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Translationally invariant density

Petr Navritil
Lawrence Livermore National Laboratory, L-414, P.O. Box 808, Livermore, CA 94551

Translationally invariant nuclear density is derived from the shell model one-body densities by
removing their spurious 072 center-of-mass motion component. This paves the way to utilize the
ab initio no-core shell model (NCSM) nuclear structure in folding approaches to optical potentials.
As an illustration, the °He diagonal and transitional densities are calculated from the NCSM wave
functions obtained using the CD-Bonn nucleon-nucleon potential in the 10A basis space. A par-
ticularly significant impact of the exact removal of the spurious center-of-mass motion is found for
the spin-orbit part of the optical potential proportional to the derivative of the nuclear density.

PACS numbers: 21.60.Cs, 24.50.+g, 21.30.-x, 21.30.Fe

I. INTRODUCTION

There has been a significant progress in the ab initio approaches to the structure of light nuclei. Starting from the
realistic two- and three-nucleon interactions the methods like the Green’s Function Monte Carlo (GFMC) [1] or the
ab initio no-core shell model (NCSM) [2] can predict the low-lying levels in p-shell nuclei.

The principal foundation of the ab initio NCSM approach is the use of effective interactions appropriate for the
large but finite basis spaces employed in the calculations. These effective interactions are derived from the underlying
realistic inter-nucleon potentials through a unitary transformation in a way that guarantees convergence to the exact
solution as the basis size increases. For the basis, one uses antisymmetrized A-nucleon harmonic-oscillator (HO)
states that span the complete Ny, 72 space. A disadvantage of the HO basis is its unphysical asymptotic behavior.
On the other hand, the nuclear system is translationally invariant and, in particular in the case of light nuclei, it is
important to preserve this symmetry. The HO basis is the only basis that allows to switch from Jacobi coordinates
to single particle Cartesian coordinates without violating the translational invariance. Consequently, one may choose
the coordinates according to whatever is more efficient for the problem at hand. In practice, it turns out that the
A = 3 system is the easiest solved in the Jacobi basis, the A = 4 system can be solved either way with the same
efficiency when only two-body interaction is utilized, but the Jacobi basis is more efficient when the three-body
interaction is included. For systems with A > 4, it is by far more advantageous to use the Cartesian coordinates and
the Slater determinant (SD) basis and employ the powerful shell model codes like Antoine [3] that rely on the second
quantization techniques.

While the NCSM eigenenergies are independent on the choice of coordinates, the eigenfunctions obtained in the
Cartesian coordinate SD basis include a 07£2 spurious center of mass component. The ways how to remove these
components and obtain physical matrix elements of different operators were investigated in the past [4-10]. Typically,
in earlier investigations the basis space was limited to a single major HO shell. In the NCSM, the basis space spans
several major shells. Unlike in some phenomenological shell-model studies that used a multi-major shell basis, the
center-of-mass motion is completely separated from the internal motion due to the translational invariance of the
interactions and the choice of the complete Npy,.xA) HO basis as already discussed. In general, it is necessary to
re-visit and adapt the techniques of the spurious center-of-mass (CM) motion removal to make them applicable for
the NCSM. This paper in particular focuses on the construction of the translationally invariant density starting from
the Cartesian coordinate SD wave functions. This case is much less trivial than, e.g. removal of spurious components
from spectroscopic amplitudes.

The motivation for this work is the desire to apply the ab initio NCSM nuclear structure to describe nuclear
reactions on light nuclei. In general, it is a challenging task to extend the ab initio methods to describe nuclear
reactions. Concerning direct reactions, in particular the nucleon-nucleus elastic and inelastic scattering, a first and
straightforward answer for the NCSM is the application of semi-microscopic approaches, e.g. the Jeukenne-Lejeune-
Mahaux (JLM) [11], to construct optical potentials from the nuclear densities obtained in the NCSM. Eventually,
these optical potentials are used in coupled channel calculations by employing the standard codes, e.g. Fresco [12]. To
fully utilize the NCSM nuclear structure for this purpose, the spurious center-of-mass contribution must be removed
from the density. In Sec. II, the translational invariant density is derived from both the Jacobi-coordinate HO wave
functions as well as from the Cartesian-coordinate wave functions. In Sec. III, numerical tests for A = 3,4 and 5
systems are described and an application to 6He is presented. A spin-orbit part of the p+8He optical potential is
constructed to demonstrate the importance of the spurious center-of-mass removal. Conclusions are given in Sec. IV.



