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Time series analysis of Adaptive Optics wave-front

sensor telemetry data

Lisa A. Poyneer and Dave Palmer

Abstract

Time series analysis techniques are applied to wave-front sensor telemetry data from the
Lick Adaptive Optics System. For 28 fully-illuminated subapertures, telemetry data of 4096
consecutive slope estimates for each subaperture are available. The primary problem is perfor-
mance comparison of alternative wave-front sensing algorithms. Using direct comparison of data
in open loop and closed-loop trials, we analyze algorithm performance in terms of gain, noise
and residual power. We also explore the benefits of multi-input Wiener filtering and analyze the
open-loop and closed-loop spatial correlations of the sensor measurements.

1. Introduction

Wave-front sensing is an important area of adaptive optics. Current methods are susceptible to
non-uniform behavior as system conditions change, leading to reduced system performance. We
have developed an algorithm that potentially has much more uniform behavior, which will lead to
improved system performance. Over the past several months we have been doing short experiments
with it in a top-flight Adaptive Optics system. In this project we apply time series analysis to
improve our evaluation of experimental data, with the goal of being able to clearly show whether
or not our new algorithm will improve performance. This project has shown that though such a
definitive statement is not yet possible, there is real evidence that our new algorithm has perfor-
mance benefits in specific situations. The time series techniques also provide valuable guidance in
designing future experiments.

2. Adaptive Optics

In many applications of optical systems, the observed field in the pupil plane has a non-uniform
phase component. This deviation of the phase of the field from uniform is called a phase aberration.
In imaging systems this aberration will degrade the quality of the images. In the case of a large
astronomical telescope, random fluctuations in the atmosphere lead to significant distortion. These
time-varying distortions can be corrected using an Adaptive Optics (AO) system, which is a real-
time control system composed of optical, mechanical and computational parts. The rest of this
section and the following section provide a brief overview of the system components and the relevant
problems of interest for this project. Adaptive optics is also applicable to problems in vision science,
laser propagation and communication. For a high-level overview, consult this web site.? For an in-
depth treatment of the astronomical case, consult these books.?,?

Our tests were conducted at Lick Observatory on Mt. Hamilton, near San Jose, CA. The 120-
inch (3-meter) Shane telescope has an AO system which was developed by LLNL and is jointly
maintained with the observatory. In the Lick AO system the phase aberration is measured using a
wave-front sensor. The sensor divides the pupil of the telescope into smaller sections (subapertures)
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by a small array of square lenslets. Each lenslet forms an spot image of the reference source on
a small region of a CCD. At Lick each subaperture forms an image onto a 4 by 4 pixel region.
As the phase aberration of the field in the subaperture changes, the spot moves. This motion
is directly related to the spatial slope of the phase across the subaperture. By estimating this
movement of the spot in both directions on the CCD, the slope of the wavefront in the subaperture
can be estimated. These slopes are then sent to a reconstruction algorithm, which generates the
phase across the entire pupil based on the local slopes. This reconstructed phase is then applied
to a flexible optic (a deformable mirror) which conjugates the phase aberration of the field. This
process is done in closed loop and at rates of up to 500 Hz.

3. Wave-front sensing algorithms

It is the process of wave-front sensing that is of particular interest to our research. The wave-front
sensing algorithm estimates the wave-front slope from only a few noisy pixels of information on
the CCD. High-quality slope estimation is the key first step for a well-performing AO system. The
algorithm should be unbiased and have as low noise as possible. Furthermore, it should be robust to
changes in observation conditions. The standard WFS algorithm for astronomical AO (the Quadcell
method described in detail below) has very low noise, but variable performance as observation
conditions change.? We have developed an algorithm that is robust to changing conditions within a
certain range on the detector. These experiments have been conducted to evaluate the performance
of this algorithm in comparison to current methods.

First, we need to discuss the various sources which are used in the AO system. The reference
source for the WFS is called the guide star. In the usual case a star is used, which is called the
Natural Guide Star (NGS). If a target other than a star is imaged (e.g. a galaxy) a suitable NGS
may not be available close to the target. In this case AO will not work unless an artificial star
can be created. At Lick this artificial star is made by propagating a sodium (Na) laser into the
atmosphere. A layer of positive Na ions exists about 90 km up in the earth’s atmosphere. At the
layer the laser excites the ions and they emit light at 589 nm. If the laser is well aimed, this region
of light emission is small and forms an artificial star, called the Laser Guide Star (LGS). The size
of the NGS on the CCD is quite small, but can vary with atmospheric conditions. The size of
the LGS on the CCD is much larger and also can vary significantly with conditions. The density
and thickness of the sodium layer has an effect, but more importantly the atmospheric conditions
(termed the “seeing”) can drastically change the spot size of the LGS.

