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ON IMPROVING LINEAR SOLVER PERFORMANCE: A BLOCK

VARIANT OF GMRES

A. H. BAKER∗, J. M. DENNIS † , AND E. R. JESSUP ‡

Abstract. The increasing gap between processor performance and memory access time warrants
the re-examination of data movement in iterative linear solver algorithms. For this reason, we explore
and establish the feasibility of modifying a standard iterative linear solver algorithm in a manner
that reduces the movement of data through memory. In particular, we present an alternative to
the restarted GMRES algorithm for solving a single right-hand side linear system Ax = b based on
solving the block linear system AX = B. Algorithm performance, i.e. time to solution, is improved
by using the matrix A in operations on groups of vectors. Experimental results demonstrate the
importance of implementation choices on data movement as well as the effectiveness of the new
method on a variety of problems from different application areas.
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1. Introduction. We consider the solution of a large sparse system of linear
equations:

Ax = b,(1)

where A ∈ Rn×n, and x, b ∈ Rn. Iterative methods are often chosen to solve such
linear systems, and, when A is nonsymmetric, the GMRES (generalized minimum
residual) [43] method is a common choice. Because linear systems are ubiquitous
in science and engineering applications, improving the robustness of linear solvers
continues to be of interest.

The two main costs associated with an iterative linear solver algorithm are the
floating-point operations and the cost of moving data through memory, and perfor-
mance may be improved by reducing either of these costs. Our focus is on achieving a
balance between improving the efficiency of an iterative linear solver from a memory-
usage standpoint while maintaining favorable numerical properties. In particular,
the goal of this work is to demonstrate the feasibility of improving the performance
of a common iterative linear solver (restarted GMRES), and likewise other itera-
tive solvers, via a combination of a memory-efficient implementation and algorithmic
modifications that reduce data movement.

In this paper, we report on our investigation into a memory-efficient iterative
linear solver and describe the resulting new block method. We emphasize the im-
plementation of the new method, numerous numerical test results, and evaluation of

∗Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Box 808
L-551, Livermore, CA 94551 (abaker@llnl.gov). The work of this author was primarily supported
by the Department of Energy Computational Science Graduate Fellowship Program of the Office of
Scientific Computing and Office of Defense Programs in the Department of Energy under contract
DE-FG02-97ER25308. Portions of this work were performed under the auspices of the U.S. Depart-
ment of Energy by University of California Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48.
†Scientific Computing Division, National Center for Atmospheric Research, Boulder, CO 80307-

3000 (dennis@ucar.edu). The work of this author was supported by the National Science Foundation.
‡Department of Computer Science, University of Colorado, Boulder, CO 80309-0430

(jessup@cs.colorado.edu). The work of this author was supported by the National Science Foun-
dation under grant no. ACI-0072119.

1



2 A.H. BAKER, J.M. DENNIS, AND E.R. JESSUP

performance based on the tracking of data movement through parts of the memory
hierarchy. In Section 2 we discuss related background information. We outline our
approach for improving restarted GMRES performance in Section 3. Section 4 in-
troduces our new block method. We present computational results for a variety of
problems in Section 5 and discuss implications of implementation decisions on data
movement in Section 6. Finally, we give concluding remarks in Section 7.

2. Background. Though the cost of a numerical linear algebra algorithm has
traditionally been measured in terms of the floating-point operations required, a more
memory-centric approach has long been advocated (e.g., see [21, 16, 27]). It is well-
known that matrix algorithm performance continues to be limited by the gap between
microprocessor performance and memory access time (e.g., see [16, 50, 32, 30, 22, 1]).
The discrepancy between DRAM (dynamic random access memory) access time and
microprocessor speeds has increased by nearly 50% per year [40]. As a result, the
percentage of overall application time spent waiting for data from main memory has
increased [40]. The situation is compounded by advances in algorithm development
that have decreased the total number of floating-point operations required by many
algorithms [22]. Therefore, the number of floating-point operations required by an
algorithm is not necessarily an accurate predictor of algorithm performance for a
large matrix algebra problem [22]. In fact, performance bounds based on sustainable
memory bandwidth (such as the STREAM [31] benchmark) are thought to predict
algorithm performance most accurately [22, 1]. In particular, when solving a linear
system, efficient data reuse (i.e., reducing data movement) is crucial to reducing an
algorithm’s memory costs [27, 16, 21].

