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Abstract. The usual approach to deal with noise present in many real-
world optimization problems is to take an arbitrary number of samples
of the objective function and use the sample average as an estimate
of the true objective value. The number of samples is typically chosen
arbitrarily and remains constant for the entire optimization process. This
paper studies an adaptive sampling technique that varies the number of
samples based on the uncertainty of deciding between two individuals.
Experiments demonstrate the effect of adaptive sampling on the final
solution quality reached by a genetic algorithm and the computational
cost required to find the solution. The results suggest that the adaptive
technique can effectively eliminate the need to set the sample size a priori,
but in many cases it requires high computational costs.

1 Introduction

Evolutionary algorithms (EAs) are considered relatively robust to the noise
present in the evaluation of the objective function of many real-world optimiza-
tion problems [1]. The usual approach to deal with noise is to take an arbitrary
number of samples of the objective function and use the average as an estimate
of the true objective value. If many samples are taken, the estimates will be very
accurate, but it may be a waste of computing resources. On the other hand,
if too few samples are taken, the algorithm may incorrectly select inferior solu-
tions and this might lead to failure. This paper presents results with an adaptive
sampling technique that adjusts the number of samples to the uncertainty in de-
ciding between two specific individuals. This adaptive approach eliminates the
need to selecting the number of samples a priori.

The objective of this paper is to study the effect of adaptive sampling on the
final solution quality and execution time. This paper presents a systematic study
of the impact of the sampling using a simple test problem (a 100-bit onemax
function). The experiments demonstrate that the adaptive sampling can find
better solutions than an arbitrary fixed sample and it can save time over an
excessively large fixed sample.

An alternative way to deal with noise in the fitness evaluations is to increase
the population size [2,3]. The paper shows that increasing the population size
seems a very effective and efficient way to deal with noise. However, in practice



it may be difficult to determine the correct population size because current
population sizing models require knowledge of problem-specific parameters and
the noise intensity [2, 3]. If the parameters are unknown or if the noise levels are
not uniform, it will be difficult to use these models accurately.

The next section provides some background on previous work in solving noisy
problems with EAs. Section 3 presents in detail the adaptive sampling method.
Section 4 shows the results of experiments. Finally, section 5 concludes the paper
and discusses future work.

2 Background

The robustness of evolutionary algorithms to noise in the evaluation of solutions
has been recognized for a long time. Recent research suggests that the use of
populations is the cause of the robustness of EAs in noisy environments [1]. Harik
et al. [2] presented models to determine the size of the populations required
to solve certain types of problems and considered the case where the fitness
evaluations are noisy. Miller [4] extended Harik et al.’s model to account for
sampling the objective function, and later presented models to optimize the
sample size [3].

There is still controversy about the tradeoff between increasing the sample
size or increasing the size of the populations. Sampling the objective function n
times increases the computation time by a factor of n, but reduces the standard
deviation of the estimate by a factor of only \/n. Fitzpatrick and Grefenstette [5]
argue in favor of increasing the population size rather than the sample size.
Arnold and Beyer’s [6] calculations for the sphere model agree that increasing the
population is beneficial in evolution strategies with intermediate recombination.
On the other hand, Beyer [7] argues that in a (1, A)-ES, the sample size should
be increased, rather than A\. Hammel and Béck [8] verify Beyer’s result and show
that there is no benefit of increasing the parent population size.

The previous works assume that the sample size is fixed beforehand and re-
mains constant during the execution of the EA. Aizawa and Wah [9] were prob-
ably the first to introduce a method that allocates different number of samples
to different individuals. Their objective is to find an allocation that minimizes
a pre-defined loss function. They minimize the expected estimation error as the
loss function, which has the effect of drawing more samples from better individ-
uals and spending less time in the inferior ones. Branke and Schmidt [10] also
proposed an adaptive sampling method that takes additional samples of both
individuals participating in a tournament until the normalized fitness difference
between the two individuals falls below some threshold. The normalized fitness
difference is obtained dividing the difference of the observed fitnesses by the
standard deviation of the difference: (f; — f,)/04-

The approach presented in the present paper differs from Aizawa and Wah’s
in that our objective is to take the smallest number of samples necessary to
make a decision between competing individuals during the selection process. Our
approach is very similar to Branke and Schmidt’s, but differs in that we take



samples one at a time from the individual with the highest observed variance,
and we use standard statistical tests to select the winner of the tournament
with certain probability. In addition, Branke did not examine the impact of the
technique on the final solution quality, only on the probability of selecting the
correct individual.

