant. 

We studied completely hydrogenated silicon nanoclusters, and silicon clusters with a range 

of different passivants replacing one or two of the hydrogen atoms. We also replaced up to 

12 hydrogens with oxygen. 

Our ab initio DFT calculations are based on the local density approximation (LDA) and 
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the generalized gradient approximation (GGA). We adopt a pseudopotential plane wave 

approach [24] in which we design an artificial periodic system of clusters with a large enough 

spacing so that no resulting spurious interactions exists between them. All the clusters are 

placed in a periodically repeated box with 9 to 16 A of vacuum region between clusters (the 

precise amount depends on the resulting structural relaxation of the different passivants and 

on convergence tests performed for each system). This amount proved sufficient for all 

square modulus of wavefunctions to have negligible values well before the box edge. The 

interaction between the silicon ionic cores and valence electrons are described by a fully 

norm conserving, non-local pseudopotential of the Hamann, type [25] except for hydrogen in 

which we use a pseudopotential of the Giannozzi type [26]. In our DFT calculations, we use 

the Ceperley-Alder exchange-correlation energy functional and potential [27]. The Kohn- 

Sham orbitals are expanded in a plane wave basis set, with a kinetic energy cutoff of at least 

35 Ry corresponding to about lo5 plane waves. In cases with passivation groups different 

from hydrogen, we used up to 70 Ry for convergence tests. We found that the higher cutoff 

had no discernable effect on the difference between the highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular orbital (LUMO), that is, the single particle 

gap as defined withinn DFT (less than 0.3 % in all cases). 

All silicon clusters were initially constructed in a diamond structure lattice with bulk 

silicon-silicon bond lengths. Dangling bonds were passivated with hydrogen initially placed 

along the appropriate tetrahedral direction at the experimental silicon-hydrogen distance in 

SiH4. The structures were then relaxed to zero temperature molecular dynamics simulations, 

where the ions are treated classically and the electrons quantum mechanically until the 

correct ground state structure is reached. In every case, each atom was relaxed until the 

residual forces were less than 2 x eV/A. We also performed GGA calculations using 

the PBE functional [28] on a number of representative clusters, including full geometry 

reoptimization, in order to test the effect of gradient corrections to the exchange-correlation 

potential. Despite slight changes to the structure (1.6 % longer silicon-silicon bond lengths) 

and total energies, we find that the single particle gaps agree to  within 0.05 eV for all cases 
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tested. 

Although the LDA HOMO/LUMO gap is known to reproduce qualitative trends of opti- 

cal gaps correctly, the lack of a proper treatment of the self-energy correction and the exciton 

binding energy (Coulomb interaction between the excited electron and its resulting hole) 

calls for a more accurate tool to quantitatively calculate optical gaps. We have chosen to 

use quatum Monte Carlo (QMC) in order to calculate the optical gap using Eopt = E *  N - E N ,  

where E; ( E N )  is the total energy of the cluster in its excited (ground) state. QMC is one 

of the most accurate methods for calculating total energies and gaps [29-311. To date, most 

QMC calculations have been performed on small molecules or on periodic systems due to 

the computational workload of these calculations. Here, we use the linear scaling algorithm 

based on a maximally localized Wannier function basis [32] to perform QMC calculations 

on large clusters. Specifically, we perform QMC on all the hydrogenated silicon nanoclus- 

ters and a number of those containing oxygen. Through these representative clusters, we 

determine that the LDA can indeed qualitatively describe trends of optical gaps, both as a 

function of size, and with different passivants. 

111. RESULTS 

The role of contaminants on the surface of silicon nanoclusters, specifically oxygen, has 

generated some controversy. The school of thought advocating quantum confinement as 

the only mechanism responsible for visible PL would suggest that  regardless of the pas- 

sivating surface, the same results should be observed as long as all dangling bonds are 

saturated [20-221. This line of thought contradicts results on porous silicon reported by 

Wolkin et al. I171 as well as the tight-binding calculations on various size nanoclusters re- 

ported in that work. In order to investigate the effect on the optical gap in silicon nan- 

oclusters containing oxygen, we studied a single oxygen double bonded to the surface of 

clusters up to 1.8 nm in diameter. Fig. 1 shows our calculated LDA single-particle gaps and 

lowest QMC optical gaps of hydrogenated silicon nanoclusters, with and without oxygen, as 



a function of cluster size. Our LDA results for fully hydrogenated nanoclusters show good 

agreement with previously published DFT values [13,14], and our QMC results agree with 

those of accurate GW calculations on small clusters [15]. Quantum confinement still plays 

a key role up to at least the sizes considered here as the single-particle (LDA) gap and the 

optical (QMC) gap of oxygenated clusters decreases with increasing size, albeit, at a much 

slower rate than for the perfectly hydrogenated clusters. Overall, the LDA gap trends as 

a function of size for both pure hydrogen and mixed hydrogen/oxygen passivated clusters 

are well reproduced by our QMC calculations. The shift in the gap from LDA to QMC in 

totally hydrogenated clusters is much greater (around 1.5 eV for clusters aroun 1 nm) than 

in those with oxygen contamination (around 0.6 eV). For the oxygen-contaminated clusters 

smaller than 2 - 2.5 nm, we find that the HOMO and the LUMO states are localized in 

the vicinity of the Si=O double bond. Fig. 2(a) shows that these HOMO and LUMO states 

are localized core states in Si35H36, while Fig. 2(b) shows that the HOMO and the LUMO 

are strongly localized near the surface oxygen in Si35H340 . We believe that the origin of 

the difference in shifts is predominantly due to this localization, as a much greater excitonic 

binding occurs in the oxygen contaminated clusters. 

That double bonded oxygen atoms tend to  lower the gap as shown in Fig. l(a) are in 

qualitative agreement with results given by Wolkin et al. [17], although those semi-empirical 

tight binding calculations predicted that oxygen states should disappear from the gap above 

3 nm instead of the 2-2.5 nm range we find. As shown in Fig. l (b) ,  a further significant 

reduction in the gap occurs when every double bond of the cluster surface (a total of six) is 

replaced by oxygen in Silo and Si35. This reduction is very significant (e.g. 25% of the total 

oxygen gap in Si35H340) and is one possible explanation for the wide discrepency among so 

many different experiments. 