Krylov subspace methods such as GMRES are based on an iteration loop that
accesses the coefficient matrix A once per loop and performs a matrix-vector multiply.
Thus, a desirable modification in terms of reducing data movement is to perform more
than one matrix-vector product for a single memory access of A. This optimization
is natural when solving several linear systems with the same coefficient matrix A but
different right-hand sides. Such linear systems can be written as a single block linear
system

AX = B,(2)

where A ∈ Rn×n, X,B ∈ Rn×s, and the columns of B are the different right-hand
sides. By solving the block linear system (as opposed to solving s systems individu-
ally), A now operates on a group of vectors (multivector) instead of a single vector at
each iteration. The matrix A is accessed from memory fewer times than it would be
if each system were solved individually.

O’Leary first introduced block iterative solvers for block linear systems with sym-
metric A with the Block Conjugate Gradient (BCG) and other related algorithms
in [39]. For nonsymmetric A, a block version of the GMRES algorithm (BGMRES)
is first described in [48], and detailed descriptions can also be found in [44, 45, 42].
BGMRES is essentially identical to GMRES, except that operations are performed
with multivectors instead of single vectors. As with GMRES, the resources required by
BGMRES may be impractical since storage and computational requirements increase
with each iteration. In this case, a restarted version of BGMRES (BGMRES(m)) is
commonly used in practice.

Several variants of the BGMRES method have been developed for both multiple
and single right-hand side systems. For multiple right-hand side systems, a hybrid
block GMRES method is presented in [44] that often solves the block system faster
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than solving each single system individually due in part to fewer memory accesses.
In addition, block methods that augment the approximation space with eigenvector
approximations are given in [24, 33]. These methods are particularly useful for ma-
trices that are sufficiently close to normal and have a few particular eigenvalues that
inhibit convergence.

Of primary interest to us is the use of a block method on a block linear system
to solve a single right-hand side system. This strategy is briefly noted as a possibility
in [39] for block conjugate gradient algorithms. To our knowledge, the first mention
of using Block GMRES to solve a single right-hand side system occurs in [9]. In this
work, Chapman and Saad suggest that convergence may be improved for Ax = b
by using a block method with approximate eigenvectors or random vectors for the
additional right-hand side vectors, particularly when convergence is hampered by a
few small eigenvalues.

Also of note is a block variant of GMRES for single right-hand sides systems in
[29]. This method is mathematically equivalent to standard GMRES and is imple-
mented as an s-step method (matrix A performs s consecutive matrix-vector multiplies
at each iteration). The primary drawback is loss of accuracy with increasing block
size (s). As with most blocked algorithms, the implementation allows for the use of
level 3 BLAS (Basic Linear Algebra Subprograms) [14], and codes based on these
routines often achieve good performance because they minimize data movement (e.g.,
see [13, 14, 22]).

3. Approach. Our approach to reducing data movement in restarted GMRES
(GMRES(m)) is to modify the algorithm such that more than one matrix-vector
product occurs for a single memory access of A. To this end, we investigate an
alternative for solving a single right-hand side system as in (1) based on solving a
corresponding block linear system as in (2). This algorithmic change requires the
selection of additional starting vectors and right-hand sides.

Algorithmic changes that reduce memory access costs should not degrade the
numerical properties of the original algorithm. Therefore, our goal in choosing ap-
propriate families of additional right-hand sides and starting vectors was to select
vectors that would accelerate convergence to the single right-hand side solution. For
this reason, we looked to existing Krylov subspace method acceleration techniques.

It is well-known that subspace information is lost in GMRES(m) due to restart-
ing, and a number of acceleration methods attempt to in some sense compensate for
this loss (e.g., see [34, 35, 47, 12, 9, 4]). Our block method derives from the LGM-
RES method [4], an augmented Krylov subspace method with appealing convergence
properties. In particular, the extra right-hand sides used in the block method are the
same as used to augment the standard GMRES approximation space in LGMRES.

In addition, beyond the algorithmic modifications required for a block formula-
tion of GMRES(m), close attention to implementation techniques is essential for a
memory-efficient, sparse linear solver. Therefore, in our new block method, we reduce
the cost of the additional matrix-vector operations in each iteration loop via an effi-
cient matrix-multivector multiply and associated routines which we discuss in detail
in Section 6.

