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COMPARISON OF TWO UP-SCALING METHODSIN POROELASTICITY
AND ITSGENERALIZATIONS

James G. Berrymah

ABSTRACT

Two methods of up-scaling coupled equations at the mictesoaquations valid at the mesoscale
and/or macroscale for fluid-saturated and partially séddrgporous media are discussed, compared,
and contrasted. The two methods are: (1) two-scale andsuoalé homogenization, and (2) volume
averaging. Both these methods have advantages for someatjguls and disadvantages for others.
For example, homogenization methods can give formulasdefficients in the up-scaled equations,
whereas volume averaging methods give the form of the uledeguations but generally must be sup-
plemented with physical arguments and/or data in order teraene the coefficients. Homogenization
theory requires a great deal of mathematical insight fragruser in order to choose appropriate scalings
for use in the resulting power-law expansions, while volaweraging requires more physical insight to
motivate the steps needed to find coefficients. Homogenizaften is performed on periodic models,
while volume averaging does not require any assumption nbgieity and can therefore be related
very directly to laboratory and/or field measurements.idibl of the homogenization process is often
limited to specific ranges of frequency — in order to justhg scaling hypotheses that must be made —
and therefore cannot be used easily over wide ranges oférayuHowever, volume averaging methods
can quite easily be used for wide band data analysis.
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INTRODUCTION

The earth is typically probed with seismic waves in the rahgé00 Hz, with well-logging
tools in the rangd — 50 kHz, and samples of the earth in the laboratory fr2d6 — 1000
kHz. The pertinent wave speeds for water and typical solitheaaterials like quartz are,
respectively, 1.5 km/s and about 6.0 km/s. So the range otleagths of interest in the
field can vary from as much as 60 to 6000 m in the field to akelds 1.5 to 7.5 mm in the
laboratory. Clearly the main purpose of laboratory measerdés of earth materials is generally
to elucidate the physical mechanisms of wave propagatidhdrearth. But the differences
in the pertinent length scales is so great that unusual cast be taken to perform proper
interpretation of the results — taking into account all thherent problems with up-scaling.
In particular, since earth materials are notoriously logfeneous, it is very important to have
some means of studying the effects of these heterogeneiti@gaves. So up-scaling in earth
sciences applications is often a critical issue for manyartgmt applications.
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The most common approach to dealing with earth heterogef@itseismic waves is to
assume the earth is homogeneous locally, but composed of lagers (Ewing et al. 1957;
Brekhovskikh 1980). This approach can be useful for apfiina to large scale earth imaging
and earthquake analysis. But in matters where fluids in théy @ae important, such as oil
and gas exploration, hydrology, etc., the elastic apprakion is usually not good enough and
must either be supplemented or replaced altogether witle aqgpropriate choices of equations
and analysis methods. Early examples of such analysedam@iot (1941), Frenkel (1944),
Gassmann (1951), Biot (1956a), Biot (1956b), Biot (1962) Hwarks which then provided a
strong foundation for modern poroelastic analysis. Samegiviscoelastic analysis (Budiansky
and O’Connell 1976; O’Connell and Budiansky 1977) is usestidiad of poroelastic analysis,
but there are both laboratory and field data that cannot bguately explained by viscoelastic
analysis, suggesting that the full poroelastic approaelssential in such cases.

Our goal then will be to give a brief accounting of just two létmost important methods
used to do up-scaling in poroelasticity and also multisgadroelasticity. The methods we
consider are: (1) two-scale and multiscale homogenizgBomridge and Keller 1981; Auriault
and Boutin 1994; Auriault and Royer 2002; Auriault 2002)d &) volume averaging (Pride
et al. 1992; Pride and Berryman 1998; Berryman and Pride ;1@88taker 1999; Whitaker
2002; Wood et al. 2003). Both these methods have advantagesiine applications and
disadvantages for others. In a longer review, we would aistude (3) effective medium
theory and (4) mixture theory. But we must limit discussi@mehjust to homogenization and
volume averaging.