Three different algorithms are examined in this project. All are implemented in the Lick AO
control system. The current algorithm used at Lick is called “Quadcell”. This is the standard WFS
configuration and algorithm used in astronomical AO. It uses the center 2 by 2 pixel region. The
x-shift of the spot is simply the difference in counts between the two pixels on the right side and
the two on the left, divided by the total number of counts in all four pixels. The quadcell is a
special case of a more general algorithm called “Centroiding” which computes the center of mass
of the spot image on the CCD and uses that to determine the shift. Provided the spot is small,
this provides the lowest noise. However, as the spot size changes, the gain of the estimate changes.
Because the spot is so much bigger in LGS mode, the “Binned” algorithm is used. In this case it
uses the quadcell formula, but with pixels twice as big. Each large pixel is actually the sum of the
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Quadcell Binned Correlation
Fig. 1. WFS pixel configurations for the three algorithms, for the 4 by 4 pixel area for each subaperture
spot. The effective pixels are outlined in solid lines. The gray circles represent small NGS spots and large
LGS spots.

four real pixels in the region. This method will capture signal from a large spot, but at a penalty
of higher noise. The new algorithm we are studying is called “Correlation”. It is based on a more
general WFS algorithm which estimates the shift by correlation with a reference. In this special
case it is a compact ratio of sums of pixels in the 4 by 4 pixel region. Its main advantages are that
it is robust to changing spot size and does not suffer from significant noise due to using the extra
pixels. The pixel configurations and sizes for these three methods are shown in Figure ??.

4. Experimental setup

The AO control system produces bursts of telemetry for 4096 consecutive time steps. The control
rate is variable. For this project we will only analyze the WFS slope telemetry, which is the x- and
y-slope estimates for each of forty subapertures. Of these forty subapertures, twelve are on the edges
and have noisier behavior, so we will only consider the twenty-eight with full illumination. Two
different system modes were used in testing. The first is regular operation. The loop can either be
open, where the system observes but does not correct the atmosphere, or closed, where the system
is actively correcting the the residual error is observed. The second mode is a special comparison
mode which works in open-loop only. In this case the control system computes the slopes using two
algorithms on the same CCD data. The y-slopes for each algorithm are output in the telemetry
file. This allows direct comparison of two different noisy measurements of the same data.

Using these data, we address two questions. First, direct comparison of the WFS algorithms
is done with data from the comparison mode. In this case we estimate noise levels, gains and do
optimal estimation on the underlying slope signal that is observed. Doing so helps us evaluate
which algorithm is the best option. Second, we use both open-and closed-loop data to analyze the
spatial coherence between subaperture signals. We are interested in analyzing how the open-loop
phase aberration is auto-correlated across the telescope pupil and how well the closed-loop control
corrects this wavefront. Analysis of both power and spatial correlations of the slope series provides
information about turbulence strength and spatial coherence. In closed-loop operation the slope
series provide information about the residual error in the system. Power spectra and correlations
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can provide information about how well the system is performing (and how well each algorithm
performs).

5. Time series analysis techniques

A. Model

For the discussion of relevant time series analysis techniques,? some notation should first be defined.
For the ideal time series, the notation s(t) will be used. The sampled data will be stacked as a column
vector s, and indexed with s[1] to s[n], where n = 4096. Constant parameters will be represented
as the gain g and the noise variance σ2

w. The slopes will be represented by the letters q, b and c for
Quadcell, Binned and Correlation. For example, a single observation is modeled as

q(t) = s(t) + v(t). (1)

Due to the noise characteristics on the CCD, it is reasonable to model the slope measurement noise
v(t) as zero-mean, white Gaussian noise. The vector version is simply

q = s + v. (2)

When we have two measurements of the same signal, the multivariate model is[
q(t)
c(t)

]
=

[
g
1

]
s(t) +

[
v(t)
w(t)

]
, (3)

for example when we compare the Quadcell to Correlation. Note that we can only really estimate
the ratio of the gains of the measurements, so a single gain g suffices. Because the slope noise arises
from the noise on the CCD pixels, both methods have the same underlying noise source and as a
rule we cannot assume that the noise series v(t) and w(t) are uncorrelated. Both, however, are still
zero-mean, white Gaussian series. Furthermore we will assume that the slope signal is a stationary
process.