4. A new block algorithm. In this section, we first briefly review the LGMRES
method, of which the new algorithm is a theoretical extension. We then describe the
new algorithm and its implementation and discuss additional considerations.
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4.1. The LGMRES method. Consider GMRES(m) when solving (1). Restart
parameter m denotes a fixed maximum dimension for the Krylov subspace. If con-
vergence has not occurred at the end of m iterations, the algorithm restarts. We
refer to the group of m iterations between successive restarts as a cycle. We denote
the restart number with a subscript: xi is the approximate solution after i cycles or
m · i total iterations, and ri is the corresponding residual (ri = b − Axi). The min-
imum residual property requires that GMRES(m) find xi+1 ∈ xi + Km(A, ri) such
that ri+1 ⊥ AKm(A, ri) (e.g., see [42]), where Ki(A, ri) ≡ span{ri, Ari, . . . , A

i−1ri}
denotes an i-dimensional Krylov subspace.

Let x̂ be the true solution to (1). We denote the true error after the i-th restart
cycle by ei, where ei ≡ x̂− xi. Then the vector

zi ≡ xi − xi−1(3)

is an approximation to that error after i restart cycles, where zi ≡ 0 for i < 1.
An error approximation is a natural choice of vector with which to augment the

next approximation space Km(A, ri) since augmenting with the true error would solve
the problem exactly (e.g., see [18]). Furthermore, because zi ∈ Km(A, ri−1), it in some
sense represents the space Km(A, ri−1) generated and discarded in the previous cycle.
Therefore, the LGMRES method accelerates convergence by appending k vectors that
approximate the error from previous restart cycles to the standard Krylov approxi-
mation space at the end of each restart cycle. In particular, after i+1 restart cycles,
LGMRES(m, k) finds an approximate solution to (1) in the following way:

xi+1 = xi + qm−1
i+1 (A)ri +

i
∑

j=i−k+1

αijzj ,

where polynomial qm−1
i+1 and αij are chosen such that ‖ri+1‖2 is minimized.

4.2. The new algorithm: B-LGMRES. The augmentation scheme used by
LGMRES(m, k) is easily extended to a block method by using the k previous er-
ror approximations zj to build additional Krylov subspaces. We refer to this block
extension as B-LGMRES(m, k), for “Block” LGMRES. Conceptually, we view one
restart cycle (i) of B-LGMRES(m, k) as a cycle of Block GMRES on the system
AXi+1 = B, where B contains the right-hand side of (1) and the k most recent error
approximations zj , j = (i− k + 1) : i. In other words, B = [b, zi, . . . , zi−k+1]. The
initial guess at restart cycle i, Xi, is then written as Xi = [xi, 0, . . . , 0], where the
approximate solution to our single right-hand side system, xi, is placed in the first
column and the remaining columns are set to zero. X and B are size n × (k + 1) or
n× s, where s ≡ k + 1 indicates the block size.

After i + 1 restart cycles, the B-LGMRES(m, k) approximation space consists
of the traditional Krylov portion built by repeated application of A to the current
residual ri together with Krylov spaces resulting from the application of A to previous
error approximations. Therefore, we write the B-LGMRES(m, k) approximation as

xi+1 = xi + qm−1
i+1 (A)ri +

i
∑

j=i−k+1

αm−1
ij (A)zj ,(4)

where the degree m− 1 polynomials αm−1
ij and qm−1

i+1 are chosen such that ‖ri+1‖2 is
minimized.
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Using (3), we now re-write B-LGMRES(m, k) in (4) in the following way:

zi+1 = qm−1
i+1 (A)ri +

i
∑

j=i−k+1

αm−1
ij (A)zj .

In the above form, as shown for the LGMRES method in [4], this block method re-
sembles a truncated polynomial-preconditioned full conjugate gradient method with
variable preconditioning. In this analogy, the polynomial preconditioner is qm−1

i+1 , and
it changes at each iteration (i). In addition, the error approximation vectors zj are
analogous to conjugate gradient direction vectors (e.g., see [2]), and now these direc-
tion vectors are weighted by polynomials in A (αij) instead of scalars. Furthermore,
as in [4], it is easily shown that these direction vectors zj are A

TA-orthogonal.
Theorem 1 (Orthogonality of the error approximations). The error approxima-

tion vectors zj ≡ xj − xj−1 in B-LGMRES are ATA-orthogonal.

