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Linear Scaling First-Principles Molecular

Dynamics with Controlled Accuracy

Jean-Luc Fattebert, François Gygi

Center for Applied Scientific Computing (CASC)
Lawrence Livermore National Laboratory

P.O. Box 808, L-561, Livermore, CA 94551

Abstract

In our quest for accurate linear scaling first-principles molecular dynamics methods
for pseudopotential DFT calculations, we investigate the accuracy of real-space grid
approaches, with finite differences and spherical localization regions. We examine
how the positions of the localization centers affect the accuracy and the convergence
rate of the optimization process. In particular we investigate the accuracy of the
atomic forces computation compared to the standard O(N3) approach. We show the
exponential decay of the error on the energy and forces with the size of the localiza-
tion regions for a variety of realistic physical systems. We propose a new algorithm
to automatically adapt the localization centers during the ground state computa-
tion which allows for molecular dynamics simulations with diffusion processes. The
combination of algorithms proposed lead to a genuine linear scaling First-Principles
Molecular Dynamics method with controlled accuracy. We illustrate our approach
with examples of microcanonical molecular dynamics with localized orbitals.

Key words: First-Principles molecular dynamics, Density Functional Theory,
finite differences, linear scaling
PACS: 71.15-m, 71.15.Dx, 71.15.Ap, 71.15.Pd

1 Introduction

During the last decade, many researchers have investigated new numerical al-
gorithms for electronic structure calculations with a computational cost that
scales linearly with the size of the physical system (for a review, see for example
Ref. [1,2]). Many innovative ideas have been proposed, and very successful ap-
proaches have been implemented, in particular for Tight-Binding methods, the
crudest quantum simulation approach. Nonetheless no linear scaling method
proposed so far has been able to replace in practice the standard and powerful
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O(N3) plane-wave approach to carry out accurate Density Functional Theory
(DFT) first-principles molecular dynamics (FPMD).

In methods based on a linear combinations of atomic orbitals (LCAO) or a
similar numerical basis set of localized orbitals, O(N) algorithms have been
obtained to compute the one-particle Density Matrix (DM) for example (see
[2] and references therein). The size of this matrix is given by the total number
of numerical basis functions in the calculation which is in general less than 20
per atom. But LCAO approaches lack flexibility and adaptivity since there is
no systematic way of refining the accuracy of the numerical approximations.
This can lead to poor performance in changing environments typical of molec-
ular dynamics. On the other hand, in the case of accurate methods based on
a very large number of variational parameters — like Plane-Waves (PW) or
grid-based calculations — that can be systematically increased to improve ac-
curacy, it becomes impossible to build the DM, or even a sparse DM. In that
case, there are hundreds of degrees of freedom per electronic wave function.
It is then more appropriate to represent the electronic structure by a set of
orbitals that represent the occupied subspace. In standard approaches, the so-
lution is usually expressed by a set of eigenfunctions that span the subspace of
the occupied orbitals. Using the sparsity of the Hamiltonian matrix, iterative
eigensolvers are used to compute these functions in O(N3) operations. O(N)
algorithms can be obtained by looking for Wannier-like functions that can be
truncated beyond a certain radius and still describe the electronic structure ac-
curately. This linearizes the most costly parts of the algorithm such as building
the Hamiltonian and overlap matrices in the occupied subspace, or computing
the gradient of the energy functional. Working with a set of truncated orbitals
then allows to use the same O(N) techniques used in LCAO approaches to
obtain a global linear scaling[3]. Several authors have reported algorithms de-
scribing strictly localized orbitals in real-space using either finite differences
to discretize the Laplacian [3–6], finite elements methods [7,8] or plane-waves
in restricted regions [9]. In these approaches, accuracy can be systematically
improved by mesh refinement and localization regions enlargement.