Our calculations involving silicon nanoclusters with oxygen may be summarized as fol- 

lows: 1) quantum confinement is not the only mechanism responsible for visible PL, contrary 

to previous reports; 2) the oxygen states are not pinned, but also decrease with increasing 

size; 3) in the presence of one oxygen passivant, the oxygen gap will disappear at around 
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2 nm, smaller than the 3 nm critical size reported in tight-binding calculations [17]; and 4) 

multiple oxygen passivants can lower the gap even more significantly (an additional 0.6 eV) 

perhaps explaining the wide discrepancy between so many experiments in which either oxy- 

gen was present, or the impurities were unknown. 

IV. DISCUSSION 

In order to  analyze the physical origin of the effect of oxygen on the single particle and 

the optical gap, we investigated the effect of other contaminants on the energy gap as well. 

In particular, we investigated whether the gap closing is related to the high electronegativity 

of the contaminant, the electronic levels of the passivant such as the lone pair state appearing 

in the middle of the gap, or the chemical environment, specifically, the existence of a double 

bond. 

Oxygen is highly electronegative with a value (3.5) comparable to  flourine (4.0) and chlo- 

rine (3.5). We investigated the effect of the electronegativity of the passivants by calculating 

the gaps of Si35H35F and Si35H35C1. A comparison of the molecular energy levels for each 

of these clusters (see Fig. 3) reveals that F and C1 have relatively little effect on the gap, 

although the energy of the LUMO decreases slightly with respect to  the fully hydrogenated 

cluster. As shown in Fig. 2(a), the HOMO and LUMO of Si35H36 are both confined to the 

core of the cluster. This confinement is similar to that seen in clusters with single bonded 

passivants. Using chlorine as an example, we see that the HOMO density is altered with 

respect to  the fully hydrogenated cluster and the LUMO density is “pointing” towards the 

chlorine atom (see Fig. 2(c)). The principal effect of these passivants is to  break the Td sym- 

metry and split the three degenerate HOMO states. Of course, due to  symmetry breaking, 

the triple degeneracy of the HOMO found in a totally hydrogenated cluster with Td sym- 

metry is broken when a single contaminant is introduced, giving rise to  a small splitting. 

Based on these observations, we conclude that most single bonded passivants will generate 

similar single-particle gaps, regardless of their electronegativity or individual atomic levels. 
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To further analyze whether there is some other characteristic of oxygen accounting for 

its closing the gap, such as the lone pair state of oxygen, we passivated Si35H35 with OH, 

which has a lone pair, and Si35H34 with CH2, a passivant with no lone pair. In the cluster 

containg an OH, we observed a slight decrease in the gap from the H-passivated silicon value, 

similar to the effect of the other single bonded elements (F and Cl). In the CH2 case, we 

found instead a large reduction of the gap, down to 2.5 eV, similar to the gap observed in 

atomic oxygen, yet there is no lone pair in the CH2 group. It appears, therefore, that neither 

the electronegativity of oxygen, nor its lone pair state is responsible for the significant gap 

closing. However, much as with oxygen and CH2, a large closing of the LDA gap from 3.4 eV 

to 1.8 eV occurs when a double bonded sulfur atom is used to passivate the surface. Similar 

to oxygen, the HOMO and LUMO are localized on the passivant. The effects of the double 

bonded passivants on the HOMO/LUMO gap are profound, with the gap decreasing from 

the completely hydrogenated case by an amount ranging from 0.9 eV ( when CH2 is added) 

to 1.6 eV (when sulfur is added). 

Fig. 3 summarizes our LDA results for all the passivants considered here. The molecular 

energy levels of Si35H35X where X = H, OH, C1, and F are nearly identical, with a 0.1 to 

0.2 eV variation on the gap. Likewise, the three passivants forming double bonds with the 

surface (0, S, and CH2), have similar energy levels (very different than the single bonded 

passivants) . 

The fluorine, chlorine, and OH results indicate that the electronegativity of a passivant 

does not play a key role in altering the gap. The fact that OH does not alter the gap indicates 

that lone pair states are also not responsible for the reduction observed by the presence of 

oxygen. This conclusion is further supported by the cluster passivated with CH2 which has no 

lone pair, yet closes the gap more than all the single bonded passivants. We therefore believe 

that the presence of a double bond induces a considerable distortion of the tetrahedral sp3 

network of the cluster, which is responsible for a gap reduction. This conclusion is further 

verified by placing an oxygen in a bridged network (Si-0-Si). In Si35H340, forming an Si- 

0-Si bridge distorts the network significantly (see Fig. 4). The resulting distortion is such 
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that a cluster with an Si-0-Si bond is actually almost 3 eV higher in energy than double 

bonded oxygen (in LDA), and the gap decreases by a significantly greater amount, similar 

to the reduction induced by double bonded oxygen. Thus we believe that any passivation 

process that significantly distorts the sp3 network will also alter the gap. 

In order to make contact with the wide range of experimental methods for ascertaining 

optical gaps, ranging from simple PL measurements [6] to XAS [22], the calculation of 

the strength of a given transition is of paramount importance. Despite its accuracy in 

calculating the energy gap of a given transition, QMC methods cannot routinely be used to 

generate absorption spectra since each excitation would have to be a separate calculation. 

Other methods, such as TD-LDA and GW-BSE, would be required to generate such spectra. 

However, we can estimate the relative strength of a given transition by calculating dipole 

matrix elements fir = [ Ci!, [ J $j(xl, x2, x3)5k$i(x1,  x2, x3)d3rI2] - where $; is the LDA 

final state, $i is the initial state, and the xk’s are the three Cartesian directions in real space. 

Because our adopted supercell size used is large, each $ vanishes at the box edge. Thus, 

by integrating over the box in real space, we essentially integrate to oc) and a reasonable 

estimate of transition (i.e. oscillator) strength may be obtained. 

1 
2 

We examined whether the smallest gap in double bonded passivants can be observed. 