Proof.
We define subspacesMi+1 andMi as

Mi+1 ≡ Km(A, ri) +
∑i

j=i−k+1Km(A, zj)

Mi ≡ Km(A, ri−1) +

i−1
∑

j=i−k

Km(A, zj).

By construction, ri ⊥ AMi and ri+1 ⊥ AMi+1.

From (3), ri − ri+1 = Azi+1 ⇒ Azi+1 ⊥ A(Mi ∩Mi+1).

Because {zj}j=(i−k+1):i ⊂Mi ∩Mi+1, zi+1 ⊥AT A {zj}j=(i−k+1):i.

To provide additional insight into the B-LGMRES augmentation scheme, we
briefly describe the B-LGMRES method in the framework presented in [9]. In [9],
Chapman and Saad consider the addition of an arbitrary subspace, W, to the stan-
dard Krylov approximation space of a minimum-residual method, such as GMRES.
This addition results in the augmented approximation space

M = K +W,(5)

where K is the standard Krylov subspace. A minimal residual method finds an ap-
proximate solution x̃ ∈ x0 +M such that the residual r̃ satisfies r̃ ⊥ AM, removing
components of the initial residual r0 in subspace AM via an orthogonal projection
process. Following the discussion in [9], the minimization process over the augmented
approximation space (5) is

‖r̃‖2 = min
d,w
‖b−Ad−Aw‖2,

where d ∈ x0 +K and w ∈ W. Chapman and Saad then show that if rd results from
minimizing ‖b−Ad‖2, where again d ∈ x0 +K, then

‖r̃‖2 ≤ ‖(I − PAW )rd‖2,(6)

where PAW is an orthogonal projector onto subspace AW. In particular, for a cycle
of B-LGMRES(m, k) with k = 1, we have that K = Km(A, ri) and W = Km(A, zi) =
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1. ri = b−Axi, β = ‖ri‖2, ri = ri/β
2. Ri = [ri, zi, . . . , zi−k+1]
3. Ri = V1R̂ (QR factorization)

4. for j = 1 : m
5. Uj = AVj

6. for l = 1 : j
7. Hl,j = V T

l Uj

8. Uj = Uj − VlHl,j

9. end
10. Uj = Vj+1Hj+1,j

11. end
12. Wm = [V1, V2, . . . , Vm], Hm = {Hl,j}1≤l≤j+1;1≤j≤m

13. find ym s.t. ‖βe1 −Hmym‖2 is minimized
14. zi+1 =Wmym

15. xi+1 = xi + zi+1

Fig. 1. B-LGMRES(m, k) for restart cycle i.

Km(A, ei−ei−1). Therefore, from (6) we see that the addition ofW in the B-LGMRES
method results in the removal of components of rd (the residual from the standard
Krylov approximation space) from the subspace AKm(A, ei − ei−1) or, equivalently,
the removal of components of the error from subspace Km(A, ei − ei−1).

4.3. Implementation. The implementation of B-LGMRES(m, k) is similar to
that of BGMRES. For reference, one restart cycle (i) of B-LGMRES(m, k) is given
in Figure 1. As with BGMRES, B-LGMRES(m, k) requires the application of s2

rotations at each iteration to transform Hm into an upper triangular matrix (e.g.,
see [42]). Because B-LGMRES(m, k) solves Ax = b, as opposed to a block system,
the least squares solution step (line 13) varies from that of standard BGMRES; the
triangular matrix R̂ from the QR decomposition in line 3 does not need to be saved
since only β = ‖ri‖2 is needed, and only s rotations must be applied to the least-
squares problem’s right-hand side (βe1) at each step.

Though we think of the error approximations zj , j = (i− k+ 1) : i as additional
right-hand side vectors, we do not form the block approximate solutions Xi. Instead
we append the k most recent error approximations to the initial residual to form a
block residual Ri, as seen in line 2 of Figure 1. We normalize the error approximations
(zj/‖zj‖2) so that each column of the initial residual block Ri is of unit length. The
m size n× s orthogonal block matrices Vj form the orthogonal n×m · s matrix Wm,
where Wm = [V1, V2, . . . , Vm]. Hm is a size (m+ 1)s×m · s band-Hessenberg matrix
with s sub-diagonals, and the following standard relationship holds:

AWm =Wm+1Hm.

