EEEEEEEE
EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

UCRL-TR-203199

Fermion Monte Carlo
Calculations on Liquid-3He

L. Colletti, F. Pederiva, M. H. Kalos

March 26, 2004



Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.



Fermion Monte Carlo calculations on liquid-*He

Leonardo Colletti*
INFM and Dipartimento di Fisica, Universita di Trento, I-38050 Povo(TN), Italy and
Department of Computer Science, Free University of Bolzano/Bozen, 39100 Bolzano, Italy

Francesco Pederival
INFM and Dipartimento di Fisica, Universita di Trento, I-38050 Povo(TN), Italy

Malvin H. Kalos!
Lawrence Livermore National Laboratory, University of California, Livermore, California 94551
(Dated: March 24, 2004)

Methods and results for calculations of the ground state energy of the bulk system of *He atoms
are discussed. Results are encouraging: we believe that they demonstrate that our methods offer a
solution of the “fermion sign problem” and the possibility of direct computation of many-fermion
systems with no uncontrolled approximations. Nevertheless, the method is still rather inefficient
compared with variational or fixed-node approximate methods. There appears to be a significant
populations size effect. The situation is improved by the inclusion of “Second Stage Importance
Sampling” and of “Acceptance/Rejection” adapted to our needs.

I. INTRODUCTION

Powerful Monte Carlo methods™? can provide esti-

mates of ground state properties of bosonic many-body
systems that are not subject to uncontrolled approxima-
tions. This means that results are exact within statistical
and systematic errors that can be reduced by extending
the stochastic sampling, i.e. the length of the computer
run, and, for example, by increasing the size of the sys-
tem.

But the mapping of the many-body quantum wave-
function to a probability distribution function faces se-
vere challenges when considering the global antisymme-
try that a fermionic wavefunction must satisfy. This is
the essential source of the “fermion sign problem”3*.

Why is the fermion problem difficult within the frame-
work of Diffusion or Green’s Function Monte Carlo?
There are several somewhat distinct ways of describing
the challenge; understanding them is the key to overcom-
ing them.

We are required to find solutions to the Schrodinger
equation that satisfy the Pauli principle— i.e., that the
solution be antisymmetric. When the potential does not
depend upon spins, that means that the solution changes
sign on the interchange of the coordinates of like-spin
particles. In turn that poses two difficulties: the first is
that the solution is not everywhere positive, a situation
that is not natural for diffusion or for Monte Carlo. At a
formal level, we may answer this by introducing random
walkers that carry signs, so that, at least in principle, a
solution that is sometimes negative can be encompassed.
As we shall see, that is not the end of the story. The
second and deeper concern is that the Pauli principle is
a global constraint that connects the solution at points
far apart in configuration space. Diffusion Monte Carlo
is local- the stochastic dynamics depends entirely upon
the potential and the trial function evaluated at the po-

sition of a walker. Imposing a global constraint without
introducing approximations is a challenge. One may re-
gard the usual “fixed-node constraint” as just such an
approximation.

If one simply carries out Diffusion Monte Carlo and at-
tempts to extract (by projection) information about the
antisymmetric solution, one encounters an exponential
decay of signal relative to noise in the Monte Carlo re-
sults. This is a consequence of the asymptotic dominance
of the symmetric ground state in the distribution of the
walker positions. To counter this effect, it is necessary
to cancel positive walkers against negative walkers. But
this can only be done exactly if they meet. As is well
known, independent random walkers meet with proba-
bility zero in domains greater than two dimensions. For
our computations, in which very large dimensional spaces
are used, the walkers must be correlated in a way that
permits them to meet with some finite probability.

Finally, one must take account of the following gen-
eral result: given that we are using positive and negative
walkers, and if the stochastic dynamics used are invariant
under the interchange of the signs, the asymptotic den-
sity of walkers will be similarly invariant. In that case,
the asymptotic value of any projection with an antisym-
metric function will be zero. Therefore the dynamics for
plus and minus walkers must be different in some way.

There is no unique algorithmic approach to these dif-
ficulties. The methods that we have adopted, and which
are the basis of the results reported in this paper, are
based on a population of pairs of positive and negative
walkers which is generated using Diffusion Monte Carlo
modified in the following ways:

(1) Different guiding functions are used for walkers of
different signs; the two functions map into each other on
application of an odd permutation applied to coordinates
of like-spin particles.

(2) When walkers of different signs branch differently
(as they must) new pairs are created by applying the



nearest pair permutation of like-spin particles to that
walker with the greater weight.

(3) The “diffusion” steps of the walkers in a pair are
correlated by reflecting one of the vectors of Gaussian
random variables in the hyperplane that is the perpendic-
ular bisector of the segment that connects the positions
of the two walkers. This guarantees that the walkers can
meet in any number of dimensions.