B. Spectral estimators

The power spectrum of a time series s(t) is denoted by fs(ν). To approximate it we will use the
periodogram approach over n discrete frequencies νk. The discrete fourier transform of a series will
be denoted by the capital letter, as

S(νk) =
1√
n

n∑
t=1

s[t]Exp[−j2πνkt]. (4)

The periodogram Is(νk) is |S(νk)|2. The smoothed spectral estimator over a band of L frequencies
is given by

f̂s(νk) =
1
L

(L−1)/2∑
l=−(L−1)/2

Is

(
νk +

l

n

)
. (5)

4



We can also estimate the smoothed cross-spectrum between two series

f̂qc(νk) =
1
L

(L−1)/2∑
l=−(L−1)/2

Q

(
νk +

l

n

)
C

(
νk +

l

n

)
, (6)

and from that obtain the smoothed squared-coherence

ρ̂2
qc(νk) =

∣∣∣f̂qc(νk)
∣∣∣2

f̂q(νk)f̂c(νk)
. (7)

Note that the smoothing assumes spectral flatness in the region being smoothed. This is not always
the case for our signals, especially the open-loop PSD of the slopes. Unfortunately, the data are
noisy enough the smoothing is necessary to produce a reasonably-shaped spectrum. In particular,
without smoothing the squared-coherence estimates are highly unreliable. For these data sets L = 21
qualitatively provided the best results (n = 4096).

C. Stochastic signal case

For most of our data the true slope signal s(t) is stochastic. In this case, Wiener filtering is an
appropriate technique. First we consider the standard single observation in noise case. Given our
model q(t) = s(t) + v(t), we desire the best linear filter to apply to q(t) to generate the estimated
true signal ŝ(t). In the time domain the ideal filter is given by

ŝ(t) =
∞∑

r=−∞
a(r)q(t− r), (8)

or in the frequency domain by the filter

Ŝ(ν) = A(ν)Q(ν) (9)

using the convolution theorem. Switching to finite-length measurements, the best filter is given by

A(νk) =
f̂s(νk)

f̂s(νk) + σ̂2
v

. (10)

This is the standard Wiener filter as described in Section 3.9. The signal and noise spectra must
of course be estimated; this is discussed below. For the comparison case (following the methods of
Section 5.4 and 5.5), we can derive a joint Wiener filter for optimal estimation using two observed
series. In this case we again use a linear filter for each signal to get the estimated true signal

ŝ(t) =
∞∑

r=−∞
aq(r)q(t− r) +

∞∑
r=−∞

ac(r)c(t− r). (11)

We use vector notation and the three equations

Fy(ν) =

[
g2fs(ν) + σ2

v gfs(ν) + σ2
vw

gfs(ν) + σ2
vw fs(ν) + σ2

w

]
, (12)
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Fig. 2. Example of the PSD fitting. The dark line is the estimated, smoothed PSD for correlation for a
specific trial. The straight dashed line is the fit to the noise floor, and the resulting slope signal PSD is also
shown.

[
fsq(ν) fsc(ν)

]
=

[
gfs(ν) fs(ν)

]
, (13)

and [
fsq(ν) fsc(ν)

]
=

[
Aq(ν) Ac(ν)

]
Fy(ν), (14)

to obtain the best filter, which is expressed as

[
Aq(νk) Ac(νk)

]
=

f̂s(νk)
[ (

ĝσ̂2
w − σ̂2

vw

) (
σ̂2

v − ĝσ̂2
vw

) ]
f̂s(νk) (ĝ2σ̂2

w + σ̂2
v − 2ĝσ̂2

vw) + σ̂2
v σ̂

2
w − (σ̂2

vw)2
. (15)

Again, we will need to have good estimates for all the the parameters f̂s(νk), σ̂2
v , σ̂

2
w, σ̂2

vw and ĝ. This
is done by using ensemble averages over all subapertures for a given trial. For all 28 measurements,
the periodogram was calculated for each. Then the average of these 28 periodograms was smoothed
with L = 21. Given this smoothed estimate of f̂q(νk), the white noise level was estimated by fitting
a straight line to the noise floor. The resulting signal power spectrum was the difference between
the noisy signal spectrum and the noise spectrum, since the noise and signal are uncorrelated.
Figure ?? shows an example of this. For the comparison case, the gain ratio ĝ between the two
signals was estimated by taking the median of the ratio [f̂q(νk)/f̂c(νl)](1/2) in the frequency band
of the signal. The correlation of the noises σ̂2

vw was estimated by calculating the smoothed squared
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coherence ρ̂2
vw(νk) from the two measurements, fitting a flat curve to the noise region and dividing

by the estimated noise variances to get

σ̂2
vw =

(
ρ̂2

vwσ̂2
v σ̂

2
w.