As with LGMRES, only i error approximations are available at the beginning of
restart cycles with i < k. As a result, the creation of the initial residual block in line
2 of the B-LGMRES(m, k) algorithm must be modified for the first k cycles where
i < k. (The first cycle is i = 0.) Recall that zj ≡ 0 for j < 1, and when zj ≡ 0, we
say that zj is an error approximation that is not available. In our implementation,
we replace any zi, . . . , zi−k+1 that is not available with a randomly generated vector
of length n. This choice is justified in Section 4.4.

For the B-LGMRES(m, k) implementation given in Figure 1, the multivectors
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are of size s, where s = k+ 1. For example, the orthogonal block matrices Vj in lines
3, 5, 8, 10, and 12 of Figure 1 are size s multivectors consisting of s vectors of length
n. In addition, Ri in lines 2 and 3 and Uj in lines 5, 7, 8 and 10 are also multivectors.
The matrix-multivector multiply occurs in line 5, and the importance of this aspect
of the implementation is demonstrated in Section 6.

One restart cycle, or m iterations, of B-LGMRES(m, k) requires m matrix-
multivector multiplies, irrespective of the value of k. Therefore, matrix A is accessed
from memory m times per cycle. For comparison, we list the approximation space
size, the number of vectors of length n stored, and the number of matrix accesses per
restart cycle in terms of parameters m and k for GMRES(m), LGMRES(m, k), and
B-LGMRES(m, k) in Table 1.

Table 1
Algorithm specifications per restart cycle.

Method Approx. Length n Accesses
Space Size Vector Storage of A

GMRES(m) m m+ 3 m

LGMRES(m, k) m+ k m+ 3k + 3 m

B-LGMRES(m, k) m(k + 1) (m+ 2)k +m+ 3 m

B-LGMRES(m, k) is compatible with both left and right preconditioning. We
denote the preconditioner byM−1. For left preconditioning, the initial residual in line
1 of Figure 1 must be preconditioned as usual: ri =M−1(b−Axi). Then we replace A
with M−1A in line 5. To incorporate right preconditioning, we replace A with AM−1

in line 5. We define ẑj ≡ M(xj − xj−1) = Mzj and replace z with ẑ everywhere in
lines 2 and 14. While no explicit change is required for line 15 as given in Figure 1,
note that, with right preconditioning, line 15 is equivalent to xi+1 = xi +M−1ẑi+1.

We note that in our implementation, no re-orthogonalization was performed, and
residual norms are computed recursively at each step within a restart cycle.

4.4. Additional algorithmic considerations. Deflation is often an important
issue for block methods and has been addressed in various ways (e.g., see [39, 38, 20]).
For the B-LGMRES method, deflation is not required because we are not solving a
block linear system. However, we now discuss the possibility of rank deficiency for
the initial residual block.

Consider the initial block residual for restart cycle i: Ri = [ri, zi, . . . , zi−k+1].
The initial residual block is rank deficient only if the vectors {ri, zi, . . . , zi−k+1} are
linearly dependent. Recall that random vectors are used in place of unavailable error
approximation vectors in cycles i < k. Therefore, all zj are random for the initial
cycle. Statistically these random vectors are linearly independent of the other vectors
in the initial residual block (cf. [17, 26]).

For simplicity, consider the k = 1 case for restart cycle i > 1. The initial residual
block is Ri = [ri, zi]. If ri is the zero vector, then the solution has been found. If
zi = 0, stalling has occurred. Now assume that both ri and zi are not zero, and
Ri is rank deficient. Then ri and zi are linearly dependent and ri = αzi for some
α 6= 0. Using the notation in Theorem 1, we have that zi ∈ Mi and ri ⊥ AMi.
Therefore, 〈ri, Azi〉 = 0, where 〈·, ·〉 denotes the Euclidean inner product. So for
linearly dependent ri and zi we have

〈zi, Azi〉 = 0.(7)
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Because zi 6= 0 implies stalling has not occurred, then ri 6= ri−1. By definition ri =
ri−1−Azi, and, as a result, Azi 6= 0. Therefore since ri, zi, Azi and α are all nonzero,
(7) can only hold if A is not positive definite and zi ⊥ Azi.