While O(N) molecular dynamics (MD) schemes have been developed by sev-
eral authors for tight-binding methods [10–15], only limited ab initio MD
have been carried out with linear scaling methods. Fabricius et al.[16] simu-
lated a liquid silicon surface at high temperature with a minimal basis set of 4
atomic orbitals per atom, using a thermostat to keep a constant temperature.
Tsuchida and Tsukada[8] carried out a molecular dynamics simulation with
localized orbitals and a much larger number of degrees of freedom — using
a Finite Elements approach — for a 64-atoms diamond supercell with fixed
localization regions centered at the equilibrium positions. They observed a
negative drift of the total energy. This approach does not allow general MD
simulations involving diffusion processes and changes in chemical bonds. To
our knowledge no direct comparison between forces obtained with strictly lo-
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calized orbitals and extended orbitals have been reported so far. Note that ab
initio investigations have been limited by their computational cost which is
much larger than in TB, in particular for systems of sizes relevant for O(N)
approaches.

In this paper, we report our recent developments towards a FPMD algorithm
with linear scaling based on finite difference discretization. Some of the ele-
ments on which we base our approach were published in Ref. [5]. In this paper
we limit our study to systems with a finite band gap and focus on the effects of
localization constraints on the accuracy of the solution of DFT equations. Af-
ter describing the general O(N3) reference approach in Sec. 2, we introduce the
concept of localized orbitals in Sec. 3. Then in Sec. 4, we propose a new algo-
rithm to automatically adapt the centers of the localization regions according
to the solution of the electronic structure problem. These adaptive localiza-
tion centers (ALC) are typically close to the Maximally Localized Wannier
Centers (MLWC) defined by Marzari and Vanderbilt [17]. They often result in
more accurate solution of the electronic structure problem than atomic cen-
ters while also leading to a faster convergence rate in the orbital optimization
process. In Sec. 5, we present a study of the accuracy of the energies and forces
as functions of localization radius. Finally in Sec. 6, we propose a molecular
dynamics algorithm for localized orbitals based on the concept of adapting
localization centers on the fly. We illustrate our approach with two examples
of microcanonical molecular dynamics with strictly localized orbitals.

2 General approach

We consider a physical system composed of Na atoms in a computation domain
Ω with periodic boundary conditions. We represent the electronic structure
of such a system by a general non-orthogonal basis {φ}N

i=1 that spans the
invariant subspace of N doubly occupied orbitals 1 . In this representation, the
Kohn-Sham (KS) energy functional is given by (in atomic units)[18]

EKS[{φi}N
i=1] =

N∑

i,j=1

2
(
S−1

)
ij

∫

Ω

φi(r)
(
−1

2
∇2

)
φj(r)dr

+
1

2

∫

Ω

∫

Ω

ρe(r1)ρe(r2)

|r1 − r2| dr1dr2 + EXC [ρe] (1)

+
N∑

i,j=1

2
(
S−1

)
ij

∫

Ω

φi(r)(Vextφj)(r)dr,

1 We use the Γ point only and thus can assume that the functions φi, i = 1, . . . , N
are real.
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where ρe is the electronic density

ρe(r) = 2
N∑

i,j=1

(S−1)ijφi(r)φj(r) (2)

and the overlap matrix is defined by its entries

Sij =
∫

Ω

φi(r)φj(r), i, j = 1, . . . , N.

The first two terms in the energy functional represent the kinetic energy of
the electrons and the electrostatic energy of interaction between electrons. The
energy EXC models the exchange and correlation between electrons. In this
paper, we use the local density approximation (LDA), or the first-principles
exchange-correlation functional proposed by Perdew-Burke-Ernzerhof (PBE)
[19] which often provides results in better agreement with experiments and is
appropriate for a grid-based implementation. In the last term of Eq.(1), the
potential Vext represents the total potential produced by the atomic nuclei. In
practice we use norm-conserving pseudopotentials in the Kleinman-Bylander
form [20,21].