HOMOGENIZATION THEORY

A two-space method of homogenization leading to equati@wnly the form of Biot's
equations has been presented by Burridge and Keller (198i9.method has been developed
by various authors including Bensoussan et al. (1978),eK¢ll977), and Sanchez-Palencia
(1980). The method requires that the microscale of the bgégreous porous medium is much
smaller than the macroscale of most interest. The methogktersatic, leading to equations
at the macroscale from an analysis of the microscale behavioch for the present problem
involves assuming the the solid components obey lineagzptions of elasticity, while the
fluid components obey linearized Navier-Stokes equati@wsridge and Keller (1981) show
that there are actually two possible solutions to the prabl®ne solution is essentially that
of Biot’s theory of wave propagation in poroelastic mediaheTother outcome is a set of
viscoelastic equations [recall Budiansky and O’Conndll7@) and O’Connell and Budiansky
(1977)]. The small quantity, being the ratio of the microscale size to the macroscaks &z
used to characterize various scaling regimes. The diféerésading to the two quite different
results found by Burridge and Keller is that, when the scaiedosity is treated as being of
order 2, they get the Biot-Gassmann equations, whereas when ieasett as order unity,
they obtain equations of viscoelasticity instead. In thegleage of poroelasticity, the case
leading to viscoelastic equations is what is normally tetrfindrained,” meaning that the
fluid does not have sufficient time for its pressure to eldlie at the microscale throughout
the macromedium on the time scales of interest. This fattuegjuilibrate can occur due to low
fluid permeabilities, high viscosity, very high wave frequies, or combinations of all these
effects when present.

This approach involves assuming that any quargityan be treated as if it is a function of
the two spatial scales andy = x/e. The macroscale ig and the microscale ig. Spatial



gradientsV of () can then be usefully written as

VQ(x,y) = VQ(x,x/€) = VxQ + ¢ 'VyQ. 1)

Thus, the scale separation can be explicitly and simply @atted for in such gradient equa-
tions. Furthermore, each quantifycan also be treated as a functiorep$o that an asymptotic
expansion of the form

2

Q(x,y,€) = Qo(x,y) + eQ1(x,y) + %QQ(X,y) + O(€%) (2
may be written. Combining (1) and (2) gives
VQ = ¢ 'VyQo(x,y) + [VxQo(X,¥) + VyQ1(x,y)] + Ofe), 3

a result which gets used repeatedly in the subsequent @akfgrthermore, Eq. (3) already
suggests the important result that, whkaa small —i.e,, tending to zero, it must generally be
true that

vaO(xa y) = 07 (4)

which is in fact a common result of this analysis.

If we let €2 be the domain occupied by solif?,; the domain occupied by fluid, aritf ¢
be the interface between solid and fluid, then the linear&pdations for elasticity of the solid
in Qg are

—w?psuy =V -7, where 7= LVu,, (5)
the linearized equations of Navier-Stokes for the fluid are
iwpgvy =V -0y where of=—pi I +vDVvy and iwpf=-V-vi/K;.  (6)

The boundary conditions at the interfacg, s are no slip: vy = iwug, and continuity of
normal stressn- oy = n-7. The fluid and solid densities apg andp,, respectively. The fluid
viscosity isv, and its bulk modulus i€(;. The stress tensors for fluid and solid areandr,
respectively, ang; is the fluid pressureL is the fourth rank elastic stiffness tensor, ands
the operator that produces the symmetrized deviatoricgbarsecond rank tensor.

We will use a notation slightly different from that of Burgd and Keller (1981) in order to
facilitate the comparisons between these results and tfd3®t. Space constraints will not
permit us to follow the derivation of the equations furtherdn But one of the final macroscale
results of the analysis is given by

—w?(pug + psw) = Vy - (70 — épol), )

wherep = (1 — ¢)ps + ¢ps, and¢ is the porosity. The overbar indicates a volume average
over the fast variablg. The second macroscale result is

—w? [prug + I'(w)W] = —Vipo. (8)

wherel'(w) is a viscodynamic operator. The theory also shows that trezoseale stress and
fluid pressure are determined by

70 — ¢pol = JVxug + CVy - W1 9
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and
poZ—Cvx'UQ—MVx-W, (10)

whereC and M are well defined scalar coefficients adds a fourth rank tensor, all of which
arise naturally within the two-scale analysis.

When equations (7)—(10) are compared with Biot's equatismedind that the form of these
equations is identical — once we have taken care to integaret of these expressions in terms
of the corresponding expressions in the other set of equatas was done in the original pub-
lication by Burridge and Keller (1981). Thus, the two-sphoenogenization method produces
exactly the same equations as Biot found using his variatiapproach. One advantage that
the present method has is that it also produces definite fagriar the coefficients in these
equations, so — at least in principle — model calculations lsa done to produce a set of
theoretical examples to study the quantitative behaviahe$e coefficients. As far as | am
aware, this step has never been taken. It is not necessasiyte compute these coefficients
from the formulas, but it would nevertheless be an intemgstixercise in the theory to do so.