(4) Walkers in a pair that come close can be canceled in
a way that guarantees that the future value of any projec-
tion with an antisymmetric function is exactly preserved.
Thus there is no bias involved in this cancellation. Since
the marginal walk for either member of a pair is other-
wise just that of Diffusion Monte Carlo, the method has
no bias associated with its fermion character. The usual
time-step and population control biases remain, but they
can be controlled in standard ways.

(5) We have been able to adapt the technique of
“acceptance-rejection” to our method. We will compare
computations with and without this feature.

(6) We have also experimented with a “Second-stage”
importance sampling scheme, in which a function of the
coordinates of both walkers of a pair is used to modify
the distribution of the walkers.

More technical details on these points will be presented
in Sec. II. Results obtained with and without items (5)
and (6) are discussed and compared in Sec. III, along
with experimental and fixed node Monte Carlo results.

II. THE METHOD

Let us consider a system of NV atoms of which the coor-
dinates of the ith particle are represented by a tridimen-
sional vector rj. The atoms interact with one another
via two- and three-body forces summarized by a poten-
tial V(r1,...en). Our primary interest is in the ground
state energy Eg of the system, for which we need to solve
the many-body Schrédinger equation.

Simple Diffusion Monte Carlo follows the evolution in
imaginary time; using atomic units, this equation trans-
lates into

IV VR) - Br| (R ) = -2V
2 or

which is a diffusion equation (the kinetic part gives
the diffusion operator) and absorption (associated with
the potential energy), solved by iterating an appropri-
ate Green’s function G(R,R/’, §7) on the 3N-dimensional
vector R'(x1, x2, ...,23n) that represents a whole config-
uration (a “walker”) of the system,

DR, T+ 67) = / G(R,R',67) (R, 1)dR'  (2)

A formal solution of (1) can be written expanding
(R, 7) in a complete set of eigenfunctions as

Pp(R,7) =D Nie "FiEr)g(R) (3)

where F; are the energy eigenvalues corresponding to the
eigenfunctions ¢;(R) of the Hamiltonian, while Er is a
constant shift that has been subtracted for convenience
from the total energy in order to mantain stable the pop-
ulation of walkers that undergoes the diffusion and selec-
tion process symbolized by (1). N; are expansion coeffi-
cients that depend on the initial conditions.

At each step (R, 7) is thus represented by an ensem-
ble of discrete points {R,,} that are then advanced and
reproduced or removed according to G(R, R/, 7).

In the limit of sufficiently long imaginary-time 7, only
the term with the lowest energy survives in (3)

P(R,7) = Noe TFo—Er) g (R) (4)

and, if Ex = Ejy, the walkers {R,,} are sampled from a
stationary probability density distribution that maps the
symmetric, bosonic ground state ¢o(R.).

A. Importance-sampled DMC

In order to improve the efficiency of this filtering of
the solution, especially for systems with unbounded po-
tential, one introduces a known trial wavefunction 1 (R)
with the aim of changing the sampling process in a known
way! while preserving averages.

17 (R) biases the density of the walkers {R,} to make
them more likely to contribute to the future of the ran-
dom walk. Hence one considers the new distribution
function

fR,7) =9¢rR)P(R,7) ()
with ¥ (R, 7) as in (3) and (1) becomes
AV [+ B (R) ~ Erlf + 3V [V In pr (R)] =
6
where ©
_ Hyr(R)
B = ®) "

is the local energy, with H the Hamiltonian operator.
Eq. (6) still represents a diffusion process for the {R,,},
whose moves have a Gaussian distribution modified by a
drift step that pushes the distribution towards the regions
where ¢ (R) is larger.

After equilibration is reached, the distribution sampled
is Y7(R)do(R) and the energy estimator is then calcu-
lated as an average of the local energies corresponding
with the N, sampled walkers {R,,}
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For the fermionic case, a trial function needs of course
to be antisymmetric under the exchange of two like-spin
particles, thus it has to be orthogonal to the state ¢o(R)
that is naturally filtered out by the DMC process. Hence
the fermion catastrophe, i.e. decay of the overlap of the
random-walk generated population ¢o(R) with ¢ (R),
and the need of uncontrolled approximations like fixed
node DMC that gives only an upper bound to the energy®
or the transient released node method®” that is essen-
tially unstable.

