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Molecular Recognition

Molecular scale

substrate

enzyme

Study energy barriers for interactions between specific 
chemical functional groups at the molecular scale

• Intermolecular interactions 
are at the center of many 
condensed phase phenomena

Intermolecular interactionsIntermolecular interactions
Rheology/Interfacial Fracture

Biomineralization

Protein/crystal 
interactions

• Most processes involve 
specific functional groups 
at the nanometer scale
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SampleSample

Atomic Force Microscopy

LaserLaserPhotodetectorPhotodetector

Tip:  radius 5Tip:  radius 5--20nm20nm
height 1height 1--3 3 µµmm



Measuring molecular scale forces:Measuring molecular scale forces:
Chemical Force MicroscopyChemical Force Microscopy

Key features
• Robust crystalline monolayers
•Chemistry of both surfaces in contact is well known 
•Terminal functionality of both surfaces can readily be varied
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Force Calibration ModeForce Calibration Mode

cantilever 
deflection

sample

tip

t  →

pull-off

Deflection at pull-off gives the pull-off force 
fpull-off = k x, k-spring constant, x-deflection 



V Thermoelectric
Sample

Fluid Cell

Piezo

Inner thermal jacket

Outer thermal jacket

Variable Temperature Stabilized AFM

• Energy barriers: Need to measure interaction as a function of temperature

�Chamber: cooled with N2 
from dewar, ± 2 OC

Looking at the energy barriers: Looking at the energy barriers: 
Variable temperature CFMVariable temperature CFM

(Zepeda, Yeh, Orme, RSI, 72, 4159, 2001)
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Xb Extension in the transition state
f(t) = rf * t   applied force
rf  loading rate

�Applied force potential tilts the energy landscape facilitating escape. 
(Evans, E, Ritchie,K., Biophys J 1997, 72,1541-1555)

How does a bond behave under an external load? 
Kinetic model: Force-assisted Escape From a Bound State
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Model predicts the pull-off force 
depends on loading rate
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xβ - distance between bound and transition state
rf - force loading rate

fpull-off vs rf will give xββββ



COOH/COOH in EthanolCOOH/COOH in Ethanol

COOH/COOH     Xβ = 1.34 Å
water H-bond      Xβ = 1.85 Å
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Temperature (OC)
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COOH terminated surfaces

0

1

2

3

4

-20 -10 0 10 20

Si3N4 tip/Mica substrate

•Si3N4 tip/Mica substrate control rules out thiol chain entanglement

•Each point represents 
an average of 40 
individual force 
measurements

COOH

COOH

Mica

Si3N4

COOH/COOH interaction strength in 
EtOH increases with temperature!



Air

Fluid

Vacuum

Vacuum
-bare surfaces

Ambient Air
-capillary layers
dominate the force

Fluid Environment
-interaction between
solvated surfaces

What interaction is measured?What interaction is measured?



Sunbound< Sbound � ∆S < 0

Sbound Sunbound

Surface Surface SolvationSolvation

Solvent orders on the surface upon 
detachment giving a lower entropic state.



•Thermally activated regime
•Entropically dominated regime
•Furthermore, large negative ∆S can change the f vs T trend

Thermal Activation
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Model predicts two unbinding regimes: Model predicts two unbinding regimes: 
Thermal vs. Entropic KineticsThermal vs. Entropic Kinetics



Experimental test: Changing solventExperimental test: Changing solvent

•Entropy change upon dissociation minimal
•Observed behavior due to surface-surface interactions
•Kinetics dominated unbinding regime!
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Comparison with the modelComparison with the model

Experiment Model
COOH tip
COOH substrate

In hexane

In EtOH

Slope = -2.7pN/k
*assume only thermal 
activation term contributes

df/dT = -2.1pN/k

JKR model: ~ 20 groups interact
∆∆∆∆S/functional group ~ 1.75 10-22 J/k Consistency check

kΒΒΒΒ = 1.38 10-23 J/k

In hexane, experimental value matches model quite well!
Thermally-activated Unbinding
In EtOH, observed entropic effect is far greater then the thermal energy.
Entropically-dominated unbinding
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Me-Me: Weakly Interacting Surfaces
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EtOH:  Rate of Increase is an order of magnitude smaller than COOH
Hexane:  thermally dominated unbinding regime



AuAu--Au: NonAu: Non--specific interactionsspecific interactions
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�Only van der Waals surface-surface interaction 
�Weak surface-solvent interaction
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Varying Entropic Contribution 
Continuosly in EtOH/Hexane mixtures
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•Si3N4 tip-mica substrate
•Ethanol concentration varied by adding hexane
•Slope normalized to 100% EtOH experiment (Maximum entropic effect)
•Entropic contribution clearly diminishes with the addition of Hexane

Si3N4 tip/Mica substrate
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•Xb-from force vs
rate measurement

1.32±±±±0.36 Å

•E0-from force vs rate and force 
vs temperature measurements

21.03 KJ/mole

Energy well parameters: Energy well parameters: 
Combining Both ExperimentsCombining Both Experiments

•Comparing with water: Xβ = 1.85 Å, EO = 14.2 KJ/mole*
•Results are comparable, but are not entirely attributable to H-bonding

*(Curtiss et al, j phys chem 71:2703-2711) (Zepeda et al, Langmuir,19,145 ,2003)



• Developed a method for probing the energy 
barriers of intermolecular interactions 

• Entropic barriers can be a common feature of
nanoscale adhesion!

• Solvation effects can play a major role in 
measured binding forces. SOLVENT MATTERS! 

ConclusionsConclusions

S.Zepeda Acknoledges the UCD/LLNL Stuedent Employee Graduate Research Fellowship(SEGRF). 
This work was performed under the auspices of USDOE contract no. W-7405-ENG-48.



JACS, Noy et al, 2003, 125, 1356-1362



SiSi33NN44/Mica/Mica
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•water/mica:  x-ray reflectivity shows 1 well ordered solvation 
layer at 2.5Å and a loosely bound layer extending to ~10Å
(Cheng et al, Phys Rev lett, 2001,8715, 6103,, U6186-U6188)

f vs rate show two 
energy barriers
Xβ = 11.65±3.54 ,
1.43±0.40

For the outer 
barrier: EO = 40.70 
KJ/mole

(Zepeda et al, Langmuir,19,145 ,2003)