In contrast, the volume averaging methods to be discussetdats® produce the same
equations, but they do not produce formulas for the coeffis. So the volume averaging
approach is phenomenologicak., producing a set of equations whose coefficients must be
determined experimentally.

VOLUME AVERAGING METHODS
Pride et al. (1992) studied the way in which the equations afion for sound traveling

through a solid/fluid mixture can be derived from first pipies when it is assumed that the
solid is porous, but contains only a single type of minerahe Tluid is homogeneous and
completely fills the pores. Various other authors have aksmlied volume averaging both
for the simple single-constituent poroelasticity and farltirconstituent generalizations such
as double-porosity poroelasticity (Tuncay and Corapcadd95; Pride and Berryman 1998;
Berryman and Pride 1998; Pride and Berryman 2003a; Prid@amgman 2003b).

The averaging theorem

The averaging theorem used by all these authors is due tt®I$I41967) and is based
on well-known mathematics (Green’s theorem and the divergeheorem) together with the
idea that in relatively small regiongolume averages of spatial gradierits statistically ho-
mogeneous media are presumably closely relategtadients of volume average®ut care
must nevertheless be taken to account properly for behafiibe averaged quantities at points
or surfaces where abrupt changes occur. In particular, wieemguantity to be averaged ex-
ists on one side of an interface and does not exist on the sitiey an interior interface term
will contribute to the volume average of the derivative, bat to the derivative of the volume
average.

Suppose thaf) is a quantity to be averaged) can be a scalar, vector, or tensor. For
convenience of the discussion, we will assume that the giegavolume is a finite sphere
centered at positioRr, although other choices are also possible (Pride and Bamif98). We
label this volume&(x) and the surface of this volumed$). The exterior surface has two parts
081 = 0Ey+0Eq, with OE, being the part where the quantity of inter€stanishes identically
and0E(, being the part wher@ # 0. For example() could represent some physical quantity
in the pore space artlin the solid — or vice versa — depending on immediate interbst
addition to the exterior surface, there are also interiofases wherg) changes abruptly to



zero and we label such surfaceky, for interior. The interior surface is the bounding surface
for the region we will labelq, i.e,, the region wherein the quantity to be averaged is
nonzero. With these definitions, Green’s theorem gives

/VQd3x: VQd3x:/ ﬁQst+/ fi0Q dS, (12)
Q 0Eq dlg

Qq
wheredsS is the infinitesimal of the surface volume element, aagis the unit outward normal
vector from the region containing nonzego The main point of (11) is just th&atEg + 01 is
the entire bounding surface ¢fin the volumef). As an example of the meaning of this result,
consider() to be a vector quantity, take the trace of (11), and the résijlist a statement of
the well-known divergence theorem for vectors.

A second result of interest is that

V/QQd?’x:V/QQQd?’x:/aEQ f10Q dS. (12)

The result (12) follows from the fact that the volum@éx) and2(x + dx) contain virtually
the same internal surfaces (in the limi# — 0 they are obviously identical) and so these do
not contribute to the gradient.

Combining these results finally gives

/aEQ ﬁQQdS:V/QQd%:/QVQdi%x—/aIQ 1oQ dSs. (13)

Dividing by the total volumé/ = [, d*z (which is a constant scalar, since the siz&Xdé the
same everywhere) contained{ingives the averaging theorem:

V(@) =(VQ) nQQ ds. (14)

1
|4 dlg
Also note that the averagg)) is an average over the whole volume(of while we also
sometimes need to consider the partial avei@geelated to the full volume average by

(Q) = 10Q, (15)

wherevg is the volume fraction of2 in which @ is nonzero.

Finally, although this dependence is often not explicitip\wwn or even mentioned, all the
average quantities are in fact functions of the particutaniae of averaging volumg(x). In
principle, 2(x) can be as large as the sample being studied, or as small asdde$he le-
gitimacy of the averaging theorem itself does not dependl anathe size of this averaging
volume. However, the usefulness of the resulting meso- arrorscale equations does de-
pend on this choice and so some intermediate size is genpreked for(2(x). Too small of
an averaging volume implies rapid fluctuations in the qustiof interest (like the fluid and
solid dilatations), while a very large averaging volume liepall the coefficients in the equa-
tions are universal constants and, therefore, can prewefrom studying the effects of local
inhomogeneities, whenever they are present.