B. Pair-based, Importance-sampled FMC

In our FMC algorithm this concept of trial function
is split into two separate auxiliary functions: a strictly
positive guiding function ¥¢(R) whose role is to modify
the random walk, while an antisymmetric trial function
¥r(R) that should resemble the solution as closely as
possible is used to project out quantities of interest, such
as the local energy Er. Thus the density of walkers (5)
generated by the walk will be

= Va(RR,T) " va(R)6(R)  (9)

fR,7)
while the energy estimator (8) after equilibration is now

ZNw Hyr (Rm)
Nu 7 (Rm)
2m” Ga(R)

Ey =

We separate now the set {Rp} of walkers into two sub-
sets of walkers {R} }, {R,,} that respectively add or sub-
tract their contributions to statistical expectations such
as (10), which becomes

ENP [ﬁfﬁT(Ri) _ ﬁ¢T(RL)]
By = = L va(Ri) Yg (Ram) (11)
ZNP [wnm _ wT(R;)]
m | pa(RE)  Ya(Rnm)

where N, is the number of pairs of configurations that
enter the averaging. If the signed walkers independently
sample the configuration space according to the distribu-
tion (9) they will lead to the fermion decay. In particular
the denominator of Eq. (11) will be unstable since the
{R}} and the {R,,,} will be equally (symmetrically) dis-
tributed, averaging their contributions around zero.

The incorporation of a correlation between pairs of
walkers in the random-walk process has been shown to be
effective in avoiding this decay of the signal-to-noise ra-
tio that regularly occurs in a fermionic DMC®?. Before
introducing correlation, we first start by distinguishing
the signed walkers by means of different 1g’s which we
call ¢é§ respectively.

C. The Guiding Functions

The usual role of a guiding function in a Diffusion
Monte Carlo scheme is that of importance sampling in
configuration space, thus allowing a more efficient cal-
culation. In FMC we introduce two functions 97 which
bias differently the populations of plus and minus walkers
and thus act as symmetry breaking fields.

The ingredients of our guiding functions are the usual
ones for Quantum Monte Carlo studies of many-body sys-
tems: Slater Determinants DT of like-spin single parti-
cle wavefunctions, and two symmetric Jastrow products,
JS(R) and JA(R) with different parameters.

We now construct a function antisymmetric under per-
mutation of atom labels

Ya(R) = J4R)D"(R)D*(R) (12)

and a symmetric one
¥s(R)

Finally, the guiding functions themselves are con-
structed by combining (12) and (13):

= J5(R) (13)

= \/‘ﬁ?s‘(R) + 294 (R) £ cpa(R) (14)

with ¢ a small and adjustable parameter. The functions
2/13 are positive for any R, as is necessary for an impor-
tance function.

For an odd permutation P of particles in a configura-
tion R, one has

V& (PR) = 95 (R) (15)

so that the biased distributions of the two signed walkers
map into each other.

In the limit of small ¢, the functions ¢Z(R) are domi-
nated by 15 so that RT and R~ are then preferentially
drifted towards each other.

The orbitals of our Slater determinants are

Xll'(i — e’ik~ |:ri+/\B Zj;éi n(rij)rij] (16)

with 7 the standard backflow function'®

o= (580) " en [ 52])




and the Jastrow products are

AA’S

5 zle(l) G|,

(18)
providing two-body correlations via a pseudopotential of
the McMillan type

JAS(R) =exp |- ZU(TU) -

i<j

1 (pAs\ ™
un =3 () (19)
and the three-body correlations via the “triplet” term
G(1) = &(ru)rn (20)
i#l

R mA,S SA S TL?’S

r— t r— s

&(r) = ( 7 t) exp |— (#) . (21)
t wy’

t

Rp and R; in the long range factors of (17) and (21)
respectively, are cut-off lengths set equal to half of the
simulation box size [

SO

with p the density of the system. Ap and )\f S
(strengths), Sp and S (centers of the Gaus-

. A . .
sians), wp and w;"® (widths of the Gaussians),
A A .
mA’S,mt ’S,nt ’S,mB,nB are other optimized parame-
ters.

The diffusion process described by Eq. (6) for the dis-
tribution (9), is generalized as follows: the two 17 are
applied separately to drift the walkers of a pair from their
old positions R}, R

Vys(R2)
Vs RZ)
In addition, while the standard DMC algorithm would

have the configurations diffuse independently, we intro-
duce correlation into the process.

RT = RE + 267 (23)

D. Reflected Correlated Dynamics

The motivation for introducing a correlation among
the random-walks is that of controlling the growth of
the symmetric ground state with respect to the fermionic
state. We use the cancellation methods first introduced
by Arnow et al.''. But this cancellation, which involves
subtracting the Green’s functions of the plus and minus
walkers, has a range of about the square root of the time
step. Walkers must come within this range for the can-
cellation to be effective, and in many dimensions, the

chance that two walkers will do so is exponentially small.
As pointed out by Liu, Zhang, and Kalos?, appropriate
correlation among walkers can ensure efficient cancella-
tion.

In particular, we will consider pairs with their Gaus-
sians correlated as follows: one vector, say UT for the
plus walker, is generated in the usual way for one of the
walkers, that is as a vector UT with 3N Gaussian random
variables each of mean zero and variance §7. The other
vector U~ is obtained by reflection in the perpendicular
bisector of the line segment Rj -Rj.