II. DERIVATION OF THE TRANSLATIONALLY INVARIANT DENSITY

A. Coordinate and HO wave function transformations

We follow the notation of Ref. [13]. We consider nucleons with the mass m neglecting the difference between the
proton and the neutron mass. For the purpose of the present paper we use the following set of Jacobi coordinates:
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Here, .f_E) is proportional to the center of mass of the A-nucleon system: R = \/gé). On the other hand, f_;, is

proportional to the relative position of the p + 1-st nucleon and the center of mass of the p nucleons. Let us rewrite
the last and the first equation from (1) as
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where Béy' = \/4ig [Fi + 7 + ... +74_1). Following, e.g. Ref. [14], the HO wave functions depending on the
coordinates (2) transform as
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where (nlN LQ|N1L1n1l1Q)ﬁ is the general HO bracket for two particles with mass ratio L.

B. Nuclear density

Nuclear density operator is defined as [15]
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Its matrix element between an initial and a final state that were obtained in Cartesian coordinate single-particle SD
basis can be written in the form
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Here, |[AAJM)sp is an A-nucleon eigenstate with the angular momentum J and its third component M, K=v2K +1
and @jm = (—1)?"™a; _m. The X stands for remaining quantum numbers. The subscript SD refers to the fact



that this state was obtained in the Slater determinant basis, i.e. by using a shell model code, and, consequently,
contains the spurious CM component. The R, (r) in Eq. (5) is the radial HO wave function and the term
’?1 SD(A)\fJf“(aLl L jlénzlm)(K)||A)\,-Ji)SD represents the standard one-body density matrix elements (OBDME)
computed in shell model codes. The coordinate 7 in (5) is measured from the center of the HO potential well. Clearly,
the density given in (5) contains a contribution from the spurious CM motion.

The physical density should depend on the coordinate measured from the CM of the nucleus, ¥ — R. The corre-
sponding matrix element is obtained by employing the eigenstates depending on the Jacobi coordinates. By modifying
the last relation in (4) we get
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where £ = —,/ﬁ(i"— R) and £4_; given by Eq. (le) is re-expressed as £4_; = —Mﬁ(f}a — R). We used the
antisymmetry of the eigenstates and the properties of the Dirac delta function. The relationship between the Jacobi
coordinate and the SD eigenstates is
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with the ¢ and 7 the spin and isospin coordinates, respectively.
Similarly as in (5), the physical density (6) can be related to “one-body” density matrix elements derived from the
Jacobi coordinate eigenstates (discussed, e.g. in the Appendix B of Ref. [13]). In particular, we obtain
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Here the eigenstates are expanded in a basis with lower degree of antisymmetry using the coefficients of fractional
parentage [13]
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with N = Na_1 + 2n + [ the total number of HO excitations for the A nucleons and 4,451 the additional quantum
numbers that characterize the A- and A — 1-nucleon antisymmetrized basis states, respectively.

C. Physical density in terms of the SD OBDME

It turns out that obtaining the eigenstates (9) becomes increasingly difficult with the number of nucleons A
mostly due to the complicated antisymmetrization. As stated in the Introduction, for A > 4 it is by far more
efficient to use the SD basis. Consequently, it is desirable to relate the matrix element (6) to the SD OBDME
_?1 SD <A/\f Jf”(aibllljl &”2l2j2)(K)||A/\iJi)SD'

Let us note that an intermediate result that eventually leads to the right-hand side of Eq. (8) reads:
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where for the simplicity we suppress from now on spin and isospin coordinates. In deriving Eq. (10) we used the

Dirac delta function properties and the relation §(€ — €4_1) = > nim nim (€, A1) im ).
We now investigate an analogous integral to that appearing on the right-hand side of Eq. (10) for the Cartesian
coordinate wave functions and, as the first result, we relate it to the OBDME:
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Next, we re-write the left-hand-side of Eq. (11) and perform a change of variables to the Jacobi coordinates,
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In the above derivation, we wused the relations (1,2,3) and (7) together with é(ﬁéﬁl - RE\A_ h =

YN Ly My PN1Ly My (R’é{dl)goj‘vl LM, (R"(‘ﬁv} 1), The last term in Eq. (12) contains the integral appearing on the right-
hand-side of Eq. (10). We can now relate this integral to the OBDME, i.e. the right-hand-side of Eq. (11). In order
to do that we define a matrix
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As we are interested only in the case, when (=) +K = (—1)h++K — 1 the above definition assumes this restriction.
Then, by inverting the matrix M ¥ we obtain
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for the spherical harmonics matrix element, we arrive at the main result of this paper
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with the sum restricted to both { +1' + K and l; + I5 + K even. Eq. (16) is the desired relation between the physical
translationally invariant density and the OBDME obtained in the Slater determinant basis.
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D. Properties

All the derivations presented in the preceding subsections were performed for a nucleon density. It should be noted
that the Eq. (16) is trivially generalized to obtain the proton and the neutron densities separately. The relation (14)
involves spatial transformations and remains valid even if we add spin or isospin operators. Similarly, the Eq. (16)
is readily generalizable for a case of a nonlocal density that is needed as an input for some semi-microscopic optical
potential folding approaches, see e.g. Ref. [16].