)1/2
(16)

6. Analysis results - comparison case

There were several comparison experiments, each with several trials. For each trial, the signal and
noise power spectra were estimated as described above, and used to estimate the gain ĝ. So for
each experiment we have a set estimated gains and noise variances which allow an analysis of which
method has lower noise and how the gain of the slope algorithms vary.

There were two factors that constrained the number of valid trials. First, the WFS can behave
in a non-linear fashion if the spot is too far away from the center. So any subaperture signal with an
average value of greater than 0.25 was not used. Second, the implementation of correlation in the
control system automatically limits the output to a maximum magnitude of 1. This is because the
largest output of Quadcell is of magnitude 1. However, correlation can accurately measure larger
shifts, and since the gain is higher (as we shall see) this clipping corrupts the true signal. Therefore
we have not used any slope signal from correlation where greater than five percent of the sample
have a value of magnitude 1, because the random signals will be corrupted if too many samples are
truncated.

First we discuss the results of the gain and noise variance estimations. Then we apply Winer
filtering techniques to the pairs of measurements.

A. Comparing method gains and noises

There were seven different experiments. All seven featured the correlation algorithm. Two of the
seven compared Correlation to Binned, the other five compared Correlation to Quadcell. The Table
shows the relevant parameters of the experiments. For each there were 11 trials, though in a few
cases very large shifts lead to fewer trials having useable data (see above for restrictions on valid data
sets). We had some specific predictions for algorithm performances for these cases. In particular,
an important property of the Quadcell algorithm is that as the spot size increases, the gain will
go down. For very small spots the WFS is non-linear and both methods should have the same

Exp. name Source Size SNR Algo.
Nov7WPH White light point source probe very small high Quad
Nov7WPL White light point source probe very small low Quad
Nov7RPH Red light source probe small high Quad
Nov7RPL Red light source probe small low Quad
Nov18LGS Laser Guide Star on-sky large low Quad
Feb5LGS Laser Guide Star on-sky large low Binned

Mar10LGS Laser Guide Star on-sky large low Binned

Table 1. Seven comparison experiments for correlation. Table shows date, type of source used, source size on
WFS CCD, qualitative SNR of experiment and comparison algorithm.
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Fig. 3. For each experiment and trial, the relative gain between Correlation and the other algorithm is shown.
For small spots the gain is around 1; for large spots the gain on Quadcell or Binned goes down to as low as
0.5.

gain. As spot size increases, the gain of Correlation decreases and becomes constant at 1 for a wide
range of well-sampled spots. off, while the gain of Quadcell (and of Binned) continues to decline.
These seven experiments explored different spot sizes and SNRs. For white light probe the spot is
is approximately 9 times under-sampled according to Nyquist, which is very small compared with
the pixel size. The red light probe has a larger size, but is still small compared to the pixels. The
LGS is quite large, with the spot bigger than the quadcell area.

As described above, for each trial in each experiment, the following parameters were estimated:
gain of the other algorithm relative to Correlation and the noise variances of both algorithms. First
we examine the relative gains of the algorithms. This was determined by scaling the signal powers
for both measurements such that they were equal. The gain results for each trial are shown in
Figure ??. For the very small white light probe and small red light probe, the gains are close to
one. This is as predicted; when the spots are very small both algorithms have the same gain. The
spread of the results, particularly in the low-SNR red light probe case, could be attributable to the
fact that there is very little signal to be measured. Because we are using an internal probe, the
only aberration which can be measured in the system is the small amount of air flow on the optical
bench. Analysis of the PSDs of the measurements shows a small amount of very low-frequency signal
content. In the LGS case the gains of Quadcell and Binned are significantly lower than Correlation.
The three sets of data have a significant variation in gain, most likely caused by large differences in
the seeing on the nights experiment. Rough measurements of seeing taken during the experiments
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indicate that the seeing was good on Feb. 5, but poor on Mar. 10. No measurement was available
for Nov. 18. For the Nov18LGS trial the Quadcell algorithm has a gain of around 0.52. For the
Feb5LGS trial Binned has a median gain of 0.72, though there is a quite a spread of results. For
the Mar10LGS trial Binned has gain around 0.68. It was expected that in the LGS case Quadcell
and Binned would have lower gain, since the LGS spots on the WFS CCD are bigger than the pixel
size. A gain as low as 0.5 is reasonable for the WFS if the spots are big enough. Some variation in
spot size and gain was also expected, though with no quantitative bounds on range.