Somewhat similar to our approach, Teller and Andre [11] proposed a method
that allocates varying numbers of fitness cases to evaluate individuals in genetic
programming. With their algorithm, individuals are initially evaluated on a small
number of fitness cases, and are further evaluated only if there is some chance
that the outcome of the tournaments they participate in can change. There is
no point on refining evaluations of individuals that are so much better (worse)
than their competitors that they are not likely to lose (win) their tournaments.
A similar algorithm was developed independently by Giacobini et al. [12].

3 Adaptive Sampling

We consider pairwise tournament selection, where the best of two randomly cho-
sen individuals is selected to continue in the algorithm. Without loss of generality
we consider maximization problems. The noisy fitness F' of an individual can
be described as

F'=F+N, (1)

where F' is the true fitness and N is the added noise. In this paper, we use
normally distributed noise: N ~ N(0,0%), but the same approach can be used
with other noise distributions.

Assume that we want to compare two individuals z and y. In a noisy en-
vironment, their fitnesses are the random variables F, ~ N(u;,02) and F, ~
N(py,02). If pz > py, we would like to select individual z. However, the true
means are unknown and we estimate them using the averages f, = % > fi
and fy of multiple samples of the fitness function. The true variances are also un-
known, so we approximate them with the observed variances s and s>. When
dealing with noise, it is common to use an arbitrary number of samples and
choose the individual corresponding to the highest mean. However, this simple
approach may lead to choosing the wrong individual, because it does not take
into consideration the uncertainty in the estimations. If too few samples are
taken, the estimates will be inaccurate and may lead to failures. If too many
samples are taken, computational resources will be wasted.

Let d = f, — f, be the difference between the observed means of individuals
z and y. By the central limit theorem, as the number of samples increases the
distributions of f, and fy approach normal distributions, regardless of the noise
distribution. The distribution of d also approaches a normal d ~ N (f, — fy, 82+
sz) The probability P, of choosing the individual with the highest quality is

Pc - f:c - fy (2)
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where &(-) is the cumulative distribution function of a standard normal distri-
bution. Note that deciding correctly between the two individuals becomes more
difficult as d becomes smaller and the observed variances become larger.

The proposed adaptive sampling method is simply to estimate the mean
fitnesses and variances using a small number of samples initially and then sample
the fitness of the individual with the highest variance until a statistical test can
decide between the individuals with some certainty or a limit in the number of
samples is reached. There are many possible variations on this idea depending
on the initial number of samples, and the way to determine the certainty of the
decision. Branke and Schmidt [10] used 10 initial samples of each individual and
sample both individuals until the normalized fitness difference falls below some
user-specified threshold. We test the method taking only two initial samples from
each individual. Instead of using an arbitrary threshold, we use a statistical test
to determine when to stop sampling. Branke and Schmidt studied the effect of
sampling in the probability of selecting between two individuals, but did not
present results of the impact of the adaptive sampling on the final solutions or
the cost associated with finding those solutions. We extend their study in those
directions.

For the experiments in this paper, we take only two initial samples from each
individual. Then the means and variances of the fitness of each individual are
estimated. As additional samples are taken, the means will approach a normal
distribution, but since we have a small number of initial samples, we decide be-
tween the two individuals using a one-sided t test. We conservatively use the
minimum of the number of samples of x and y as the degrees of freedom in
the test. If the p value of the test is greater or equal to (an arbitrarily chosen)
0.9, then we consider that the test discriminates between the individuals with
sufficient certainty. If the p value is below our threshold, then we take an addi-
tional sample from the individual with the highest variance and repeat the test.!
Resampling continues until the p value meets the threshold.