We discretize the energy functional (1) by finite differences (FD), using a
fourth order compact scheme — Mehrstellenverfahren — for the Laplacian.
The details of the FD methodology and its implementation on massively par-
allel computers using domain decomposition are described in Ref. [22]. We
denote by M the number of grid nodes, i.e. the number of degrees of freedom
for each wave function.

We denote the solution (or trial solution) {~φ}N
i=1 that minimizes Eq.(1) in a

matrix form Φ =
(
~φ1, . . . , ~φN

)
(M × N matrix). We assume that Φ always

has full column rank. If Φ minimizes (1), Φ · B is also a minimum for any
nonsingular N × N matrix B. In these notations, we can write the gradient
of the discretized energy functional as [5]

∇ΦE = 2
(
HΦ− ΦS−1H(Φ)

)
= (∇φ1E, . . . ,∇φN

E) (3)

where H is the DFT Hamiltonian operator associated to (1) and H(Φ) is its
matrix representation in the basis Φ, i.e.

H(Φ) = ΦT HΦ.

The gradient (3) is a contravariant vector expressed for the basis Φ. It is
related to the gradient expressed for the basis of the Ritz vectors Ψ by the
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relation
∇ΨE = ∇ΦE · C

where C is a N ×N matrix solution of the eigenvalue problem

H(Φ)C = SCΛ

with Λ an N ×N diagonal matrix.

This gradient is the basis for many iterative algorithms to search for the min-
imum of the energy functional (1). One key ingredient for a fast convergence
is a good preconditioner[23]. For a real-space discretization, an appropriate
technique is a multigrid preconditioner based on the Laplacian. It provides a
convergence rate independent of the size of the discretization grid for a simple
steepest descent algorithm [24]. This approach is particularly efficient when
some unoccupied states are included in the calculation.

If no unoccupied states are needed, we found that a simple block precondi-
tioned steepest descent algorithm with fixed shift can be sped up significantly
by using the extrapolation scheme of Anderson [25]. In the nonorthogonal
basis Φ, we write this extrapolation scheme as

Φ̄(l) := Φ(l) +
m∑

j=1

θ
(l)
j

(
Φ(l−j) − Φ(l)

)

where Φ(l) denote the trial solution Φ at step l. The coefficients θ
(l)
j ∈ R are

determined by the solution of the linear system

m∑

j=1

(
R(l) −R(l−i), R(l) −R(l−j)

)
θ

(l)
j =

(
R(l) −R(l−i), R(l)

)
, i = 1, . . . , m(4)

which corresponds to minimizing the norm of a coupled iterative sequence
R(l), extrapolated according to the same scheme

R̄ := R(l) +
m∑

j=1

θ
(l)
j

(
R(l−j) −R(l)

)
.

Finally, the new trial solution is given by

Φ(l+1) = Φ̄(l) + βR̄(l).

In practice, we use the preconditioned steepest descent — negative gradient —
for the sequence R(l) so that solving (4) minimizes the preconditioned residual
of the eigenvalue problem. We usually choose β = 1. In the space of the
nonorthogonal wave functions, the natural scalar product is

(U, V ) = Tr(S−1UT V ) (5)
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for U and V M ×N matrices. This scalar product has the property of being
independent of the choice of the basis Φ we choose. It can however become
computationally very expensive for large problems. To reduce its cost, we drop
the matrix S−1 in Eq.(5). To limit the effects of this change, we orthonormalize
the orbitals at regular intervals (every 20-30 iterations). Numerical tests show
no major difference using this approximation.

Anderson’s extrapolation scheme was designed to solve nonlinear equations
[25]. In the case of an eigenvalue problem like the KS equations, the residual
vanishes not only for the lowest eigenvalues we are interested in, but for any
set of eigenvalues. In order to avoid being trapped in undesired solutions,
some caution is required in particular during the first few steps when the
trial solution is far from the ground state. In practice, we avoid problems by
choosing a ”safety” interval for θl

j outside of which the extrapolation is turned
off (very large absolute values) or truncated to be inside the safety interval.