These data have shown that for a variety of source sizes the relative gains of Binned and
Quadcell change. With each trials there was a successive stepping of the steering mirror of the
system, which added a DC component to the offsets. (The analysis of these data does not employ
time series techniques per se, so the details will not be included in this report.) This allowed us to
determine that the gain of the Correlation algorithm was relatively uniform across the three LGS
trials where the Quadcell and Binned gains varied significantly. Unfortunately we have no way with
this data set to calibrate these trials to calibrate the LGS trials to the probe trials to determine
the true gains of the algorithms, as opposed to the relative gains. Designing an experiment along
with appropriate analysis techniques is in our experimental plan.

Now that we have established that there in a difference is gain between the methods, we need
to examine the noise of the algorithms to determine which makes a higher-SNR measurement of the
slope signal. Because of the different gains we must normalize to the same amount of signal power
by scaling the variance of Quadcell or Binned (as fitted to the slope measurement PSD) must
by 1/ĝ2. In Figure ?? the gain-normalized noise variances for all seven experiments are shown.
This figure plots the variance of the correlation noise versus the normalized variance of the other
algorithm. Points on this curve that lie in the lower right half of the plot below the solid line (which
is equality) are for trials where Correlation was noisier. Points above and to the left of the line are
for trials where Correlation was less noisy.

For the white probe case at high SNR, Correlation had about 1.85 time the noise power of
quadcell. At low SNR the performance is worse with Correlation having 3.6 times the noise power.
Results for the red source are similar. In the high SNR case Correlation has 1.86 times the power,
for the low SNR case 3.97 times the noise power. This result is to be expected. In both experiments
the spots are significantly smaller than the pixels. The Correlation algorithm uses 12 extra pixels
which essentially have no signal in them, so it is no surprise that the measurement is much noisier.

The LGS trials have different behavior because the spot is much bigger. As shown above there
are substantial changes in gain across the three LGS trials, most likely due to changes in the level
of atmospheric turbulence. In addition the noise variance for the trials varies by nearly an order of
magnitude. This is another indication of variable seeing. In the Nov18LGS experiment Correlation
outperformed Quadcell, having only 0.73 times the noise power, a significant performance improve-
ment. Both methods were quite noisy, however. For the Feb5LGS trial, Binned was compared to
Correlation. In this case Binned had lower noise variance; Correlation had 1.28 times the noise
power. Both noise variances were significantly lower than the previous LGS experiment. In the
Mar10LGS experiment, Binned and Correlation were nearly equivalent, with Correlation having
1.03 times the noise power. The noise variances were back up to higher levels.

This small set of data is not enough to make conclusive judgments, but provides some insights
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Fig. 4. Comparison of measurement noise variances for Correlation to Binned and Quad, for direct comparison
trials.

into the problem. In particular, the noise performance of is correlated with the relative gain. As
shown in Figure ??, the relative gain of Binned or Quadcell decreases, the algorithm becomes more
noisy. This holds for both the various trials in the three experiments and all three experiments. This
is consistent with the hypothesis of changing spot size. As the spot size becomes bigger, the gain
goes down, and more signal is scattered out to the outside pixels. This leads to a noisier Quadcell
or Binned algorithm, while Correlation maintains performance independent of spot size.

There are several issues that should be addressed in a comprehensive performance analysis.
Trials on the NGS reference should be conducted to compare algorithm performance. Experiments
should be regularly conducted over a period of weeks to establish how much spot size (and hence
performance) varies over time for LGS and NGS. A way to calibrate the absolute gains of the
measurements on LGS and NGS sources would be valuable.