With this aim, we calculated the lowest transitions of the following clusters Si35H340, 

Si35H2406, and Si35H34S. When a passivant is double bonded, such as oxygen and sul- 

fur, the lowest lying transition is negligible; however, the HOMO-l/LUMO transition is 

strong, on the order of that of hydrogen passivation alone (over three times stronger in clus- 

ter with a sulfur impurity). GW-BSE calculations show this transition to be 0.2 eV larger 

than the HOMO/LUMO transition in clusters with one oxygen [33]. However, when six 

oxygen contaminate the surface, we obtain strong transitions, still smaller than the smallest, 

unobserved gap in a single double-bonded oxygen cluster. These LDA estimates of oscillator 

strengths agree with GW-BSE results [33] as well as TD-LDA results [34]. 
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V. CONCLUSION 

In conclusion, we have demonstrated that quantum confinement is just one mechanism 

responsible for optical transitions in silicon nanoclusters and that the specific surface chem- 

istry must be considered to interpret experimental results. We have carried out an analysis 

of the densities associated with the HOMO and the LUMO of silicon nanoclusters passi- 

vated with hydrogen up to  1.8 nm in diameter as well as Si35H35X and Si35H34Y where 

X=H, F, C1, or OH and Y=O, S, or CH2. Our calculations show that surface effects due to 

the different chemistry of single bonded passivants do not appreciably contribute to optical 

transitions, even in the case of highly electronegative passivants. In systems with double 

bonds (e.g. 0 as a passivant), we demonstrate that  the local distortion of the sp3 network 

at the surface is a mechanism responsible for PL. Disturbance of the sp3 network induced 

by double bonded passivants closes the single-particle gap by at least 1 eV in the LDA 

and the optical gap by 2 eV in QMC for clusters 1 nm in diameter. Our results indicate 

that a range of absorption gaps could be seen using passivants such as 0, S, and CH2 and 

that even a single contaminant can have a large impact on experimental results. We also 

discover that multiple contaminants can further alter the gap giving a large (0.6 eV) range 

of observed results, perhaps partially accounting for wide discrepancies in experiments. We 

found that bridged oxygen may also alter the gap, especially if it  distorts the network sig- 

nificantly as in Si35H340. These results should help in interpreting experimental data for 

silicon nanoclusters. 

We thank R.Q. Hood, J.Y. Raty, M. Rohlfing, I. Vasiliev, and F. Gygi for many useful 

discussions. Some of the larger calculations were performed at the NERSC facility. This 

work was performed under the auspices of the U.S. Department of Energy at the University 

of California/Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. 
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FIGURES 
FIG. 1. a) Local density approximation and quantum Monte Carlo calculations for hydro- 

genated Si clusters with and without oxygen. The arrow indicates where the oxygen gap would no 

longer be seen if one oxygen is double bonded on successively larger clusters. b) Quantum Monte 

Carlo calculations compared with three experiments in which oxygen was present. The curve repre- 

senting multiple oxygen contamination is shifted based on a local density approximation calculation 

in which six oxygens were placed on hydrogenated clusters (see text). 

FIG. 2. The density ( $ 2 )  of the highest occupied molecular orbital and the lowest unoccupied 

molecular orbital for a) Si35H36, b) Si35H340, and c) Si35H35C1. 

FIG. 3. Density of states of 1.1 nm silicon clusters with different passivants. Each curve is 

Lorentzian broadened by 0.06 eV. 

FIG. 4. Double bonded and bridged oxygen in Si29H340 and Si35H340 clusters. 
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Accurate Prediction of Nanostructure Optical Gaps: Application to Silicon Quantum 
Dots 
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(Dated: April 19,2002) 

Quantum Monte Carlo (QMC) calculations of the optical gaps of silicon quantum dots ranging 
in sue from 0 to 1.5 nm are presented. These QMC results are used to examine the accuracy of 
density functional (DFT) and empirical pseudopotential based calculations. The GW approximation 
combined with a solution of the Bethe-Salpether equation performs well but is limited by its scaling 
with system size. Optical gaps predicted by DFT vary by 1-2 eV depending on choice of functional. 
Corrections introduced by the time dependent formalism are found to be minimal in these systems. 

Accurate prediction of the optical gaps of semiconduc- 
tors represents one of the outstanding problems in the 
rapidly growing field of nanoscience. A leading example 
is the challenge of predicting the size dependence of the 
optical gap of silicon quantum dots [l-91. To date, pro- 
ducing samples of pure, crystalline, monodispersed sili- 
con quantum dots has proved immensely difficult. Given 
this lack of consistent experimental data, it is highly de- 
sirable to develop accurate theoretical models to assist in 
the development of silicon based opto-electronic and bio- 
logical nanotechnologies. The theoretical challenge is to 
develop a consistent description of the exchange and cor- 
relation between electrons in systems ranging from highly 
inhomogeneous molecules such as silane to  large clusters 
approaching the bulk l i t .  

In the 0-2 nm size range, silicon nanoparticles offer 
a unique combination of technological applicability and 
dramatic quantum confinement effects. Unfortunately, it 
is precisely this size range where theoretical methods en- 
counter the greatest difficulty: For larger clusters (>500 
atoms), the optical gap can be approximated by calculat- 
ing the quasiparticle gap using semi-empirical approaches 
and correcting for the relatively small (few meV) exci- 
ton binding energy. However, in the 0-2 nm size regime 
these approaches break down due to a poor descriptions 
of the cluster surface and excitonic binding energy. Accu- 
rate electronic structure approaches based on perturba- 
tion techniques such as coupled cluster (CC) and con- 
figuration interaction (CI), or the GW approximation 
combined with a solution to the Bethe-Salpeter equation 
(GW-BSE)[4] are unworkable as the system size increases 
due to unfavorable scaling with number of particles. Fi- 
nally, mean-field methods such as density functional the- 
ory (DFT), which can be applied throughout,this size 
regime, rely on approximate exchange-correlation func- 
tionals which are well known to yield accurate ground- 
state properties, but significantly underestimate optical, 
gaps- 

In this paper we demonstrate the ability of linear scal- 
ing quantum Monte Carlo (QMC) calculations[l3] to ac- 
curately predict the optical gap of silicon nanostructures 
ranging in size from a few to several hundred atoms. 