This choice of correlation'? guarantees the meeting of
the two components of a pair in any number of dimen-
sions, so that cancellation is efficient.

It is important to point out'? that the marginal dy-
namics of either walker is, except for cancellation, the
same on the average as that of a free one walkers, guar-
anteeing that averages over the walks are unbiased.

The diffusion steps UT of R} and U~ of R, are de-
scribed by

R} = R} +U"
R, = R; +U" (24)
where
R} -R;\ R/-Rj
U=U+—2<U+- <4 ‘i)- L. (25)
|Rd _Rd| |Rd _Rd|

Seen as a whole, the short time approximation to the
Green’s function that solves the diffusive part of Eq. (6)
advancing the single walker from an old position R, to
a new one R, by taking the drift (23) and the diffusion
(24) steps, is

1 + i VUERE)
~@ [ReRE -
&Ry

GRE « RE,67) = & (26)

(2méT)3N/2
while the absorbtion rate equation nature of Eq. (6) is
accounted for by the branching stage that follows.

E. Branching of Pairs

For each pair, the branching of a walker is correlated
with the behavior of its partner via a ratio 7, of the Gaus-
sians that explicitly takes into account the possibility of
an overlap of the future positions of the walkers of the
pair, as shown in Fig. (1) r, is given by

(Rz—RY)
OXP |~ e

_(Rﬁ—Rf)]’

rg(Ry « R, RT) =
exp [ 20T

(27)

and is a measure of the cancellation degree for the pair.
It is straightforward to prove that

ry(Ry < RS, R)) =7, (R, < R, ,RY). (28)



FIG. 1: Scheme of reflected correlated dynamics. The dif-
fusion step U~ is built by reflecting U with respect to the
perpendicular bisector of the line segment R}' — R, . The
branching of the new walkers R, R, will reflect the rela-
tive probability of diffusing to each other’s new position in
the configuration space (as suggested by the dashed lines).
Dotted lines represent the drift step.

When the two walkers of a pair have the same prob-
ability of moving to the same new position their future
contributions at that point cancel. By introducing the
ratio (27) one removes these unproductive walkers from
the population.

We introduce the generalization of the usual branching
factor:

BE(RY) = ¢ 07[Er(RF)—Ex] (29)

where the local energy (7) is now calculated by using one
of the two guiding functions,

HyE(RH)
BLRY) = “5Ray

The branching weight for each walker in the pair now
becomes:

(30)

+ + + +
w(R*) = B*(R*) max |0,1— ﬁiﬁﬁii"g Zigt;
G
(31)

where a “crossinglocal energy” and a “crossing branching
factor” have been defined respectively as:

7T (RE
P = T (52)
B;I:(R:I:) — e—éT[Ez(Ri)_ET]‘ (33)

Eq. (31) accounts for the fact that, when a walker is
in the region where it contributes more, one has 1% (R*)
greater than 9% (R*) and the weight is then close to B*.
The presence of the “max” in the expression for w(R*)

assures that when the difference of Green’s functions at a
point is positive, then only plus walkers can be generated
there (and similarly for minus walkers.)

The factors w(R*) are used for weighting contributions
of the walkers to averaged quantities, while N,,, copies of
the pair {R;,,R;,} are advanced together to the next
step, where

Np = int[w? + U 1] (34)

where Up 1] is a random number uniformly distributed
between 0 and 1, and

w? = min[w(RT),w(R7)]. (35)

The difference between the weights of the two walkers
is retrieved in a “repairing” step, described in the next
section. It is evident that when for a pair r, = 1 (i.e.
overlapping oppositely-signed walkers RT = R7), the
weight wP? of the pair, and thus the number of its children,
will be zero.

F. Repairing

Our method comprises a random walk of pairs of signed
walkers. For it to be unbiased, all weights w(R*) gener-
ated in Eq. (31) must be reflected in walkers included
in the population. As indicated above, some weight,
max[w(R1),w(R™)] — minfw(R*),w(R7)] is lost in gen-
erating new pairs. That is retrieved by “repairing”, that
is by generating a new pair using the walker whose weight
is larger and an odd permutation P of like-spin parti-
cles applied to that walker. Since each of these walk-
ers contributes exactly the same amount to any quantity
projected with an antisymmetric test function, we must
apply another factor of one half. That is,

R, = PR (36)
Ry, — {RI, R} (37)

The permutation P is taken to be that pair exchange of
like-spin particles that minimizes the Euclidean distance
between the original and permuted walkers. Nyepgired
copies of the new pair is then forwarded to the next time
step, with

Nrepaired = int[wdiff + Z/{[O,l]] (38)
where

W (RY,R,) = 05 [w(Rea) —w(@®RF)].  (39)

G. Projection

Quantities of interest, such as the total energy, are
projected out by using a trial wave function. In our FMC



method that role is played by the antisymmetric function
®a of Eq. (12). To account for the branching process,
each pair may contribute once weighted with w(Rt) of
Eq. (31). Eq. (11) then becomes:

N, [Hya(RY) +y _ Hya(Ry) -
B — Yom [wc(Rm wlRn) — S w w(Rm)] (40)
Ny [wa(RA +\ _ Ya(Rm) -]
2om [wc(Rx)“(Rm) wG(R;)“’(Rm)]

Alternatively one can count multiple children walkers
each with weight one.