Consequently, the initial residual block is rank deficient if any of the following
three cases is true: ri = 0, zi = 0, or A is not positive definite and zi ⊥ Azi. The first
case is not an issue since ri = 0 indicates that a solution has been found. In the second
case, stalling has occurred, and including zi in the initial residual block at the start
of the cycle does not make sense. However, at worst zi ≈ 0 in practice since this is a
finite precision computation. Similarly, the third case is unlikely, particularly in finite
precision, and in this case (and the previous) a random vector may be substituted for
zi if a breakdown is detected. In fact, we have not had any breakdowns due to rank
deficiency in Ri in practice.

5. Numerical Experiments. In this section, we present promising experimen-
tal results from our implementation of B-LGMRES. We implemented the B-LGMRES
algorithm in C using a locally modified version of PETSc 2.1.5 (Argonne National
Laboratory’s Portable, Extensible Toolkit for Scientific Computation) [6, 5]. We thor-
oughly discuss the specific details of this implementation in the next section.

We demonstrate the potential of the B-LGMRES method both with and without
preconditioning by presenting experimental results for multiple test problems from
the University of Florida Sparse Matrix Collection [11], the Matrix Market Collection
[37], and the PETSc test collection. For reference, all test problems used in this
section are listed in Table 2. If a right-hand side was not provided, we generated a
random right-hand side. For all problems, the initial guess was a zero vector. All
results provided were run on a single processor of a 16-processor Sun Enterprise-6500
server with 16 Gbytes RAM. This system consists of 400 Mhz Sun Ultra II processors,
each with a 16 Kbyte L1 cache and a 4 Mbyte L2 cache.

For each problem we report wall clock time for the linear solve only; we do not
time any I/O or the setup of the preconditioner. For the preconditioned problems,
we use either ILU(p) or ILUTP(droptol, permtol, lfil) (e.g., see [42]). The timings
reported are averages from five runs and have standard deviations of at most two
percent. All tests are run until the relative residual norm is less than the convergence
tolerance ζ = 10−9 , i.e., when ‖ri‖2/‖r0‖2 ≤ ζ. However, if a method does not
converge in 1000 restart cycles, then the execution time reported reflects the time for
1000 cycles and we say that the method does not converge.

We evaluate the performance of B-LGMRES(m, k) for a particular problem by
comparing its time to converge to that of GMRES(m) and LGMRES(m, k) with
equal-sized approximation spaces. We use the GMRES(m) implementation available
in PETSc 2.1.5 and the LGMRES(m, k) implementation in PETSc described in [4].
For GMRES(m), we chose restart parameterm = 30 because it is a common choice for
GMRES(m) and is the default in PETSc. We required that the approximation spaces
for both LGMRES(m, k) and B-LGMRES(m, k) be of size 30 as well. Furthermore,
we wanted to evaluate the performance of LGMRES(m, k) and B-LGMRES(m, k)
using the same number of error approximation vectors, i.e., the same k, for each. In
choosing a value of k, we note that for LGMRES(m, k), k ≤ 3 is typically optimal,
and variations in algorithm performance are small for k ≤ 3 (see [4]). Note that for
a fixed approximation space size, increasing k for B-LGMRES(m, k) decreases the
powers of A represented in the approximating subspace. For this set of test problems,
preliminary testing showed that using k > 2 was typically not beneficial, and k = 1
was generally optimal. (For an approximation space larger than 30, we expect that
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Table 2
List of test problems together with the matrix order (n), number of nonzeros (nnz), precondi-

tioner, and a description of the application area (if known).

Problem n nnz Preconditioner Application Area

1 pesa 11738 79566 none
2 epb1 14734 95053 none heat exchanger simulation
3 memplus 17758 126150 none digital circuit simulation
4 zhao2 33861 166453 none electromagnetic systems
5 epb2 25288 175027 none heat exchanger simulation
6 ohsumi 8140 1456140 none
7 aft01 8202 125567 ILU(0) acoustic radiation, FEM
8 memplus 17758 126150 ILU(0) digital circuit simulation
9 arco5 35388 154166 ILU(0) multiphase flow: oil reservoir
10 arco3 38194 241066 ILU(1) multiphase flow: oil reservoir
11 bcircuit 68902 375558 ILUTP(.01, 5, 10) digital circuit simulation
12 garon2 13535 390607 ILUTP(.01, 1, 10) fluid flow, 2-D FEM
13 ex40 7740 458012 ILU(0) 3-D fluid flow (die swell problem)
14 epb3 84617 463625 ILU(1) heat exchanger simulation
15 e40r3000 17281 553956 ILU(2) 2-D fluid flow in a driven cavity
16 scircuit 170998 958936 ILUTP(.01, .5, 10) digital circuit simulation
17 venkat50 62424 1717792 ILU(0) 2-D fluid flow