Note, for example, that a most desirable (but not alwaysectriconsequence of (14) is
for the final surface integral to vanish identically. Thenishing of this integral is natural in
statistically homogeneous media because the unit outwardal vector averages to zero(¥
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is approximately constant on this surface. Vanishing «f hirface integral is therefore often
highly likely in reasonably homogeneous media in 3D (avieiagver a 2D surface), still likely
but somewhat less so in 2D (averaging over a 1D curve), andnergl will not vanish in 1D
(averaging over just two points) for any but some ratheidtrimnodel problems. So volume
averaging methods should be replaced in 1D by exact methaifsas, for example, Backus
averaging (Backus 1962) for pertinent 1D applications.

In wave problems, whef is larger than the wavelength, the displacements will tend t
average to zero, which is clearly an undesirable resultderai al. (1992) provide further
discussion of criteria for choosing the size of the averggiolume. Thus, the choice of the
averaging volume is often based on the same or similar igsoesally used to pick an REV
(representative elementary volume) in other methods, leub&lieve it is useful to maintain a
strict distinction between these two concepts as the nmtaiivafor choices made are sometimes
different.

Applications

Volume averaging has been applied successfully to derivdaim of Biot's equations of
poroelasticity (Pride et al. 1992), and more recetly a wideety of other up-scaling prob-
lems in double-porosity poroelasticity (Tuncay and Coiagla 1995; Pride and Berryman
1998; Berryman and Pride 1998; Pride and Berryman 2003ageRmd Berryman 2003b).
The method is well-suited to obtaining the forms of the eipumat but needs to be supple-
mented when the values of the coefficients in the equatianseguired. The supplements can
obviously be obtained experimentally, in which case thehean be treated as a phenomeno-
logical one — like Biot's original formulation using Lagrgian variational principles. But,
being phenomenological is not a serious limitation sincenost of the theories and equations
of mathematical physics are in fact phenomenological irstree sense. There are some cases
in poroelasticity where various other theoretical meamduding some of those already men-
tioned here, such as effective medium theories and pergaflihomogenization theory, can be
applied to obtain estimates of the constants (Mavko et &808;1Milton 2002). And in some
special cases, exact results are known (Berryman and MiB8id; Berryman and Pride 2002)
for a two-component solid matrix. In these situations trebems can be solved explicitly and
quite easily. In most other situations, it remains an opegstion whether the coefficients in
the equations can be determined accurately either by exaohwe well-controlled but approx-
imate means.

CONCLUSIONS

Two methods of up-scaling coupled equations at the miclesoaequations valid at the
mesoscale and/or macroscale for fluid-saturated and ihastzdaurated porous media have been
discussed, compared, and contrasted. The two methods (Agie/0-scale and multiscale ho-
mogenization and (2) volume averaging. Both methods havardages for some applications
and disadvantages for others. Homogenization methodsiearfaggmulas for coefficients in
the up-scaled equations, whereas volume averaging metfieelshe form of the up-scaled
equations but generally must be supplemented with phyaiggiments and/or data in order
to determine the coefficients. Homogenization theory megua great deal of mathematical
insight from the user in order to choose appropriate scalfiog use in the resulting power-
law expansions, while volume averaging requires more physansight to motivate the steps
needed to find coefficients. Homogenization often is penfet on periodic models, while vol-
ume averaging does not require any assumption of perigdiod can therefore be related very
directly to laboratory and/or field measurements. Vajidit the homogenization process is
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often limited to specific ranges of frequency — in order tadifushe scaling hypotheses that are
made — and therefore cannot be used easily over wide randesjaéncy. However, volume
averaging methods can quite easily be used for wide bandasaigsis. So, we learn from
these comparisons that a researcher in the theory of petin@haand its generalizations will
benefit from being conversant with more than one of the methodolve problems generally.
In this short review, we have not attempted to cover all mashitbat might be of interest and
value for the applications considered. In particular, weehavoided discussion of ensemble
averaging methods as well as other methods that might tekdatails of the spatial statistics
of the complex heterogeneous media directly into accournpravide additional information
about important corrections to the average equations.riRpoblications by Drugan and Willis
(1996) and Drugan (2003) suggest that such methods may alsbdseat value in the future.
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