The QMC approach includes exchange and correlation 
interactions between all the electrons in the quantum dot 
in its groundstate and also the interaction between the 
electron and hole forming the exciton in an optically ex- 
cited quantum dot. These calculations provide the first 
benchmark of the size dependence of the optical gap in 
silicon quantum dots and enable us to analyze the ac- 
curacy of previous calculation approaches. We exam- 
ine the approximations present in a wide range of al- 
ternate approaches by additionally performing DE’” cal- 
culations using both the local density (LDA) and hyrid 
B3LYP functionals, in both time independent and time 
dependent[l4] (TD-LDA, TD-B3LYP) forms. We also 
perform empirical pseudopotential calculations of the 
quasiparticle gap, corrected by a n  empirical electron-hole 
Coulomb attraction[5]. We find significant differences be- 
tween our QMC results and previous high-leveI ab initio 
calculations, with the previous calculations proving more 
or less accurate in different size regimes. Further, our 
calculations provide predictive data in experimentally ac- 
cessible size ranges that can be directly compared with 
future optical measurements. 

Our DFT-LDA calculations were performed using the 
JEEP[15] plane wave code with Hamman (silicon) and 
Gianozzi (hydrogen) pseudopotentials and a 35 Ry cutoff. 
The DFT calculations using the hybrid B3LYP functional 
were performed using the Gaussian 98 program[l2]. 
The QMC calculations were performed using recent 
developments[l3] to the CASINO QMC code[l6]. We 
use the fixed node, diffusion Monte Carlo (DMC) imple- 
mentation of QMC[l7] for all calculations, with a trial 
wavefunction formed by a product of Slater determinants 
for up and down spin electrons and a Jastrow correlation 
function. The Slater determinants were formed from a 
set of truncated, maximally localized Wannier (MLW) 
functions[l3, 181, obtained by applying a unitary trans- 
form to the single particle orbitals obtained from the ini- 
tial DFT calculation. 

We define the QMC optical gap, E@, as the differ- 
ence in total energies, EVt = E* - EGS, where EGS and 
E* are the total energies of the system in its ground and 
singlet excited state electronic configurations. IN our 



QMC calculations E' is formed by replacing the high- 
est occupied molecular orbital (HOMO) with the lowest 
unoccupied molecular orbital (LUMO) in the Slater de- 
terminant of the up spin electrons[l9]. The unitary trans- 
form used to obtain the MLW orbitals is performed on 
all the N occupied DFT orbitals except the HOMO and 
LUMO which remain as the original LDA orbitals. Using 
these same N - 1 transformed occupied orbitals to con- 
struct both the up and down spin determinants in both 
the groundstate and excited state calculations halves the 
memory requirements of the calculations. The DMC en- 
ergy obtained from this trial wavefunction corresponds 
to the lowest energy of a system with the nodal symme- 
try of these Slater determinants[20]. This approach to 
calculating the optical gap has previously been shown to 
be an accurate predictor of the true optical gap in both 
the molecular[21-231 and bulk[24] silicon limits. The op- 
tical gap, E o p t ,  associated with this singlet excitation 
corresponds to the onset of optical absorption in the 
dot, or the photoluminescence (PL) energy. In multi- 
configuration language, it corresponds to the energy re- 
quired to excite the dot from the groundstate into the 
state with a dominant contribution from the determinant 
representing a HOMO-LUMO singlet excitation. In all 
the dots studied here, the HOMO-LUMO dipole matrix 
elements indicate an allowed transition and therefore we 
believe this is the appropriate excitation to consider. 

In Fig. 1 we compare our DMC calculated optical gaps 
with those obtained from a range of other theoretical 
approaches. Previous calculations have also chosen to 
compare optical gaps with a variety of experimentally 
measured values. However, due to the wide spread in 
measured values we choose to focus here on comparisons 
between different theoretical techniques. For consistency, 
the atomic geometries used for the DMC, LDA, BSLYP, 
TD-LDA, TD-BSLYP and EPM calculations performed 
in this work were identical and were obtained by relax- 
ing the structure within LDA. Any differences with the 
structures used for the GW-BSE[4], LDA[3] and tight- 
binding[6] calculations are expected to be small. 

In Fig. 1 we observe that in the large size regime (>2 
nm, >250 atoms) semi-empirical tight binding and pseu- 
dopotential approaches agree well with one another. As 
expected, the semi-empirical methods underestimate the 
optical gap of small clusters where the surface plays a 
dominant role. Figure 1 also shows our LDA calculated 
gaps. Both the single particle HOMO-LUMO gap (LDA) 
and the optical gap calculated using the time dependent 
formalism[l4] (TD-LDA) are shown. As one would ex- 
pect the LDA gaps are too low compared with DMC for 
the entire size range. Interestingly, TD-LDA [see Fig. 2aJ 
offers only a minimal improvement over single particle 
LDA. 

In Fig. 2 we use our DMC results as a benchmark to 
investigate the predictive ability of a variety of state- 
of-the-art DFT approaches. Figure 2a plots the dif- 

ference between the optical gap computed with DMC 
and calculations based on the LDA functional: (i) sin- 
gle particle gaps (our calculations), (ii) optical gaps 
constructed[3] by subtracting an empirical electron-hole 
exciton binding energy from the LDA quasiparticle gap 
and then corrected to include the electron-hole polariza- 
tion energy[7, 251, (iii) TD-LDA calculations from Ref.[8], 
(iv) TD-LDA calculations to be published in Ref. [26] and 
(v) GW-BSE calculations which add a perturbative cor- 
rection to an LDA calculation. Comparing DMC with 
curve (v) shows that the excellent agreement between 
the optical gaps calculated using GW-BSE and QMC for 
silane[21] extends to all the sizes that are accessible to 
GW-BSE (1-14 atoms). With the exception of GW tech- 
niques built upon tight-binding theory[7], GW-BSE is 
currently not applicable to systems containing more than 
a few atoms. Comparing curves (i) and (ii) we observe 
that the LDA gaps and the corrected quasiparticle gaps 
of Ref.[3] are in quite good agreement. This agreement is 
likely due to a fortuitous partial cancellation of the quasi- 
particle correction and exciton binding energy present in 
curve (ii) and omitted in curve (i) (both of which are 
several eV). Both methods however, underestimate the 
optical gap by 1-2 eV for these sizes of cluster. 