All the results presented in this paper were obtained using the block Ander-
son extrapolation scheme described above with multigrid preconditioning. No
unoccupied states were included in the calculations. In the iterative process,
the self-consistent potential is updated at each step, i.e. after updating all
the wave functions only once. Our numerical experiments show little improve-
ments when using m > 1 so that all the results presented here were obtained
with m = 1.

3 Localization and partial linear scaling

Since we are only interested in finding the subspace that minimizes (1), we can
choose to represent this subspace by a basis of maximally localized functions in
some sense. If each localized function can be represented by a finite number of
parameters that does not grow with the size of the physical system, it naturally
leads to a better scaling. To determine such a solution we explicitly define
localization regions (LR) that restrict the support of each orbital. These LR
should not be too small so that the problem with constraints admits a solution
that approximates well the solution of the problem without constraints.

We choose to use spherical LR. Localization is imposed by forcing the orbitals
solution of the electronic structure problem to be strictly zero outside of a
spherical region of radius Rc. The problem is then to minimize the energy
functional (1) under localization constraints. This is done in practice by trun-
cating the gradients (3) used in the iterative solver, applying a projector Pi

to ∇φi
E, i = 1, . . . , N . Before applying a multigrid preconditioner, a smooth

mask is applied to Pi(∇φi
E) to remove the sharp discontinuities at the bound-

aries of the LRs. The preconditioned gradient leads to corrections at each step
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of the iterative optimization procedure that keep each orbital localized [5].
Orbitals truncation linearizes the computational cost of S, H(Φ), as well as
∇ΦE in Eq. (3) and ρ in Eq. (2), the most expensive parts of the algorithm
— which would otherwise scale like O(N2M) where M is the size of the dis-
cretization grid. The inverse of the overlap matrix S−1 is computed exactly
in O(N3) operations. This leads to a global algorithm with a remaining part
with cubic scaling. However this part is not a bottleneck for a large range of
problems since N is usually much smaller than M . Also, keeping this term
exact allows us to focus on the effect of localization constraints on the orbitals
only.

With localization constraints, the minimization process can be carried out
using Anderson’s extrapolation scheme as described above. Such a scheme is
particularly well suited since it does not delocalize the trial solution. It only
determines an appropriate weight for the extrapolation and correction contri-
butions. As opposed to the case of extended orbitals, no orthonormalization
can be applied to reduce S to the identity in the scalar product (5). Instead we
only normalize the functions φ to keep the relative weights of all the functions
equal in the process. Numerical experiments indicate that this approach does
not slow down the iterative process compared to using the scalar product with
S−1.

4 Adaptive localization centers

In previous approaches, LR have been centered either on atoms [5,8] or on
bonds [6], based on a priori knowledge of the chemistry. In many cases, such
a choice of localization centers is not straightforward — like in disordered
systems for example. Moreover, these centers may not be optimal from the
accuracy point of view. Also, attaching localization centers at bonds or atoms
may not be appropriate for general molecular dynamics. Recent development
in Maximally Localized Wannier Functions (MLWF) theory [17] suggest that
centering localized orbitals at Maximally Localized Wannier Centers (MLWC)
may be a much better approach. However, finding the exact Wannier centers
requires in general O(N3) operations[26]. Here we propose a simple approach
which consists in centering the localization region of each orbital at the cen-
troid of charge of the orbital itself. We use an iterative approach in which
the localization regions adapt themselves and ”follow” the orbitals during the
minimization procedure. The algorithm can be summarized as follows:

Until convergence, do:

• Optimize localized non-orthogonal orbital for fixed LR (about 20-40 itera-
tions)
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Fig. 1. Convergence and error in the computed KS energy for silicon bulk (64 atoms
in a cubic cell) using various localization schemes.

• Compute the centroids of charge: Qi =< φi|X|φi >, i = 1, . . . , N
• Move localization centers to Qi to define new LR.