To this energy a constant value due to the tail cor-
rection of the potential is then added for each walker
contributing to the averaging.

H. Acceptance/Rejection

Acceptance/Rejection algorithms have been shown to
improve convergence in Monte Carlo algorithms®. For
diffusion Monte Carlo, this improvement achieves an er-
ror of second order in the time step. Use of the simple
short-time Green’s function is first order.

1. Weight-correlated Acceptance/Rejection scheme

The likelihood @ of a move to a new position in the
configuration space R¥ — R for each of the two walkers
of a pair is given by the ratio of the Rf — R* back-
diffusion Gaussian to the RF — R forward-diffusion
Gaussian, multiplied by the ratio of the intensities of the
guiding function in the new and old position:

+ gt
[ we T
wpmepee [T
= |¢$(R§t)|2 - [Ri,Ri,V'pi(R?)]

e " e ®y)

(41)

for which the acceptance probability of the move would
be

QR; - R})

ARE - RE) = min[1, Q] (42)

meaning that if A > Ujg 1) the move to the new position
is accepted, while if A < U]p,1; the move is rejected and
the old position is used again as the new one.

The weight associated with the accepted walker is then
given by Eq. (31). On the contrary, in case of rejection,
the old walker is associated with weight one.

Besides this scheme, adapted from standard DMC
codes to our correlated pairs, for which the correlation
enters just in the weight of the accepted/rejected walker,
we added, consistent with the correlated walker scheme,
a dynamic-correlated acceptance-rejection, which is de-
scribed in the next section.

In order to avoid wasting unnecessary computer cycles,
this modification is carried out only when the ratio (27)
of their Gaussian steps is of considerable magnitude (at
least 102).

2. Dynamic-correlated Acceptance/Rejection scheme

In order to include the “cancellation” of the opposite-
sign partner in the acceptance of a walker move, in the
same fashion as in Eq. (41) we introduce a “crossing
acceptance probability”, i.e. the probability of the mi-
nus(plus) walker to arrive at the same position as the
plus(minus) partner, by calculating

_ I:R:F _REI_ V¢§ (R% ) ]

n o E REY

_ WERE)P e v
»E(RT)|? _[ + q:_wpg(nff)]
PEROP [ nr-SeD

(43)

Q.(RT —» RY)

for which the acceptance probability would be
A, (RF - RE) = min[l, Q,] (44)
In this case, Eq. (31) becomes

A, BE(R%)
+ + + + z x n
w*(Rr)=B*(R:)max (0,1 - — ( n)r

8. Age-dependent Acceptance

Persistent walkers are those in deep local minima in
the sampling function so that they move away with very
small probability. To avoid the effect of long-standing
stale configurations in the Acceptance/Rejection algo-
rithm, an age-enforced acceptance factor has been pro-
posed by Umrigar, Nightingale and Runge'3. This con-
sists in noting the history of a walker, eventually raising
its acceptance probability if it has not been moved after
some given number of steps (“agemax”). The acceptance
probability Eq. (42) is increased by a factor

Aoe(age—agemaw) (46)

where age is the number of steps for which the walker
did not change its position and Ay is an adjustable pa-
rameter.

I. Second-Stage Importance Sampling

In analogy to the concept of importance sampling'4, we
introduce “Second Stage Importance Sampling” (SSIS)
to improve the efficiency of the method.



The optimum importance function gives the expected
contribution— here of a walker pair— to the quantity of
interest— here the overlap with an antisymmetric test
function. Clearly this is not completely captured by the
functions 17 that we have introduced to guide the walk-
ers. They do not show any dependence on the separation
of Rt and R~ which is important in the cancellation
process, or any other joint dependence on the positions
of the walkers. We therefore introduce the possibility of
using an arbitrary function f(R*, R ™) to account for the
full importance, and include an extra branching process
based on ratios of f before and after a time step. Let

5
wP — WPt (47)
s
. . fS
w5 I (48)

o

where f2 and f2 are the SSIS functions respectively for
the old and new position of the pair. The new weights
thus obtained are used in order to determine the num-
ber of replicas of the pair as in (34) and of the repaired
walker as in (38), while the factor 1/f5 alone is used
with the weights in (40), in order to “unweight” the con-
tribution brought by the pair in the previous step. We
experimented with two different forms.