We now consider the results of time dependent LDA 
calculations which are able to predict a portion of the 
absorption spectrum. When comparing QMC calculated 
optical gaps with the optical spectra predicted by TD- 
LDA it is important to use a consistent definition of the 
optical gap. Curves (iii) and (iv) in Fig. 2a are obtained 
from very similar TD-LDA calculations. However, while 
the calculations agree on the optical gap of silane, they 
disagree considerably for larger clusters. This disagree- 
ment is due to a difference in the definition of the o p  
tical gap in the two calculations. In Ref.[8] [curve (iii)] 
the optical gap is defined as the point at which the in- 
tegrated oscillator strength exceeds a threshold of 
As stated above, for the purposes of this work P M C  
and curve (iv)] we have chosen to define the optical gap 
as the value of the first non-zero (dipole allowed) tran- 
sition as we believe this enables the closest comparison 
between different theoretical approaches. This definition 
corresponds to the emission (PL) energy[27]. In silane, 
the first excitation peak already exceeds the threshold 
required in Ref.[8] and so the optical gaps agree. For 
the larger clusters, the integration threshold of Ref.[8] is 
only exceeded after integrating over several small peaks 
in the absorption spectra, and therefore in Ref.[8] the op- 
tical gap is defined to be larger than our value based on 
the PL energy. When we compare the TD-LDA calcula- 
tions in curve (iv) with our DMC calculations we observe 
a consistent underestimate of the optical gap of 1-2 eV 
within TD-LDA[26]. In fact, with the exception of silane 
the blue shift of the optical gap introduced by TD-LDA 
with respect to the LDA gap is typically onxy 0.2 eV. Pre- 
vious works have demonstrated that in the bulk limit the 
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value of the optical gap predicted by LDA and TD-LDA 
approach the same value. Here, somewhat surprisingly, 
our results indicate that even for small clusters TD-LDA 
does not offer a significant improvement of LDA. 

In Fig. 2b we plot the difference between the optical 
gap calculated in DMC with calculations based on the 
hybrid B3LW functional[29]. Previous B3LW calcu- 
lations [curves (i) and (ii)][9] disagree with our results 
[curves (iii) and (iv)] for clusters < 1 nm due to the use 
of a smaller basis[30] in Ref.[9]. In our calculations, we 
employed a large 6311++G(2d,2p) gaussian basis to en- 
sure convergence of the gaps to within 0.05 eV. Com- 
paring the results of our converged B3LW calculations 
[curves (iii) and (iv)] with DMC results we observe that 
the single particle B3LYP gap is generally in good agree- 
ment with our DMC values for the optical gap. The size 
dependence of the B3LYP gap is stronger than that of the 
DMC results and hence the B3LYF gap tends to overesti- 
mate the optical gaps of the smallest and under estimate 
the optical gaps of the largers clusters. It is not sur- 
prising that the B3LW gap is in reasonable agreement 
with the DMC values for the optical gap of silane and 
SizHc as these molecules were part of the original set of 
molecules used to  parzimetrize the exact exchange com- 
ponent of the functional[29]. The B3LYP functional has 
also recently been shown to predict accurate values for 
the optical gaps of bulk silicon[31]. However, we believe 
that this is the first work to assess the accuracy of the 
B3LW functional for clusters throughout the crossover 
size regime &om small molecules to bulk solids. 

In Ref.[9] the B3LYP functional is also used to 
perform time dependent density functional calcula- 
tions (TD-B3LYP). Previous calculations for atoms and 
molecules[l4] have shown that while TD-LDA calcula- 
tions typically yield gaps that are slightly blue shifted 
with respect to the single particle gap, time depen- 
dent HF calculations yield gaps that are significantly red 
shifted with respect to the single particle gap. One might 
therefore expect that as the B3LW functional contains 
a component of exact HF exchange that TD-B3LW cal- 
culations of the optical gap would be red shifted with 
respected to the B3LW gap. This is exactly what is ob- 
served in Ref.[S] and repeating the calculations with a 
larger basis we find the red shift is increased further for 
the smaller size clusters. For all sizes of cluster, the agree- 
ment between the TD-B3LYP optical gaps and the DMC 
optical gaps is worse than the agreement between B3LYP 
single particle gaps and DMC. This result is not surpris- 
ing because one of the criteria used to fit the parametriza- 
tion of this functional was that the single particle ion- 
ization potential (a quantity related to the quasiparticle 
gap) should reproduce the experimental value. The red 
shift of the gap introduced by the time dependent formal- 
ism was not accounted for in the original parametrization 
and therefore the optical gaps are too small. 

When examining the density functional results from 

Figs.2 (a) and (b) one should bear in mind that the o p  
tical gap is intrinsically a many-body quantity, includ- 
ing the interaction between all electrons in the system 
with the exciton created by the absorption of a photon. 
QMC calculations are, by construction, many-body cal- 
culations and can therefore capture these interactions. 
The Bethe-Salpether equation, which describes the exci- 
ton as a linear combination of two-particle electron-hole 
pairs has been shown to accurately describe the bind- 
ing energy of the exciton. In contrast, conventional DFT 
HOMO-LUMO gaps are purely single particle quantities. 
Of course, it is always possible to construct a functional 
which cancels the errors in the single particle LDA and 
HF gaps to yield a single particle gap in perfect agree- 
ment with the true optical gap for one particular size of 
cluster. However, the different size scahgs of the quasi- 
particle gap and the exciton binding energy suggest that 
such a cancellation could not persist over a large size 
range. Such an arguement underscores the surprising 
quality of the optical gaps predicted by the intrinsically 
single particle B3LW gap. We do however, suggest using 
caution when applying the B3LYP functional for calcu- 
lation of optical gaps in general. 