Here X denotes the position operator. For periodic boundary conditions, the
position operator for extended systems proposed by Resta [27] should be used.
We call Adaptive Localization Centers (ALC) the centers obtained by this
procedure. Note that in the particular case of MLWF (without any localization
constraint), the centroids of charge are exactly the MLWC.

We now illustrate the behavior of this algorithm in some applications. For
the first test we use a perfect silicon bulk cell with 64 atoms. In this case the
MLWC are exactly located in the middle of the bonds. In Fig.1, we compare the
results of various approaches by measuring the residual error on the energy due
to the localization constraint on the orbitals, as well as the convergence rate.
The reference energy is the value obtained by the standard O(N3) algorithm
without any localization constraints. First, we observe that localization on
the bonds (equivalent to MLWC in this case) reduces the error by a factor
5 compared to localization on the atoms. Secondly, we can see that in the
adaptive procedure — which starts with centers on the atoms — the error
converges to the same value as the one obtained with centers on the bonds.
Actually the localization centers themselves converge to the MLWC. Note
that this is not a general result but a consequence of the high symmetry of
the problem. Usually we observe that the energy obtained with ALC is slightly
higher than with MLWC, but this difference is very small in comparison with
centering on the atoms.

We consider then a more interesting disordered system: hydrogen under pres-
sure. In this case, not only hydrogen dimers are found, but also individual
atoms, trimers, and so on. This makes it difficult to center a priori localiza-
tion regions on bonds. For a test cell of 992 atoms, we show in Fig. 2 how
the adaptive algorithm finds a good solution, starting from 496 initial centers
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Fig. 2. Convergence of the Adaptive Localization Centers algorithm for a sample of
disordered hydrogen (992 atoms in a cubic cell of 28.26 a.u. side length ). The initial
446 localizations centers are randomly distributed at 446 different atomic positions.

distributed on randomly chosen atoms. Figure 2 shows the convergence of the
total energy with adaptation of the localization regions.

Note that in both tests described above, we start from a configuration of
centers very far from the optimal solution. This explains why a large number
of electronic iterations is required to converge.

On the other hand, we also notice that convergence towards the ground state
is often much faster for localization regions centered at MLWC or ALC, than
for centers at atomic positions. To understand why such phenomenon may
happen, we consider a bulk system like silicon. We realize that if we put 2
localized orbitals on each atom, a global arrangement is required to find a set
of localized orbitals actually located at mid-distance between pairs of atoms,
with each orbital associated by localization region to one of the two atoms.
The iterative solver has to associate 2 bonds to each atom to center the 2
orbitals associated to this atom. This can slow down convergence significantly
or even drive the iterative process into a local minimum where 2 orbitals try
to settle on the same bond and no orbital occupies another bond elsewhere in
the system. If localizations regions are positioned on the bonds and own one
orbital each, this problem is avoided. Another way of avoiding such local min-
imas would be to compute more orbitals than needed, including unoccupied
states in the calculation as proposed in Ref. [5]. This gives more possibili-
ties to quickly fill all the bonds. In the approach proposed by Kim et al[15],
these additional states become linearly dependent at convergence, helping the
convergence process but without contributing to the final solution.
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5 Effect of localization constraints on atomic forces

The ability to run molecular dynamics with localized orbitals of accuracy
comparable to standard O(N3) simulations depends critically on the accuracy
of the atomic forces. This error is a more significant measure of global accuracy
than error on the total energy. As in standard approaches, the force on an ion
is obtained by evaluating a derivative of the energy with respect to the ionic
position. Expressed for the nonorthogonal solution Φ, the component α of the
force on atom k is given by

dE

dRk,α

=
∂E

∂Rk,α

+
N∑

j=1

δE

δφj

dφj

dRk,α

+
N∑

k=1

3∑

β=1

δE

δQk,β

dQk,β

dRk,α

. (6)