B. Signal estimation

These comparison data sets provide a convenient way to explore different types of Wiener filtering
their relative performance. For the two signals in each subaperture, the underlying signal can be
estimated from the data using four different possible Wiener filters. A case of the input signals is
shown in Figure ??. In this particular trial the gain of Quadcell was estimated to be 0.47. This is
clearly visible in an examination of the slope signals as shown in the figure. Once scaled by the
gain, the Quadcell signal is quite similar to the Correlation. Using these two measurements the
underlying slope signal is estimated.
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Four different Wiener filters were derived for each trial, based on the estimated parameters
g, σ̂2

v , σ̂
2
w, σ̂2

vw and f̂s(νk). These filters are based on: the signal q only; the signal c only; the signals
q and c assuming the measurement noises were uncorrelated (which they aren’t); the signals q and
c assuming the measurement noises were correlated by the estimated covariance σ̂2

vw. Using Fourier
notation, the filters are as follows. For the Correlation case, the estimate is

Ŝc(νk) =
f̂s(νk)

f̂s(νk) + σ̂2
w

C(νk). (17)

For Quadcell the estimate must be scaled by the gain of the system, producing

Ŝq(νk) =
ĝf̂s(νk)

f̂s(νk) + σ̂2
v

Q(νk). (18)

The uncorrelated joint filter is

Ŝqc1(νk) =
f̂s(νk)ĝσ̂2

wQ(νk) + f̂s(νk)σ̂2
vC(νk)

f̂s(νk) (ĝ2σ̂2
w + σ̂2

v) + σ̂2
v σ̂

2
w

. (19)

The correlated joint filter is

Ŝqc2(νk) =
f̂s(νk)

(
ĝσ̂2

w − σ̂2
vw

)
Q(νk) + f̂s(νk)

(
σ̂2

v − ĝσ̂2
vw

)
C(νk)

f̂s(νk) (ĝ2σ̂2
w + σ̂2

v − 2ĝσ̂2
vw) + σ̂2

v σ̂
2
w − (σ̂2

vw)2
. (20)
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In the end, these four different filters produced quite similar results for the estimated signal for
all the trials. As a representative case, the estimated signals from the four filters on the data in
Figure ?? are shown in Figure ??. This behavior is understandable given the input power spectrum
and the nature of the Wiener filter. As shown in Figure 2, f̂s(νk) follows a power law and is
substantially larger than the noise in the low frequency band. The two measurements are quite
similar at these frequencies, as a visual inspection of Figure 6 shows. Assuming that in this range
the noise is essentially zero the joint filter reduces to

Ŝ(νk) =
1
ĝ
Q(νk) + C(νk). (21)

So at low spatial frequencies the Joint estimate will be simply the average of the Correlation
estimate and the scaled Quadcell estimate. The use of the fact that the noise is correlated makes
very little difference. This is also due to the nature of the Wiener filter. Again at low frequencies
the noise has no impact and at high frequencies the filter is zero since the measurement is all noise
there. Only at mid-range frequencies will the covariance σ̂2

vw. Since the signal spectrum f̂s(νk)
follows a power law, there is very little power here anyway. Using two measurements instead of one
will most likely improve the SNR of the estimate of the true slope signal. Adding more information
about correlated measurement noises adds little to the estimate. Because the closed-loop spectrum
is quite different, using the correlated measurement noises may improve estimation, but the control
system is not set up to provide comparison data in closed loop. Despite al this, Winer filtering is

12



-1.5

-1

-0.5

0

0.5

1

1.5

0 20 40 60 80 100

S
ig

na
l e

st
im

at
e

Sample

Signal estimates by Wiener Filtering for Test18Nov2003cent04s26

Wiener Quad
Wiener Corr

Joint Wiener
Joint Wiener Correlated

Fig. 7. The four (very similar) wiener filtered signal estimates. Same samples as shown in Figure ??.

quite useful to obtain optimal estimates of the underlying signal. Wiener filtered estimates are used
throughout Section 6.

C. Conclusions

The comparison experiments and time series analysis shows that the Correlation algorithm is noisier
for small sources. For the large LGS source the gain of Quadcell or Binned relative to Correlation
ranges from 0.5 to 0.8, depending on conditions. For lower gains (larger LGS spots) Correlation
has equivalent or better noise performance, but for higher gains (smaller LGS spots) Correlation
has worse performance than Binned in the one experiment. Further work is called for to analyze
the NGS performance is a similar manner, and to design experiments and data analysis techniques
that will enable absolute gain estimation. Special joint-Wiener filters were derived to improve signal
estimation using the two measurements, but measurement noise characteristics had small impact
due to the power-law nature of the spectrum of the input signal.