1. Denominator-weighted sampling

In a first version of the SSIS, an S-shaped function of
the pair’s denominator D, namely

D-D
V(D -=D)2 + AD?

fig(Rj,Ro_)Z(l—e)( >+1 (49)

where D is approximately the average denominator for
a pair, € a small quantity and AD the width of a range
of significant values for D. This function works in the
following way: if a pair improves the value of its con-
tribution to the energy denominator, D, with respect to
the previous step, its branching weight is increased by
a factor proportional to the ratio of the values of this
function.

2. Euclidean-distance sampling

A second version of SSIS measures the Euclidean
distance between the walkers of each pair in the 3N-
dimensional space of the configurations:

3N %
fERYRT) = [Z(w? - w;)"’] (50)

i=1

Thus walkers that move apart will branch more than
walkers that come together reflecting their smaller likeli-
hood of cancellation.

III. RESULTS

A. Common things about the runs

We developed a MPI-parallelized Fortran code that
runs on IBM SP machines. Most of the runs were made
with 192 pairs of walkers distributed among 16 proces-
sors. At each step the distribution of pairs was rebal-
anced among the processors.

In order to simulate bulk ®He at zero temperature
we considered 54 atoms with periodic boundary condi-
tions at the equilibrium density 0.2730~3, where ¢ is the
“Aziz” unit (0 = 2.556A4). The interaction used was the
HFDHE2 Aziz potential'®.

The experimental energy'® for liquid-3He at the equi-
librium density is —2.47 + 0.01 K per atom.

B. Analysis tools

We express the length of a run in terms of the ratio of
the root mean square of the diffusion length of a particle
to the mean spacing r between particles'”

3ﬁ(5TNt
g=Y2m o (51)

THe3—He3

where 7 is the length of a step in imaginary time. When
g equals one, Nyeps07 corresponds to a relaxation time,
Trei- Thus the lengths of runs in what follows will be
generally expressed as multiples of this relaxation time
and it is normally assumed that the calculation is equi-
librated after one relaxation time at which point we will
start to gather statistics.

As an example, for a time step of 6 x 1075 K1, 7,4
would be reached after about 9.5 x 10* steps assuming
100 % acceptance).

Another measure of relaxation time uses the energy
gap between the symmetric state to which the common
DMC algorithm spontaneously evolves and the antisym-
metric state we seek. For He systems the difference in
energy between the *He (E,) and the *He (FE,) cases is
1K per particle. Then for our 54 particles system

1 1 _1
Trel = B, ——Ea = —54K = 0.018K (52)

As an example, with a time step of 6 x 107 K1, the
last relaxation amounts to about 300 steps. This would
be the valid range in which one could perform a transient
estimation calculation.



Because the denominator is not always positive, a great
deal of care is needed to perform reasonable statistical
analysis. We have relied on reblocking into large groups
and sought errors that are independent of the blocking
and when the block denominators are large and positive.

C. Stability

In analyzing the stability we refer to the “cumulative
denominator” of the calculations, which is the sum of the
contributions of each pair of walkers to the denominator
of the local energy (11) over the steps, so that at a given
step the partial denominator will be

Np

-y

m=1

Rt
BT

Ya(R,,)

- w_(R_)w(an) (53)
G \tvm

where IV, is the number of pairs of walkers. When walkers
are in favorable pockets, D will be positive, and the sum
of D’s over the steps (the “cumulative denominator”) will
be a growing function of time. By setting ¢ = 0 in gbg,
i.e. annihilating the antisymmetric contribution in the
importance sampling functions, we restore the symmetry
between plus and minus walkers and restore the usual
signal to noise decay.

We have investigated the stability of the calculations
with respect to the “mixing” factor ¢ which determines
the amount of asymmetry introduced in the guiding func-
tions.

Cumulative denominators are shown in Fig. 2 for dif-
ferent values of c. The runs are stable in the long term
for a wide range of ¢, spanning orders of magnitudes
(10723 — 10722). Demonstrating stability for a much
smaller value of ¢ (10~ 2%) presumably needs a longer run.
On the other hand, it could seem strange that for a big-
ger ¢, namely (1072!) the run is not stable as one might
expect, in which case we should recover the fixed node
limit. This is due to the enhanced role taken by the
zeros of the antisymmetric part of the guiding function
that leads to uncontrolled numbers for walkers close to
the nodes of the antisymmetric part. This also explains
some big fluctuations in runs with ¢ smaller but still af-
fected by the nodes of ¥4. One could presumably cure
this by devising better guiding functions.