The second term on the right hand side vanishes at the ground state for
extended orbitals. If we consider that the functions φi are restricted to be zero
outside of the LRs, this term vanishes too if we solve exactly

Pj

(
δE

δφj

)
= 0, j = 1, . . . , N, (7)

where Pj is the localization projector discussed in Section 3. This is impractical
since using the left hand side of (7) — a tensorially incorrect gradient — leads
to very slow convergence[6,28]. On the other hand, using the gradient (3), we
actually solve

Pj

(
N∑

i=1

Sij
δE

δφi

)
= 0, j = 1, . . . , N. (8)

while (7) is not satisfied. However we know that the second term on the right
hand side of Eq.(6) goes to zero for large localization radius. Since this term
is difficult to estimate, we consider it as part of the error introduced by local-
ization constraints and drop it.

The third term in Eq.(6) corresponds to the Pulay forces described in numer-
ical methods using a limited basis set attached to the atomic positions. The
situation is different here since the orbitals are not explicitly attached to the
atoms. Our claim is that δE/δQk,β is usually very small and can be neglected.
This term would be exactly zero if the localization centers were minimizing E.
This is not the case for ALC and appears to be difficult to satisfy in practice.
As will be shown in our numerical results below, we claim that the choice of
localization centers does not have much influence on the total energy as long
as they are close enough to the configuration that minimizes E, i.e. the energy
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Fig. 3. Contour plot of a localized orbital in a slice through a deuterium sample at
1000 K with Rc = 7a.u.. The projections of all the atoms located within a distance
of 2 a.u. from the slicing plane are also plotted.

surface is very flat near this minimum. This can be explained by the observa-
tion that moving a localization region only changes boundary conditions for
an orbital, which is a minor perturbation for a function that goes smoothly
to zero at these boundaries (see Fig.3 for example). This means that the first
variation of the energy with respect to the localization centers is in general
non-zero but very small.

Since we neglect the third term in Eq.(6) and consider the second term as
part of the localization error, the forces are evaluated as usual by simply com-
puting the partial derivative of the energy with respect to the ionic positions
(Hellmann-Feynman theorem). In practice, these derivatives are evaluated by
computing changes in the total energy for small virtual displacements of the
ions, without the need for full self-consistent calculations. This computation
is local for each atom and thus also scales linearly with the number of atoms.

To estimate the error on the forces introduced by localization constraints, we
have carried out simulations of various systems with localization regions of
various sizes and compared the forces obtained with those calculated with
standard extended orbitals. The ALC were obtained using the algorithm de-
scribed in Section 4, while the MLWC were computed according to Ref. [26].

Our first test system is a sample of 72 deuterium atoms in a cubic cell of size
21.24 Bohr from a snapshot of a molecular dynamics simulation at 1000K 2 .
Looking at the numerical results obtained for this system (Fig.4), we observe

2 This corresponds to a pressure of 1.5 GPa.
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Fig. 4. Error in energy/atom and in forces for a snapshot of deuterium (72 atoms) as
a function of the truncation radius, centering localization regions at ALC or MLWC.
The computational cell is cubic of side length 21.24 a.u.

that the differences in energies and forces obtained by using either ALC or
MLWC are very small in comparison with the error introduced by localization.
We measured the average norm of the error on the forces compared to the
calculation with extended orbitals. The error bars show the minimum and
maximum errors measured in the sample. We also observe that both the error
on the energy and the average error on the forces decay exponentially with
the size of the localization radius. A localized orbital for this system is shown
in Fig. 3.

To investigate the general validity of the observations on the deuterium sam-
ple, we measured the errors introduced by localization constraints for various
other systems. We considered a sample of liquid water with 54 molecules at
ambient conditions, a peptide chain in solution (representing the solvent by a
continuum model[29]) composed of 14 amino acids, a sample of liquid lithium
hydride, as well as a silicon bulk cell. For the silicon cell, atoms were randomly
displaced from their equilibrium positions to have non-zero forces. The results
plotted in Fig.5, 6, 8 and 7 confirm the exponential decay law for the error on
the energies and forces. Results on perfect bulk Silicon showing an exponential
decay of the error on the energy with respect to the size of the localization
regions have also been reported elsewhere [6].