7. Analysis results - atmospheric power spectrum case

The WFS telemetry data provide information about the phase aberration which is sensed or cor-
rected by the system. For the open-loop case, we can observe the atmosphere and analyze the spatial
correlations of the measured phase slope across the aperture. In the closed-loop case the system is
measuring the residual phase that is uncorrected by the system. This is primarily atmosphere that
is not fully-corrected due to the delay of the control system, but also contains incorrect compensa-
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Fig. 8. Lick WFS subapertures on the Lick primary aperture. The lenslets are square, even though they are
shown as circular in this figure. We can analyze signal coherences for difference subapertures to examine the
spatial coherence of the measured phase slope.

tion due to WFS measurement noise or spatial aliasing of the measurement. For this section of the
project we have two experiments conducted on the same night with the LGS reference. We have the
open-loop comparison data set Feb5LGS with Binned and Correlation. We also have a set of several
closed-loop trials for each of the three algorithms. Ideally we would like to compare open-loop to
closed-loop performance, but this data set poses some problems, foremost determining the gains
for Quadcell and Binned for the closed-loop trials. Using the techniques outlined above, the Wiener
filter for each trial is derived from the estimated signal power spectrum. Using the Wiener filter we
estimate the underlying slope signal for each subaperture in each trial. Using these filtered signal
estimates, the squared-coherences of pairs of signals are calculated. First we analyze the spatial
coherences of the slope signals in open-loop and closed-loop Second, we evaluate the closed-loop
performance of all three algorithms with analysis of closed-loop power spectra and coherences.

A. Terminology

The configuration of the subapertures in the Lick WFS is shown in Figure ??. We choose to estimate
the squared-coherence as a function of frequency (see Eqn. 7) for pairs of slope measurements. For
a slope in a given direction, we compare it to other slopes of the same direction. Comparing it
to the slope of the same direction one subaperture away along the same axis is termed “One”.
An example of this would be comparing the x-slope in subaperture h3 to that in h4, as shown in
Figure ??. Comparing it to the neighbor perpendicular is called“One-Perp” (x-slopes of h3 and h9).
Comparing to the diagonal neighbor is called “One-Diag” (x-slopes of h3 and h10). Results for two
subapertures away are labeled similarly.
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Fig. 9. Open-loop squared-coherences for y-slope signal estimates. Note the high level of temporal correlation
for adjacent measurements.

B. Spatial correlations of the phase slope

For both the open-loop and closed-loop data, spectrum estimates and Wiener filtering were con-
ducted as described above. Given the estimated true slope signals for each subaperture, the squared
coherences were calculated. The squared-coherences for all valid trials were averaged to get the final
estimated squared-coherences. For the open-loop case we can only analyze the y-slopes because the
only open loop data we took were in comparison mode during this experiment. A representative plot
of the squared-coherences by temporal frequency for the Correlation algorithm is given in Figure ??.
The phase slopes in the “One” case are highly-correlated (squared-coherence of about 0.8) at very
low frequencies. The “One-Perp” and “One-Diag” cases are less-correlated across all frequencies,
but particularly at very low frequencies. While there is a clear difference in the spatial correlation
depending on direction, this result is not necessarily significant by itself. The air mass that causes
the phase aberration in the telescope system is translated by the wind. If the wind is blowing in
a certain direction, the slope components along that line of travel will be very well-correlated in
time, since they are measuring nearly the same signal. These results are averages of trials taken
over the period of a few minutes. Several more such experiments should be conducted to see how
this wind behavior changes over time.

Wind direction is also a concern in the closed-loop case, as the residual error will be affected by
the wind direction and speed. We did the above analysis for all the x-slope and y-slope pairs over
five trials for each algorithm and compared the results. The results are shown in Figure ??. For the
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between the x-slope and y-slope results for the “One” and “One Perp” cases. Coherences are much lower
than the open-loop case.

“One” and “One-Perp” cases the squared-coherences were significantly different for the x-slopes
and for the y-slopes (there was substantially more variation from x- to y-slopes than from trial to
trial for a single direction.) Note overall how the coherence of the slopes has gone down significantly.
In this case we reach a “noise-floor” in the estimator around 20 to 25 Hz. In the open-loop case
this floor wasn’t reached until around 40 Hz. The slopes two subapertures away have only a small
amount of coherence. (Due to truncation we lacked enough data for the two-subaperture cases for
open-loop measurements.)

This analysis would benefit from better experimental design. A series of experiments scattered
through time would provide valuable information about the long-term behavior of these spatial
correlations, particularly the fact that they may be wind-dependent.