using k > 1 would be an advantage more often.) As a result, we chose k = 1 for
the experiments presented here, and this choice together with the constraint of a
size 30 approximation space determined parameter m for each method as in Table 1.
Note the approximation space for B-LGMRES(15, 1) at restart cycle i+1 is given by
K15(A, ri)+K15(A, zi) and that for LGMRES(29, 1) is given by K29(A, ri)+span{zi}.

We first present results for the non-preconditioned test problems. Figure 2 com-
pares the time required for convergence for B-LGMRES(15, 1) to both LGMRES(29,
1) and GMRES(30). The x-axis corresponds to the numbered test problems given
in Table 2 which are listed in order of increasing number of nonzeros. The y-axis is
the time required for convergence for either LGMRES(29, 1) or GMRES(30) divided
by the time required for convergence for B-LGMRES(15, 1). Therefore, bars extend-
ing above one indicate faster convergence for B-LGMRES(15, 1). For all of these
problems, B-LGMRES(15, 1) converges. However, arrows above the bars in Figure 2
indicate that GMRES(30) did not converge in 1000 restart cycles for problem 1 and
both LGMRES(29, 1) and GMRES(30) did not converge for problem 4. Again, the
time for 1000 restart cycles is reported for methods that do not converge, resulting in
an understated ratio of improvement for B-LGMRES(15, 1) for the bars with arrows.
B-LGMRES(15, 1) converges in less time than GMRES(30) for all problems, and im-
provements over LGMRES(29, 1) are more modest since LGMRES is typically also
an improvement over GMRES(m) [4].

We now do the same performance evaluation for B-LGMRES(m, k) on precon-
ditioned problems, problems 7-17, in Figure 3. We use left preconditioning, and
determination of convergence is based on the preconditioned residual norm as usual.
As in Figure 2, the bars extending above one favor B-LGMRES(15, 1). The time
required for convergence for B-LGMRES(15, 1) is less than that for GMRES(30) for
problems 7-15 and about the same as GMRES(30) for problems 16 and 17. However,
performance gains are not as dramatic as those without preconditioning due to lower
iteration counts. For large problems, though, even a small improvement in iteration
count translates into a non-trivial time savings. The comparison of B-LGMRES(15,
1) to LGMRES(29, 1) is not as straightforward. The LGMRES method is quite effec-
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Fig. 2. A comparison of the time required for convergence for non-preconditioned test problems
1-6 with GMRES(30) and LGMRES(29, 1) versus B-LGMRES(15, 1).
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Fig. 3. A comparison of the time required for convergence for preconditioned test problems 7-17
with GMRES(30) and LGMRES(29, 1) versus B-LGMRES(15, 1).

tive for these test problems, and, as a result, predicting which algorithm will “win”
for a particular test problem is an open question. As an example, we tested problem
memplus both without and with preconditioning, problems 3 and 8, respectively. For
this problem, B-LGMRES(15, 1) converges in slightly less time than LGMRES(29, 1)
when no preconditioner is used, but LGMRES(29, 1) is faster with preconditioning.

For all of the test problems in Table 2, we found that the time to solution of
the restarted methods correlates well with the number of accesses of A, as opposed
to the number of matrix-vector multiplies. In Figure 4, in the top panel, the y-axis
indicates the ratio of time required for convergence to matrix accesses for the three
algorithms: GMRES (30), LGMRES(29, 1), and B-LGMRES(15, 1). In the bottom
panel, the y-axis indicates the ratio of the time required for convergence to matrix-
vector multiplies. The near constant ratio for all three methods for each problem
in the top panel shows that the number accesses of A largely determines execution
time. However, the ratios in the bottom panel are not constant for each problem,
indicating that the number of matrix-vector multiplies does not correlate well with
execution time for B-LGMRES(15, 1). In the next section, the relationship between
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Fig. 4. The upper panel shows the ratios of time required for convergence to number of accesses
of A for GMRES (30), LGMRES(29, 1), and B-LGMRES(15, 1) on the 17 test problems. The
lower panel shows the ratios of time required for convergence to number of matrix-vector multiplies.

data movement and execution time is discussed in detail.
Because our machine has sufficient resources, full GMRES is a viable option.