We observe that for all these systems except the silicon crystal, we can find
localization radii of reasonable sizes (7-9 a.u.) which generate errors on the
forces of the order 10−4a.u., a tolerance often used in geometry optimization.
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Fig. 5. Error in energy/atom and in forces for a snapshot of liquid water (54
molecules) as a function of the truncation radius. The computational cell is cu-
bic of side length 22.19 a.u.
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Fig. 6. Error in energy/atom and in forces for a snapshot of liquid LiH (216 atoms)
as a function of the truncation radius. The computational cell is cubic of side length
26.8 a.u.

6 Molecular Dynamics with Adaptive localization centers

Our new adaptive algorithm to define localization regions provides a general
tool to compute the electronic structure under localization constraints defined
by a localization radius only. This procedure does not depend explicitly on
atomic positions. We now propose an algorithm based on this adaptive scheme
to carry out general Born-Oppenheimer molecular dynamics with strictly lo-
calized orbitals. The basic idea is to adapt the localization centers during the
dynamics according to the algorithm proposed in Section 4, and use a sim-
ple extrapolation scheme to define a new localization region when moving the
atoms. Specifically, we use the following algorithm:

For each ionic step k, do:

13



1e-03

1e-02

1e-01

1e+00

4.5 5 5.5 6 6.5 7 7.5 8 8.5

E
rr

or
 o

n 
K

S
 e

ne
rg

y 
pe

r 
at

om
 (

a.
u.

)

Localization radius (a.u.)

error at MLWC
60.8*Exp[-1.221*r]

1e-03

1e-02

1e-01

4.5 5 5.5 6 6.5 7 7.5 8 8.5

E
rr

or
 o

n 
fo

rc
es

 (
a.

u.
)

Localization radius (a.u.)

error at MLWC
5.4*Exp[-0.885*r]

Fig. 7. Error in energy/atom and in forces for bulk silicon (216 atoms) as a function
of the truncation radius. The computational cell is cubic of side length 30.78 a.u.
The atoms are randomly displaced from their equilibrium position according to a
Gaussian distribution of width 0.1 a.u.
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Fig. 8. Error in forces for a peptide chain in solution as a function of the truncation
radius.

• Initialize trial orbitals by extrapolation from 2 previous steps:

φ
(k)
i = 2φ

(k−1)
i − φ

(k−2)
i , i = 1, . . . , N

• Initialize localization centers Qi by extrapolation from 2 previous steps:

Q
(k)
i = 2Q

(k−1)
i −Q

(k−2)
i , i = 1, . . . , N

• Optimize localized non-orthogonal orbital φ
(k)
i for LR centered at Q

(k)
i , i =

1, . . . , N until convergence criterion satisfied.
• Adapt localization centers:

Q
(k)
i =< φi|X|φi >, i = 1, . . . , N

• Move atoms according to Verlet scheme:

R
(k+1)
I = 2R

(k)
I −R

(k−1)
I + F

(k)
I (4t)2/MI , I = 1, . . . , Na
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where 4t is the time step.

Note that localization regions are adapted only once per ionic step. More
adaptations could be used if needed. Note also that in the orbitals extrapo-
lation procedure, one should take into account the new localization regions
and truncate the functions φ at nodes that are outside of the new localization
regions.