D. Eigenvalues

In discussing the results of our code for the eigenvalues,
it is important to remember that the current method suf-
fers from a dependence on population size that is much
larger than in standard DMC. The reason for this lies
in the fact that branching is determined primarily by
the local energy of the guiding functions, ¢<3§- These are
not good approximations to eigenfunctions, in complete
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FIG. 2: Stability of the FMC runs for different values
of the mixing factors ¢. From top to bottom: ¢ =
107%5,1072%,107%2,10™ 2!, Fluctuations for big ¢ are due to
an increasing importance of the nodes of 14, while fluctua-
tions for small ¢ indicate cancellation between contributions
of R*. Acceptance/Rejection but no SSIS have been included
in all these runs.

TABLE I: FMC results with respect to parameters used. Note
that no extrapolation to zero time step has been calculated.
Bottom line: fixed node result.

N, ¢ érin K~' A/R SSIS length in 7,y E(AE)in K
192 10°”® 6x107° yes denom 16 -2.24(3)
192 1072® 6x 107 yes mo 20 -2.26(13)
192 1072 6 x107° yes eucl 11 -2.215(12)
192 107 6x10™° no denom 25 -2.24(14)
192 1072 6 x 107 yes denom 25 -2.38(3)
192 FXN 6 x 107° yes denom 10 -2.369(2)

contrast to DMC. If all walkers had a multiplicity of ex-
actly unity, then only one walker would be needed; the
population-size bias increases with the variance in the
branching multiplicity. The runs reported here have a
rather small average population of 192 pairs.

Table I shows average results for the various runs. In
particular it is shown that even with a small popula-
tion of 192 pairs, a long FMC run with SSIS and Accep-
tance/Rejection procedure gives results that are compa-
rable with the fixed node ones.

E. Dependance on ¢ parameters

It is well known that the quality of Quantum Monte
Carlo computations are strongly dependent upon the
quality of the trial wavefunctions. The results of our
FMC method, though theoretically independent of the
Y7 and g, presently shows substantial dependence on
the accuracy of the trial and guiding wavefunctions.

Parameters used in the symmetric and antisymmetric



TABLE II: Parameters used in the guiding and trial wave
functions.

Jastrow 2-body b m
a 115 5
¥s 115 5
Jastrow 3-body R; At St wy my nt
Pha 2.87 -12 0.85 0.5 3 2
s 2.87 0 0.85 0.5 3 2
Backflow Rp AB SB wp mp N
Pa 2.87 1 0.85 0.5 3 2
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FIG. 3: Effect of the amount of antisymmetry in the guid-
ing function. Top: cumulative denominator; Center: cumu-
lative energy; Bottom: cumulative acceptances for RT R™.
This runs have been obtained with Acceptance/Rejection,
denominator-weighted SSIS and §7 =6 x 107°.

terms of the guiding function are shown in Table II.

The parameter ¢ governs the degree of antisymmetry
in the guiding functions.

In Fig. 3 we compare two runs that differ only by the
value assigned to ¢, and share all the other features, like
the inclusion of Acceptance/Rejection and SSIS-denom.
procedures.

F. Effect of Second Stage Importance Sampling
1. Denominator-weighted sampling

For the parameters appearing in the function (49) we
generally took € = 0.1, D as the average denominator
in a long run without SSIS and AD as two times D.
Fig. 4 shows the same calculation performed with and

without SSIS. Both the runs have been obtained with

2e+2 T T T

- ——

P NP

,,,,,,,

| |
1.5e+06 2e+06

0 5e+05 1le+06

FIG. 4: Effect of the SSIS-denom. on the calculation. Top:
cumulative denominator; Center: cumulative energy; Bot-
tom: cumulative acceptances for RT, R~ (they coincide for
the non-SSIS run). These runs have been obtained with
denominator-weighted SSIS, 67 = 6 x 10™° and ¢ = 10~ .

¢ = 10~% and applying Acceptance/Rejection. The pres-
ence of SSIS introduces a difference between the RT, R~
acceptances that remains to be explained. Extrapolation
of energy data for these runs gives —2.26(13)K (A/R
only) and —2.24(3)K (A/R and SSIS), indicating that
this form of SSIS is indeed more efficient.

2. Euclidean-distance sampling

Fig. 5 shows the same calculation performed with and
without SSIS. Both runs have been obtained by applying
acceptance/rejection, and use the same time-step. but
different ¢ values: (¢ = 10723 without SSIS, ¢ = 10722
with SSIS). Extrapolation of energy data for these runs
gives —2.26(13)K (A/R only) and —2.215(12)K (A/R
and SSIS), indicating that in this case too, if we take
in consideration the lengths of the runs, the presence of
SSIS tends to improve the efficiency.