While the present results for silicon quantum dots 
demonstrate surprisingly good agreeement, we have also 
recently applied B3LW to iso-electronic germanium clus- 
ters and found significantly larger discrepancies when 
compared to  QMC caIcuIations[32]. A deeper under- 
standing of these results requires an analysis of the quasi- 
particle and exciton binding energies predicted by QMC, 
which we relegate to a future publication. 

In conclusion, we have performed the first QMC calcu- 
lations of the optical gap of silicon quantum dots rang- 
ing in size from 0 to  1.5 nm. This size range is large 
enough to connect small clusters at  the molecular limit 
with those approaching the bulk limit. These calculations 
demonstrate the applicability of the QMC approach to 
this central problem in modern nanoscience. Further this 
QMC approach applies equally well to alternative mate- 
rial types such as germanium and cadmium selenide and 
to both crystalline and amorphous structures. By com- 
paring with several alternative theoretical approaches we 
predict that for clusters > 3 nm in size, semi-empirical 
approaches are sufficient to accurately describe the size 
dependence of the optical gap. For clusters < 2 nm there 
is a wide spread in the optical gaps predicted by dif- 
ferent approaches. The optical gaps predicted by DFT 
calculations, based on the LDA functional tend to under- 
estimate the optical gap. Whereas, at  least for silicon, 
the single particle gap predicted by DFT calculations US- 

ing the B3LYP functional are in good agreement with 
our DMC optical gap calculations. However, time de- 
pendent corrections to this functional uniformly degrade 
the quality of the results. 

We are grateful to Lorin Benedict and Fernando Re- 
boredo for useful conversations. Larger QMC calcula- 
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Synthesis dynamics of passivated silicon nanoclusters 

E. W. Draeger, Jeffrey C. Grossman, A. J. Williamson, and G. Galli 
Lawrence Livennore National Laboratory, P.O. Box 808 Livermore, CA 94550 

Quantum molecular dynamics and quantum Monte Carlo techniques are employed to gain in- 
sight into the effect of preparation conditions on the structural and optical properties of silicon 
nanoparticles. Our results demonstrate that (i) kinetically-limited nanostructures form different 
core structures than bulk-derived crystalline clusters, (ii) the type of core structure that forms de- 
pends on how the cluster is passivated during synthesis, and (iii) good agreement with measured 
optical gaps can be obtained for nanoparticles with core structures different from those derived from 
the bulk. 

Silicon nanoclusters have been the focus of intense the- 
oretical and experimental interest [14].  A combination 
of the unique optical properties of silicon quantum dots 
and their compatability with existing silicon-based and 
nano-biological technologies demonstrates great promise 
for numerous applications. In the 1-3 nm size range, 
where Si quantum dots may exhibit visible luminescence, 
experimentally determined optical properties vary signif- 
icantly depending on the synthesis technique [49].  For 
example, the optical gaps of silicon clusters formed by 
physical vapor deposition [lo] were found to be several 
eV lower than those formed using inverse micelles [ll]. 
Further, even quantum dots made via the same process 
have been found to exhibit widely-varying absorption 
and emission spectra, perhaps due to small differences 
in preparation conditions and limitations in the accuracy 
of characterization techniques. These discrepancies pose 
a significant challenge to the practical application of sili- 
con quantum dots and demonstrate the need for accurate 
theoretical predictions to help guide experiments. 

Previous theoretical studies of silicon nanoclusters 
have used either bulk crystalline [12] or quasi-amorphous 
structural templates [13] to generate atomic configura- 
tions. The highly curved surface is typically fully passi- 
vated with hydrogen to saturate dangling bonds. While 
these model structures allow for the study of a number of 
different properties (i.e., the effects of contamination and 
surface reconstruction), they do not allow one to examine 
the impact of the synthesis process itself. Investigating 
the synthesis process requires the use of computationally 
demanding quantum simulations in order to take into ac- 
count the complex and subtle dynamical effects needed 
for accurate predictions. 

In this Letter we employ a combination of quantum 
molecular dynamics (QMD) and quantum Monte Carlo 
(QMC) calculations to determine the impact of the ex- 
perimental synthesis process on the structural and op- 
tical properties of 1 nm silicon dots. Our results indi- 
cate that when a finite-temperature synthesis and passi- 
vation process is emulated, the number of atoms in the 
core of the resulting cluster is larger than for ideal, bulk- 
derived structures. We observe a subtle interplay be- 
tween the strain associated with high curvature and sur- 
face dangling bonds and the preference for silicon to form 

tetrahedrally-symmetric cores. These two competing ef- 
fects produce a class of structures defined by the core 
structure and the bonding of the core atoms to the sur- 
face. Rather than a search for low-energy structures, this 
classification results from a careful examination of the 
metastable, kinetically-limited nanostructures produced 
by QMD, and can be applied to other nanoscale systems. 
We also show that structures which are likely to form via 
a given synthesis method strongly depend on the mech- 
anism by which the silicon surface is passivated and on 
the ability to satisfy surface strain during the growth se- 
quence. Further, we present novel nanoscale reconstruc- 
tions, unique to highly curved crystalline structures, that 
have lower energy and larger optical gaps than the bulk- 
inspired reconstruction. 

Several experimental techniques for synthesizing sili- 
con nanoparticles, such as physical vapor deposition [lo] 
and laser ablation [14], generate a high temperature sil- 
icon vapor from which amorphous nanoclusters nucleate 
as the vapor cools. During or after cooling, there is typi- 
cally exposure to some form of passivant (e.g., hydrogen, 
oxygen) which removes dangling bond states from the 
surface of the cluster. This synthesis process is simulated 
using QMD [15], starting from an amorphous cluster ob- 
tained by heating a bare cluster at 1500 K for - 2 ps. A 
new hydrogen atom is then added to an unpassivated sur- 
face atom every 0.3-0.5 ps until all silicon atoms are four- 
fold coordinated. Simple thermodynamic arguments, as- 
suming atmospheric pressure and ideal gas vapor den- 
sities, predict an additional hydrogen will passivate the 
surface every 1-2 ps. By using a series of elevated tem- 
peratures (T=600,800, and 1000 K), we were able to  ob- 
serve realistic passivation events on shorter time scales 
(0.3-0.5 ps) while confirming that the higher tempera- 
tures did not qualitatively alter the growth process. The 
combined total simulation time for all clusters investi- 
gated here was - 500 ps. 