We tested our MD algorithm for the sample of deuterium introduced in Section
5. We carried out a molecular dynamics at 1000 K. Starting from an equili-
brated sample, we ran the simulation twice, once with a localization radius
of 7 a.u. and once with extended orbitals, to study the effects of localization.
We used a time step of 15 a.u. For the run with localized orbitals a conver-
gence criterion of 10−6 on the total energy change — to be satisfied in two
consecutive iterations — was used. This criterion was reached at each ionic
step after an average of 31 iterations, i.e. 31 updates for each wave function.
A tighter tolerance of 10−8 was required to conserve energy in the extended
orbitals calculation, reached in average in 17 iterations. Figure 9 illustrates
the excellent conservation of the total energy during a 1 ps run. This system
exhibits considerable diffusion as illustrated in Fig. 10. The success of this
simulation shows that the adaptive centers follow closely the dimer molecules
during the diffusion process. As expected we also observe that the atoms fol-
low qualitatively the same trajectories for some time in the 2 simulations —
the first 0.25 ps — until a bifurcation occurs.

Note that in LCAO methods, energy discontinuities occur when atoms move
in or out of a localization region[12]. In the approach presented here, this
problem is avoided since localization regions are not defined by atoms located
within a given radius, but by a region of the grid independently of the atomic
positions.

We also tested our new algorithm on a sample of liquid water at ambient
conditions. We started from an equilibrated sample composed of 64 molecules
at 300 K. Once again we compare runs with and without localization con-
straints (Fig.11) over 0.14 ps. We used a time step of 10 a.u. For the run with
localized orbitals we chose a radius of 8 a.u. and a convergence criterion of
2 ·10−6a.u. on the total KS energy at each ionic step. An average of 22 updates
per wave function was required to reach this tolerance. In comparison, we used
a tolerance of 10−7a.u. reached in an average of 15 iterations for the run with
extended orbitals. A small negative drift of 26 mHa/ps on the total energy
was observed for the run with localized orbitals. The KS energy for the run
with localized orbitals follows closely the KS energy curve obtained without
localization, showing that the two runs generate very similar trajectories.
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7 Concluding remarks

As noted by several other authors it is sometimes difficult to reach perfectly
well converged energies with localization constraints. While O(N3) iterative
solvers can usually reach total energies converged to 8 digits or more in less
than 100 iterations — at least for systems with a finite band gap and no
charge sloshing — O(N) algorithms may take much longer to converge to the
same accuracy. We observe however that slow convergence appears only after
reaching a tolerance of the order of the error introduced by the localization
constraints. This means that pushing convergence further reduces the error
by only a small fraction compared to the calculation with extended orbitals.
This is also true for ionic forces. For molecular dynamics simulations, this is
not a problem as long as this error is not systematic and does not lead to a
drift of the total energy.

One early motivation of real-space methods was their inherent parallelism.
With our real-space code MGmol[30], we were able to show an excellent scal-
ing up to 1600 CPUs — on the Lawrence Livermore National laboratory
Linux cluster MCR — for large problems with extended orbitals (O(N3)).
With the introduction of localized orbitals, this advantage remains, at least
for systems with an homogeneous spatial distribution of the electrons. In our
current implementation, localized orbitals are grouped together in sets of non-
overlapping orbitals. Each set is stored in one global array distributed over
all the processors, like an extended orbital. This way all the functions in one
set are computed in parallel. Beside issues related to implementation and the
small O(N3) part of the algorithm, a global linear scaling can be observed.

In summary, we have shown that a real-space discretization approach with
localized orbitals allows for general first-principles molecular dynamics simu-
lations. We have presented the first systematic comparison of such an approach
with the equivalent O(N3) approach. In our numerical experiments, we observe
that the total energy shows only a very small drift and thus would require a
very limited coupling to a thermostat. Global accuracy can be systematically
increased by varying both the localization radius and the grid spacing. The
error on forces and energies decay exponentially with the size of the local-
ization regions, while the accuracy of the discretization scheme is O(h4) for
the Mehrstellen finite difference stencil we use on a mesh of grid spacing h.
This makes the approach presented in this paper a genuine O(N) ab initio
molecular dynamics method with controlled accuracy.
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