Figure 1 shows the probability that the adaptive sampling procedure chooses
the best individual as a function of the difference of their fitnesses. The exper-
iments consisted of using the adaptive sampling to compare an individual with
real fitness of 100 to an individual with fitness 100 — ¢ for i = 1,...,20 adding
unbiased normal noise with standard deviation of 5, 10, and 20. For each fitness
difference we execute 10000 trials and report the fraction of trials where the indi-
vidual with true higher fitness was selected along with 95% confidence intervals.
If the fitnesses of the two individuals are equal, the decision is a random choice.
As the fitness difference increases, the probability of deciding correctly quickly
approaches 1.0. This suggests that it is easy to decide between individuals with
large fitness differences and/or low variance. Therefore we should spend addi-
tional computational resources in dealing with individuals with small differences

! Strictly, re-testing using the same samples might lead to elevated type-I errors and
sequential testing methods might be required. However, as the experiments demon-
strate (see figure 1), the proposed procedure chooses the correct individual very
consistently, so we opted for the simpler re-testing.
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Fig. 1. The probability of correctly choosing the best individual using the adaptive
sampling method (left) depends on the difference of the fitnesses of the two individuals.
The right graph displays the number of samples required by the adaptive sampling.

and/or large variances. The figure also shows the number of samples necessary
to decide correctly with the proposed technique.

The next section examines the effect of using this method on the final solution
quality as well as the computational cost. We examine the effect of varying
different parameters of interest, such as the noise levels, the population size, and
the thresholds for the p values.

4 Experiments

The experiments use a simple generational GA with uniform crossover applied
with probability 1.0. No mutation was used to try to limit the source of ran-
domness to the exogenous noise added to the fitness function. The GA used
pairwise tournament selection without replacement. The population sizes and
noise levels are indicated in each experiment. The GA was terminated when all
the members of the population were identical. The random number generator
was a Mersenne Twister [13] initialized with 32 bit unsigned integers obtained
from www.random.org. All results presented are over 100 repetitions of each
parameter setting, and the graphs include 95% confidence intervals.

The results of the adaptive sampling method will be compared against a
GA that always uses 10 samples to estimate the objective value and against a
GA that ignores the noise and selects tournament winners based on a direct
comparison of a single function evaluation.

4.1 Noise and Selection Intensity

A way to measure progress in solving a problem is to examine the average fitness
of the population as a run progresses. The increase in average fitness depends
on the intensity of the selection method used. Miller suggested that noise re-
duces the selection intensity [14]. Selecting incorrectly the individuals that have
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Fig. 2. Effect of noise on the average (real) fitness of individuals selected by pairwise
tournament selection. The adaptive method remains closer to the expected fitness than
the fixed-size sampling.

lower fitness values has the effect of reducing the average fitness of the selected
individuals. The selection intensity is defined as

I = Msel _,UF,
OoF

where pise1 is the mean fitness of the selected individuals and pur and o are the
mean fitness and standard deviation of the original population. Each selection
method has a different intensity, and for pairwise tournament selection I =
0.5642. Miller [3] established that the expected fitness of the selected individuals
in a noisy environment is:

of
Usel = pF + Iﬁ (3)
Vopt+o
This result can be easy extended to account for the reduction in the uncertainty
that comes from taking a number n of multiple samples:

o2
Usel = F + 1271?2 (4)
Voi +oy/n

Figure 2 shows the effect of noise on the mean fitness of the individuals
selected by pairwise tournament selection. To obtain these results a population
of 1000 individuals was initialized randomly and we measured the average fitness
of the individuals selected using tournament selection. The continuous lines in
the figure were obtained with equation 4. The graph shows that ignoring the
noise (using one sample) can reduce the selection intensity quite strongly. With
10 fixed samples, the reduction is much less severe as expected. The best results

are obtained with the adaptive sampling.
It is not clear, however, what will be the effect of the adaptive sampling on
the overall performance of the algorithm. The next two subsections examine this.