The present work considers the 1 nm size range where 
there are - 30 silicon atoms per quantum dot. We per- 
formed simulations starting from amorphous Si29, Siso, 
and Si31. Surprisingly, in our simulations which started 
from Si29, the single tetrahedral core structure predicted 
for 29 silicon atoms (see Fig. la) does not form. Instead, 
we found that the resulting passivated structures consis- 

1 



tently had a double tetrahedral core - two interior silicon 
atoms rather than one (see Fig. lb). The formation of 
a double core was found to be completely independent 
of temperature and the order in which hydrogen atoms 
were added to the surface. The resulting structures were 
highly strained due to the lack of a symmetric arrange- 
ment of 21 surface silicon atoms around the 8-atom dou- 
ble core structure (i.e. 2 interior core atoms with 6 sur- 
rounding atoms). 

FIG. 1. Results of QMD synthesis for Si29 and Si30, com- 
pared with low-energy ideal structures. Interior core atoms 
are dark blue. (a) Ideal Si29H24 structure proposed by Mi- 
tas et d.; (b) Final SizgHzl structure from QMD synthesis 
at T=1000 K, relaxed at T=O K; (c) Proposed ideal Si30H22 
structure; (d) Final Si30H22 structure from QMD synthesis at 
T=1000 K, relaxed at T=O K. 

The explanation for the consistent formation of a 
double-core structure lies with the dynamics of bare sil- 
icon clusters. Above T=300 K, unpassivated crystalline 
nanoclusters become amorphous, with multiple atoms in 
the center of the cluster attempting to saturate the dan- 
gling bonds of the surface atoms. Clusters of amorphous 
Si29 typically have two to three such highly coordinated 
interior atoms. As hydrogens are added to the surface, 
the number of dangling bonds is reduced and the inte- 
rior atoms develop stable bonds to the surface. Passiva- 
tion has the effect of "freezing" that region of the cluster 
surface as atoms at the surface become four-fold coordi- 
nated. By the time enough hydrogens have been added to 
fully passivate the surface, the surface has frozen around 
two interior core atoms. A transition from this type 
of structure to a single-core structure would likely re- 
quire a global reconstruction of the surface, with multi- 
ple events involving the simultaneous breaking of several 
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silicon bonds. 
The competition between two silicon atoms in the cen- 

tral core region can be understood by examining the early 
stages of the passivation process. The core structure of a 
silicon cluster is defined by the number of atoms that oc- 
cupy the interior region, completely surrounded by other 
silicon atoms. To quantify the degree to which a silicon 
atom is in the interior of the cluster, we estimate the 
fraction of the total solid angle around atom i that is not 
occupied by other silicon atoms. For simplicity, we ap- 
proximate this solid angle by calculating the maximum 
base angle R of a cone whose apex is centered on atom 
i and whose volume does not intersect any other silicon 
atoms (see Fig. 2 inset). The quantity R is plotted as a 
function of time in Fig. 2 for a simulation of the synthesis 
of Si29, starting from an unpassivated crystalline cluster. 
Within 0.5 ps, an atom has moved from the surface to 
become a second core atom in the cluster and remains 
there for the duration of the simulation. 
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FIG. 2. Interior parameter R; vs. time for the silicon atoms 
in an Si29 QMD synthesis run at T=1000 K, with a hydrogen 
atom added to the surface of the cluster every 0.3 ps. The 
blue and red curves correspond to the two interior core atoms, 
and the grey curves are surface silicon atoms. The inset shows 
how R is defined, in this case for an interior atom (dark blue). 

By symmetry, 30 silicon atoms are more favorable than 
29 atoms for the formation of 1 nm double-core nan- 
oclusters. Si30H22 has a symmetric construction which 
can be represented as a 28-atom cage (14 pentagons, 
2 septagons) surrounding two interior atoms (Fig. IC). 
This structure was stable to thermodynamic fluctuations 
at T=1000 K for 10 ps. Subsequent simulations of hy- 
drogen passivation of amorphous Si30 at T=600 K and 
T=1000 K, using the same QMD synthesis calculations as 
for Si29, again consistently produced double-core struc- 
tures. Whereas for Si29 they were markedly different than 



the ideal case, for Si30 QMD produced many low-energy 
structures (the example shown in Fig. Id had a total en- 
ergy which was only 0.1 eV higher than the ideal struc- 
ture Fig. IC) that are qualitatively similar to the ideal 
high-symmetry structure. Similar to Si29, Si31 also pro- 
duced double-core structures, although significantly more 
strained than those starting from Si30. 

As mentioned, a number of different experimental syn- 
thesis processes have been used to make silicon quantum 
dots. Recently, silicon nanoclusters with discrete cluster 
sizes have been produced by sonification of porous sili- 
con [16]. In this process, silicon clusters are formed from 
larger pieces of hydrogenated silicon - a fundamentally 
different synthesis process to the silicon vapor based tech- 
niques described above, since the starting point is crys- 
talline bulk, not amorphous vapor. If each fragment is 
passivated before amorphization takes place, the result- 
ing nanoclusters may retain a crystalline core. The fact 
that the fragments are already partially passivated upon 
breakup likely plays a major role in slowing or prevent- 
ing amorphization, and may allow only single-core 1 nm 
nanocrystals to form. 
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FIG. 3. Interior parameter R; vs. time for the silicon atoms 
in (a) SizgHs, (b) Si29H12, and (c) Si2gH18 QMD simulations 
at T=1000 K. The colored curves correspond to atoms which 
are in the interior of the cluster at some point in the simula- 
tion, and the grey curves are surface atoms. 