The physical density (8,16) as well as the shell-model density (5) are normalized as

/ di (ANT M |pBpYs (&) ANT M) = / d& sp(ANT M |pSNH(E)| ANT M)sp = A | (17)

where the superscripts “phys” and “SM” refer to Egs. (8,16) and Eq. (5), respectively.
We note that the point-nucleon matter radius is obtained only by using the physical density
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The analogous integral for the shell-model density gives a value different from the point-nucleon matter radius as it
contains a contribution from the spurious center of mass.

The present Eq. (16) can be compared to Eq. (7) of Ref. [9] and, similarly, Eq. (5) to Eq. (6) of Ref. [9]. In
Ref. [9], the transformation that removes the CM components is made by inserting a complete set of non-spurious
shell-model eigenstates between the a' and a operators which introduces the familiar (4/(A — 1))?"+"/2 factors that
relate matrix elements in coordinates referred to the arbitrary origin and the (A-1) core. The present result is more
general as a direct relation to the OBDME was found and, consequently, no sum of intermediate states is needed.

III. APPLICATION TO *HE

We tested the physical translationally invariant density formulas (8) and (16) by performing identical calculations
for 3H, *He and °He in the Jacobi-coordinate HO basis and the Slater determinant HO basis, respectively. The
Jacobi coordinate HO basis calculations were performed using the code MANYEFF [13] that constructs the A-
nucleon antisymmetrized Jacobi coordinate HO basis, calculates the effective interaction from a nucleon-nucleon
(NN) potential and, eventually, finds the A-nucleon eigenvalues and wave functions. These wave functions were then
employed to calculate physical density according to Eq. (8). The same effective interaction, transformed to the single-
particle basis, was used in the Slater determinant HO basis calculation using the Many-Fermion Dynamics (MFD)
[17] shell model code. A specialized code was then used to calculate the OBDME from the MFD eigenfunctions
and eventually, the physical density was calculated by applying Eq. (16). We obtained identical results in the two
independent calculations.

As an illustration of the significance of the spurious center-of-mass removal, we calculated the SHe physical (16)
and the shell-model (5) densities using wave functions obtained in Ref. [18]. In Fig. 1, the proton and the neutron
monopole ground state densities are shown. A 10A(Q2 basis space and the HO frequency of A2 = 13 MeV was used.
The two-body effective interaction was derived from the CD-Bonn NN potential. The full lines correspond to the
physical densities calculated according to Eq. (16) while the dashed lines correspond to the shell-model densities
(5) that contain the spurious center-of-mass contribution. Obviously, the same OBDME were employed in both
calculations. The normalization of the densities in Fig. 1is 4 [ drr?pg—o p(n)(r) = Z(N) with p, n refers to the
proton and neutron, respectively, and px—o(r) = &= [ df (AXJM |pop(7)|ANJM). One can clearly see a substantial
differences between the two sets of densities in particular at short distances. By performing the integral (18) for the
physical density we indeed recover to point-proton and point-neutron rms radii 1.763 fm and 2.361 fm, respectively
[18]. Performing the same integral using the shell-model densities gives incorrect, larger radii 1.976 fm and 2.524 fm,
respectively. The difference between the squares of the two sets of radii is equal to the mean value of the CM ﬁ2, ie.
sp{(ANTM|R?| AN M)sp = 1(000|&|000) = 0.798 fm?

In Figs. 2 and 3 we present transition densities from the SHe ground state to the first excited 2+ state and the
lowest 1~ (“soft-dipole mode”) state, respectively. The 1050 basis space was employed for the 0t — 2% case, while
the 8hQ (for the ground state) and the 9AQ (for the 1~ state) bases were utilized for the 0t — 1~ transition. In both
cases we can see substantial differences between the physical (16) and the shell model (5) densities. By integrating
the proton densities, one obtains the reduced EK matrix element:

op,p

1
/d.’f .CL'KYK,Mf,Mi (.Ci') (A/\fJfolpphys(J_;")|A/\ZJZMZ) = JT(JZMZKMf — MilJfo)M(EK; J,' - Jf) 5 (19)
!
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with B(EK; J; = J¢) = ﬁ|M(EK, Ji = Jg)|?. Here, the bare nucleon charges are assumed (e, = 1, e, = 0).
The result of the integral (19) is unchanged for the shell model densities, i.e. when the matrix element (16) is replaced
by the matrix element (5) in Eq. (19). In the present particular cases we obtain B(E2;0T — 2%) = 1.056 e?fm*
and B(E1;0% — 17) = 0.388 e*fm? in agreement with the results found in ref. [18]. The normalization of the
densities in Fig. 2 and 3 is [ drr**® pk ,(r) = M(EK) for the proton case and similarly for the neutron case. Here,
prc(r) = 5 gy (MK k| T M) [ diYic (7) (AXg Jp M| pop ()| AXs Ji M)