4.2 Noise and Solution Quality

Figure 3 shows the means of the real fitnesses at the end of the runs of a GA
that uses direct comparisons and a GA with the adaptive sampling method.
The experiments considered different noise levels and the population size was
varied between 2 and 100 individuals. As expected, the figure shows that the
final solution quality improves with larger populations, but with direct compar-
isons the quality degrades as the noise level increases. The adaptive sampling
method shows much smaller quality degradations that are significant at the 0.95
significance level only with high noise strengths of ¢ = 10 and 20.

The effect of noise in the final quality of solutions can be observed more
directly in figures 4 and 5. In these figures, the population size is kept constant
at N = 20 and N = 40 individuals while the noise level is varied. The left panels
show the observed fitness values at the end of the runs and the left panels show the
real fitness. As expected, ignoring the noise and making direct comparisons based
on one sample has the worst results: The algorithm is misled with very large
apparent fitness values that belong to individuals with very low real fitnesses.
The adaptive method always finds the solutions with the best real fitnesses and
appears much more robust to increased noise levels than the other two methods
(i-e., the real fitness decreases much less with increasing noise).
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Fig. 3. Final real fitnesses for different noise levels varying the population size. The
quality degradation is much smaller in the adaptive algorithm. Error bars denote 95%
confidence intervals.

In the adaptive method, the user does not have to specify the number of
samples per individual, but has to specify the p value of the test. The results in
figure 6 show that the final solution quality is not affected greatly for a range of
commonly used values of p, and the assignment p = 0.9 used in the experiments
seems an appropriate choice.
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4.3 Computational Cost

So far we have seen that adaptive sampling can eliminate the need to fix the
number of samples without sacrificing solution quality. However, eliminating the
guess of the right sample size comes at a significant computational cost.

Figure 7 shows the means of the number of samples per individual and the
number of generations until convergence of the experiments corresponding to
figure 3. The number of samples appear to be dependent of the noise level and
independent of the population size, except for very small populations. Similar
observations can be made for the number of generations.

While the results of the previous subsection present a favorable outcome of
the sampling methods, a fairer comparison of these algorithms should take into
account the total computational cost. The total number of function evaluations
taken by each experiment is the product of the population size, the number of
generations, and the number of samples. Figures 8 and 9 present the number of
samples and generations corresponding to the experiments in figures 4 and 5.
Figure 10 compares the total cost incurred by each algorithm to reach solutions
of a particular quality. The results show that the sampling methods need an
order of magnitude more computations to reach the same solutions than simply
ignoring the noise and using larger populations.
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Fig. 7. Mean number of samples and generations for different noise levels and varying
the population size. The results shown are of the adaptive sampling algorithm.

As the run progresses we can expect the individuals to become more alike
each other, reducing their fitness differences and making the decisions more
difficult. Albert and Goldberg studying a different but related problem conclude
that the sample size should increase over the run [15]. The results in figure 11
confirm this recommendation. We tracked the average number of samples used
per generation in a problem with N = 20. In all cases, there is a clear upward
tendency in the number of samples over time.
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5 Conclusions

Adapting the number of samples to the uncertainty of the decision between
two specific individuals eliminates the need to set the sample size a priori. We
demonstrated that the adaptive method used in this paper can adapt to a large
range of noise levels. For a fixed population size, the experiments showed that
the quality reached with adaptive sampling is much higher than ignoring the
noise or taking too few samples. The method was also demonstrated to be fairly
robust to its only parameter, the p value of the test. For commonly used p values
(0.85-1.0), the final quality does not differ much.

The main drawback of the method is that the convenience of adapting the
sample size requires a substantial amount of computations. The experiments
suggest that increasing the population size slightly and using direct compar-
isons (no resampling) might be the best strategy. However, the adaptive method
is useful in practice, where there might be no knowledge of the noise level or
the domain-dependent parameters necessary to use existing population sizing
models. Also, in some applications the noise varies over time or the noise may
not be uniform in the entire search space, and adapting the sample size will be
especially beneficial in those situations.

Future work should include a more detailed investigation of the adaptive
sampling with other test functions and adding highly biased noise. Although the
assumption of normality is warranted for sufficiently large numbers of samples,
it may be possible to mislead the algorithm if the observed fitness difference is
small because very few samples will be taken. It is not clear what will be the
effect of these mistakes on the overall performance of the algorithm.
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