To determine the number of hydrogens required to 
maintain a single-core crystalline structure in a 29- 

atom silicon cluster, we performed QMD simulations in 
which a number of neighboring hydrogen atoms were re- 
moved from a tetrahedrally symmetric Si29H24 nanocrys- 
tal, which was then heated to T=600 K and 1000 K. At 
T=1000 K, removal of only 6 hydrogen atoms (Si29H18) 
resulted in a persistantly stable, single-core structure. 
When 12 hydrogen atoms were removed (Si29H12), the 
silicon cluster formed a double core within 0.5 ps. When 
18 hydrogen atoms were removed (SiZgHe), the cluster 
again formed a double core within 0.5 ps, but also exhib- 
ited dynamics consistent with an amorphous cluster, as 
shown by the exchange of interior core and surface atoms 
on a time scale of roughly 1 ps (Fig. 3c). We found that 
14 neighboring hydrogen atoms (Si29H14) are required to 
maintain a single tetrahedral core. At T=600 K, similar 
behavior is observed, although the double-core formed 
more slowly than at T=1000 K. Based on these findings, 
it is possible that a 1 nm nanocluster exhibiting bulk-like 
crystallinity can be formed from the break-up of larger 
passivated clusters, as long as more than half the surface 
of the resulting nanocluster is passivated within picosec- 
onds of break up. 

FIG. 4. Two different reconstructions of a Si2gH24 nan- 
ocluster: (a) Si2gHg2'"'' (b) Si2gHg$no2. 

Even if the 1 nm nanoclusters formed with porous soni- 
fication are in fact crystalline, the measured optical gaps 
are not in agreement with the lowest-energy crystalline 
Si29H24 structure. A bulk-like surface reconstruction 
of crystalline Si29H36 to Si29H24 was proposed [12] (see 
Fig. la) and found to have an optical gap in agreement 
with an experimentally-measured optical gap of 3.44 eV 
for 1 nm clusters synthesized using porous sonification 
[16]. Here we present two lower-energy reconstructions of 
Si29H24 with optical gaps significantly larger than 3.5 eV. 
The surface of a Si2gH24 cluster can be represented as a 
28-atom cage (12 pentagons, 4 hexagons) with a single 
silicon atom in the center, bonded to four surface atoms 
(related by Td symmetry) to form a five-atom tetrahedral 
core. The remaining surface atoms are passivated with 
hydrogen. There are three unique ways to connect the 
interior core atom to the surface and maintain a tetra- 
hedral core. The first (Si2gH&k, Fig. la) was proposed 
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based on a bulk-like (2x1) reconstruction of dimer pairs 
on (001) facets. The other two (Fig. 4), Si29HzZno1 and 
Si29H;~n02, are unique to a curved nanostmcture, and 
have no bulk analogue. Two similar reconstructions ex- 
ist for ideal Si30H22 (Fig. Id). 

The total energies of Si2gHz$no1 and Si2gHztno2 cal- 
culated with our QMC approach [17] are 0.6(1) eV and 
1.0(1) eV lower than Si29H!fk, respectively, due to de- 
creased strain around the surface dimers. In fact, a 
partial reconstruction from Si29Hi;" to Si29Hztno', in 
which a single surface core atom takes the hydrogen from 
its neighbor which then bonds to the central core atom, 
also has lower energy than Si29H%lk. Therefore, even if 
Si29H!fk initially forms, it is highly likely that it would 
reconstruct to Si2gHz$lqo', as the barrier only involves 
the breaking of a single silicon bond at a time. 

TABLE I. Energy gaps for silicon nanoclusters, calculated 
using both LDA and QMC. For structures created with QMD, 
a range of LDA gap energies is given, with QMC gaps calcu- 
lated onlv for the structure with the largest LDA gap. - - -  

E L D A  g a p  E?gC (eV) 
0.9-1.5 2.5(1) 

2.2-2.4 3.4(1) 

In addition to energy differences, we also employ QMC 
to calculate optical gaps in the same manner as Ref. [18]. 
Our calculated QMC optical gaps for ideal Si30H22 and 
SizgH24 are 3.2(1) and 4.5(1) eV, respectively. The range 
of gaps for Si30H22 clusters generated by QMD synthe- 
sis is in better alignment with experiment [9,16] than 
the range of gaps for Si29H24 generated under the same 
synthesis conditions. Our calculations show that sym- 
metric double-core (i.e. non-crystalline) structures not 
only have optical gaps similar to those measured exper- 
imentally, but form consistently from amorphous silicon 
nanoclusters in the first few picoseconds of synthesis. 

Table I lists both LDA and QMC optical gaps for dif- 
ferent structures considered here. While only the QMC 
results are expected to be directly comparable to exper- 
imental absorption data, note that the LDA gaps ac- 
curately reproduce the QMC trends. For Si29H24, the 
gaps for structures determined by QMD synthesis are 
significantly smaller than for the ideal, high-symmetry 
case. In addition, the optical gap calculated with QMC 
is 4.5(1) eV for Si29H;$,0n0' and 4.1(1) eV for Si29H;fno2, 
significantly larger than the 3.5(1) eV gap of Si2gH&lk 
and current experimental measurements. In contrast, for 
Si30H22, the gaps produced by synthesis are roughly the 
same as the high-symmetry case. These differences are 
linked to the large variations in resulting structures de- 
scribed above; the double core is able to form with much 
less strain for Si30 while considerable strain was present 

for the double core Si29 structures. 
We find that during the formation process of 1 nm 

clusters, relaxation of the high strain induced by the cur- 
vature and dangling bond states at the surface is in di- 
rect competition with the preference of the interior atoms 
to be tetrahedrally coordinated. Our results show that 
the resulting structures consistently form with a non- 
crystalline, double tetrahedral core. For clusters with 
30 silicon atoms, QMD produced structures with opti- 
cal gaps in good agreement with both symmetric low- 
energy structures and experimental measurements. We 
find reconstructions unique to highly curved nanostruc- 
tures which give evidence for larger optical gaps than 
previously predicted in 1 nm crystalline nanoclusters. In 
addition, we find that the stability of small, partially- 
passivated Si29 crystalline fragments strongly depends 
on the number of hydrogen atoms at the surface, with 
a crossover from double-core to single-core structures be- 
tween 12 and 14 hydrogen atoms. This work suggests 
that the metastable nanostructures most likely to form 
via a given synthesis process should be classified in terms 
of both core structure and surface reconstruction. 
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