A comparison between calculations which differ only in
the SSIS functions is shown in Fig. 6. The disparity in
length does not allow a definitive comparison. Neverthe-
less the Euclidean-distance sampling seems to improve
the efficiency in the accumulation of the denominator,
reducing at the same time the overall acceptance ratio.
It is worth noticing that both SSIS functions generate
a gap in the acceptance ratios for positive and negative
walkers. Though the runs share the same parameters
(c=1x10"22, 67 = 6 x 10~°) the denom-SSIS one yields
too a much better estimate for the eigenvalue, —2.38(3)
vs. —2.215(12).

G. Effect of Acceptance-Rejection

Fig. 7 shows the same calculation performed with and
without Acceptance/Rejection. Stability of the denomi-
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FIG. 6: Same run repeated with different SSIS functions.
Top: cumulative denominator; Center: cumulative energy;
Bottom: cumulative acceptances for R¥, R ™. This runs have
been obtained with ¢ =1 x 10722 and é7 = 6 x 1075.

nator is good in both cases (SSIS-denom has been used),
but the run without A /R suffered substantial fluctuations
in the partial energy, complicating the reblocking proce-
dure, but yielded —2.24(14) K, whereas the A/R proce-
dure gives less fluctuations and a much better estimate
—2.33(3)K.

We have to note that the event of a dynamic-correlated
acceptance has been in general very rare.

A result that emphasizes the difference between the
usual DMC method and ours is that stale configurations
show up regularly as a common feature of our simula-
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FIG. 7: Effect of the Acceptance/Rejection procedure on the
calculation. Both runs included the SSIS-denom. function.
Top: cumulative denominator; Center: cumulative energy;
Bottom: cumulative acceptances (for the A/R run only), R*
(solid), R~ (dotted) The two runs share the same parameters
for 1¢ (in particular, ¢ = 10~2?) and have been obtained with
d7 = 2x107° (SSIS only) and 67 = 6 x 10~° (SSIS with A/R,
respectively).

tions, with ages easily reaching 80-100 steps, while it
has been noted!® that in DMC studies of molecules ages
rarely reached 40 steps and thus the acceptance probabil-
ity enhancing procedure described in Sec. (IIH3) never
occurred. Parameters in factor (46) used in our work
and in'® are the same: Ay = 1.10,agemaz = 50. We
observe that the occurance of persistent walkers is usu-
ally avoided in DMC by reverting to small time steps.
Moreover, in DMC calculations stale configurations dis-
appear in the limit of ¥ = ¢¢, a limit that has to be
excluded a priori for our ¥¢g’s to maintain stability. It
is then evident from our results, that for FMC, even for
very short time steps like the ones used here, walkers can
be trapped and thus the age-enforced procedure should
be regarded as an essential part of the procedure.

H. Interplay between A/R and SSIS

It is clear from the plots that both Accep-
tance/Rejection and SSIS help in preventing large fluc-
tuations and in stabilizing the calculations. If both pro-
cedures are present, efficient stability is guaranteed over
a larger range of parameters.

Something that needs an explanation is why the ac-
ceptance ratios of positive and negative walkers are sig-
nificantly different in some cases: while this happens for
both the SSIS functions used, it does not occur when
SSIS is not included.



TABLE III: Fixed-node results obtained from our FMC
method by setting )¢ = 14 and rejecting any move resulting
in a change of the sign of 4. The SSIS-denom and Accep-
tance/Rejection procedures have been used.

Time-step in K~' Length of the run (in 7.e;) E(AE) in K

1.2x10°* 10 -2.3718(4)
6 x107° 10 -2.369(2)
3x107° 3 -2.369(13)
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FIG. 8: Results for a fixed node limit -run. Top: cumula-
tive denominator; Center: cumulative energy; Bottom: ac-
ceptance ratios (solid line: R¥, dotted line: R™).

I. Population size effect and FXN limit

All the results shown here have been obtained with a
population of 192 pairs, which has to be considered rather
small. This gives rise to an important error in our esti-

mations, resulting in higher energies. This is even more
important in the case of FMC with respect to the FXN
limit. Several fixed node results have been obtained using
our correlated walkers scheme, by using the antisymmet-
ric part only in the guiding wavefunction of formula (14)
and rejecting all the walkers that cross the nodal surface.

Results are summarized in Table III and the behavior
of quantities such as acceptance ratios, cumulative de-
nominator and cumulative eigenvalue is shown in Fig. 8.
These runs include SSIS in the denominator version.

Like the full, exact ones, these results have been ob-
tained by using a set of 192 pairs of walkers. The FXN en-
ergy is lower than the FMC one. Nevertheless one should
bear in mind that, although both the FMC and FXN suf-
fer from some degree of population size effect, this effect
depends on the quality of the guiding functions, which is
a very good one for the FXN case (4 alone), whereas
the full ¥¢ is not. Better comparison between FXN and
FMC results would come from calculations done with a
larger number of walkers, thus reducing the population
size effect directly, or from calculations done with impor-
tance functions of better quality.
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