It has been argued that the spin-orbit component of the nucleon-nucleus optical potential is proportional to the
derivative of the monopole density [19]. The following form of the potential that takes into account the isovector
component is typically considered

Vaolr) = ~(/3)Vs o [2prmop(r) + prcco,n(P] T3 (20)
for the proton-nucleus potential with the p and n indexes exchanged for the neutron-nucleus potential. In Eq. (20),
V, (typically V, < 0) is a constant. We calculated the proton-®He spin-orbit optical potential according to Eq. (20)
using the ®He ground-state monopole densities shown in Fig. 1. The resulting shape of the spin-orbit potential,
114 19pk—0(r) + pr=0,n(r)], is presented in Fig. 4. In particular, we compare the result obtained using the
physical density (16) with that obtained using the shell-model density (5) that includes the spurious center-of-mass
contribution. Clearly, the differences of the densities as seen in Fig. 1 are even more magnified in the shape of
spin-orbit potential. Such differences must have impact on observables like analyzing powers calculated using these
spin-orbit potentials. In order to obtain meaningful results, one must employ the physical density to construct the
spin-orbit component of the optical potential.

IV. CONCLUSIONS

In this paper, the translationally invariant nuclear density was derived from the shell model one-body densities by
removing their spurious 0} center-of-mass motion component. The main result of this paper, presented in Eq. (16)
relates the translationally invariant density to the OBDME matrix elements calculated in the shell model codes by
employing the second quantization techniques. This is important for the NCSM approach as calculations for A > 4
are much more efficiently performed in the Cartesian-coordinate Slater determinant basis which has the down side of
contaminating the wave functions by the spurious center-of-mass components. As the NCSM effective interaction is
translationally invariant and for the basis space a complete Ny axh$2 space is used, these components can always be
exactly removed. In this paper, this was achieved for the density, a case less trivial compared to other operators. This
paves the way to utilize the ab initio no-core shell model nuclear structure in folding approaches to optical potentials.

We performed tests of the present formalism by performing independent Jacobi-coordinate HO basis and the
Cartesian-coordinate HO Slater determinant basis for *H, “He and 5He. Identical results for the densities were
obtained.

As an illustration, the ®He diagonal and transitional densities were calculated from the NCSM wave functions
obtained using the CD-Bonn nucleon-nucleon potential in the 10A£) basis space. These densities were compared to
those obtained without the spurious center-of-mass component removal. Substantial differences were found for both
the diagonal monopole and the transitional multipole densities. Only using the physical density one can recover the
point-nucleon matter radius. On the other hand, the EK reduced matrix elements can be obtained using both the
physical and the uncorrected density. A particularly significant impact of the exact removal of the spurious center-
of-mass motion was found for the spin-orbit part of the optical potential proportional to the derivative of the nuclear
density.

The physical density can now be used in folding approaches to nucleon-nucleus optical potentials, such as those
described, e.g. in Refs. [11] and [16], and subsequently applied in the coupled channel calculations. Work in this
direction is under way.
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FIG. 1: (Color online) ®He proton and neutron monopole ground state densities obtained in the 10AQ basis space and the HO
frequency of A2 = 13 MeV. The NCSM two-body effective interaction was derived from the CD-Bonn NN potential. The full
lines correspond to the physical densities calculated according to Eq. (16) while the dashed lines correspond to the shell-model
densities (5) that contain the spurious center-of-mass contribution.
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FIG. 2: (Color online) ®He proton and neutron quadrupole transition densities from the ground state to the first excited 27
state obtained in the 10A<) basis space and the HO frequency of A2 = 13 MeV. The NCSM two-body effective interaction was
derived from the CD-Bonn NN potential. The full lines correspond to the physical densities calculated according to Eq. (16)
while the dashed lines correspond to the shell-model densities (5) that contain the spurious center-of-mass contribution.
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FIG. 3: (Color online) ®He proton and neutron dipole transition densities from the ground state to the lowest 1~ state obtained
in the (8 — 9)AS basis space and the HO frequency of A2 = 13 MeV. The NCSM two-body effective interaction was derived
from the CD-Bonn NN potential. The full lines correspond to the physical densities calculated according to Eq. (16) while the
dashed lines correspond to the shell-model densities (5) that contain the spurious center-of-mass contribution.
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FIG. 4: (Color online) The shape of the proton-®He spin-orbit optical potential, %%%[2p;<:o,p(r) + pr=0,n(r)], obtained using
the ground state ®He densities from the 10hQ, AQ = 13 MeV NCSM calculation. The two-body effective interaction was derived
from the CD-Bonn NN potential. The full lines correspond to the physical densities calculated according to Eq. (16) while the
dashed lines correspond to the shell-model densities (5) that contain the spurious center-of-mass contribution.
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