C. Closed-loop comparison of algorithms

To compare the algorithms in closed loop we look for difference in either the power spectrum of the
slope signals or the squared-coherence of the slope measurements. Both cases provide information
about the residual wave-front which is corrected by the system. The less power in the residual, the
better for system performance.

Analysis of the closed-loop power spectrum of the slopes is reasonable, but has a few details
that prevent it from being a definitive analysis. By averaging over all the subapertures, a less-noisy
estimate of the true power spectrum of the signal is obtained. However, there is a scaling issue
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Fig. 11. Estimated closed-loop power spectra of the underlying slope signal (gain-normalized for Correlation)
for the three algorithms.

involved between the algorithms. Because Quadcell and Binned have been shown to have a lower
and variable gain (ranging from 0.5 to 0.8 in open-loop) to properly compare signal power the
estimates must be scaled by the correct factor. In this case, because the comparison trials were
taken later in the run, we do not have a contemporaneous measurement of the true gain ratio
between Correlation and the other algorithms. We chose to scale the estimated power spectrum by
the median gain determined by previous experiments. In this case Correlation residual has lower
power. This is shown in Figure ??. The exact scaling is of course unknown, though for the entire
reasonable range based on previous data analysis, Correlation residual has lower power. However,
it is unknown exactly what the power is. This problem could be ameliorated in future experiments
by interleaving comparison tests with closed-loop tests.

In closed-loop the squared-coherence estimates prove to be very useful. Because these are
normalized by the signal spectra, any gain factor will fall out. In all three of the one-subaperture
distance cases Correlation had lower squared-coherence than either Quadcell or Binned in the signal
band. See Figure ?? for an example from the x-slope “One” case. This result is consistent with the
fact that Quadcell and Binned have lower gain. If the gain of a slope estimate is less than 1, it
effectively lowers the overall gain of the control loop, leading to poorer temporal performance and
increased residual error power in closed loop. As shown above, the gain of Quadcell or Binned can
vary from 0.5 to 0.8 in open loop, and consequently they should have increased temporal error and
residual power in closed loop. This indicates that Correlation is actually providing better correction
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in closed-loop than either other algorithm.

D. Conclusions

By comparing the estimated slope signals in various subapertures, we were able to determine some
useful facts about the system and the algorithms. In open loop the slopes are highly correlated
through time with their neighboring measurements. There was a substantial variation in this co-
herence with direction, which could be caused by wind in the atmosphere. More testing over a
larger sample of conditions is necessary to see how this varies through time. In the closed-loop case
the slopes are much less correlated, and over a smaller temporal frequency band. Again there is
significant variation with direction.

Comparison of the closed-loop trials of each algorithm has shown that Correlation has less
residual power and less spatial coherence between slope measurements than Quadcell or Binned.
This is most likely due to the gain differences and the resulting temporal errors.

8. Project conclusions and future directions

This project has sought to use time series analysis techniques to compare the performance of Cor-
relation to current WFS algorithms. For the small probe sources, Correlation is a noisier algorithm.
For the LGS tests on the sky, Correlation sometimes performs better and sometimes worse in terms
of noise. The lower the gain of the Quadcell or Binned (due to larger spots) the better Correlation
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does in comparison. The analysis of temporal power spectra and squared-coherences in closed loop
showed that the higher gain of correlation resulted in lower residual power and spatial coherence,
which should translate into better correction.

One might ask, however, if the gain of Quadcell and Correlation is lower, why not just turn up
the gain of the control loop? The problem is that the gain is variable with spot size. It was shown
above the the relative gain of Quadcell and Binned varies over a wide range in LGS operation.
The optimal gain for Quadcell or Binned will change with time, and would require an adaptive
control system to determine, potentially at significant computational expense. Correlation will not
have this variation in gain and hence will operate with constant control system parameters. In a
standard control system the consistent gain will lead to better performance.

The most important experiment to design next is one which will calibrate the absolute gains
of the algorithms. This is necessary to confirm that Correlation has uniform gain in the LGS case.
We also must analyze the NGS case in a similar manner to the LGS analysis of this project. We
need to determine if gain variations that will affect performance also exist in the NGS case.

There are several ways the analysis of this project could be further deepened with time series
techniques. This project has not even touched upon parameter estimation via EM. The analysis
presented in this project could be further developed, including deriving error bounds on all the
various estimators and coming up with better smoothing techniques to deal with power-law PSDs.
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