Therefore, we also compared the time to solution of B-LGMRES(15, 1) to full GMRES
for each of the 17 test problems. B-LGMRES converges in significantly less time
than GMRES on all but four problems: problems 7, 10, 13, and 15. There was no
correlation between problem size and method in terms of time required for convergence
for these test problems. See [3] for more details.

For the problems presented here, the time to solution of B-LGMRES(m, k) is
typically an improvement over that of GMRES(m), as shown in Figures 2 and 3. The
additional right-hand side vector(s) in B-LGMRES inhibit the tendency of restarted
GMRES to form similar polynomials at every other restart cycle (see [4]), thus improv-
ing convergence. As with the LGMRES method, B-LGMRES acts as an accelerator,
but in general does not help with stalling. In other words, B-LGMRES(m, k) has a
total approximation space size of m · (k+1) and typically does not help problems that
stall for GMRES(m · (k + 1)), though we have found a few exceptions. For problems
that stall, full GMRES or Morgan’s GMRES-DR method [35] can be good options.
Although a thorough understanding of the convergence behavior of B-LGMRES is an
open question that warrants further investigation, the experimental results presented
in this section demonstrate that solving a single right-hand side system via a block
system is a viable means of improving the time to solution of an iterative method
such as GMRES(m). In particular, achieving a balance between maintaining or im-
proving an iterative linear solver algorithm’s numerical properties and reducing data
movement is possible.
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6. An efficient implementation. In this section, we give the specific details of
our implementation and further quantify how B-LGMRES performance gains occur
from the reduction of data movement. In addition, we demonstrate the importance
of using performance programming techniques to achieve an efficient implementation.
Following the experimental results in the previous section, we concentrate on a mul-
tivector of size s = 2 which corresponds to B-LGMRES(m, k) with k = 1. However,
because the results in this section are applicable to improving the performance of
general block linear solvers as well, we also discuss the advantages of a larger block
size.

6.1. Background. Algorithmic changes in a numerical code affect the manner
in which data are moved through a memory hierarchy. Floating-point operations
typically occur after data are moved from the slower part of the memory hierarchy
(main memory) to the faster and more limited caches to the registers. Two levels of
cache are typical for current microprocessor designs, and three levels are increasingly
common. We are most interested in data movement between main memory and cache
and between levels of cache as this movement is most affected by our algorithmic
changes. L1 caches typically have access times of two to three clock cycles. Access
times are generally 5-15 times slower for L2 caches and 20-30 times slower for L3
caches. Accessing data from main memory typically requires at least 100 times more
cycles than does accessing data from L1 cache (e.g., see [49, 36, 7]).

Unlike a dense matrix-vector multiply routine, a sparse matrix-vector multiply
typically does not access data items in close succession. In particular, the compressed
storage formats used for sparse matrices generally result in irregular patterns of mem-
ory referencing (e.g., see [19, 15]). Approaches to improving the performance of the
sparse matrix-vector multiply for a given matrix problem include reordering the ma-
trix and choosing matrix-specific data structures (e.g., see [46]). For example, one
approach is to optimize the sparse matrix-vector multiplication by representing the
sparse matrix as a collection of small dense blocks (e.g., see [25, 41, 49]). Another
well-known technique referred to as loop blocking involves writing matrix operations
that divide the matrix into submatrices or blocks that are better suited for reuse in
cache than a matrix row or column array (e.g., see [21, 8, 27]).

Of particular interest to us is an approach in [22, 23] that improves the perfor-
mance of multiple sparse matrix-vector multiplies. This approach allows the multipli-
cation of a multivector of size four (i.e., a group of four vectors) by a matrix at about
1.5 times the cost of calculating a single matrix-vector product. The key to this ap-
proach is to group computations on the same data thus allowing more floating-point
operations per byte of data moved through memory. Consider the size s multivector
V , where V ≡ [v1, v2, . . . , vs] for vectors v1, v2, . . ., vs ∈ Rn×1. We chose a row-wise
storage format for the multivectors in that V is stored as a vector of length n·s in which
the components of the s vectors are interlaced. In other words, multivector elements
separated by stride s belong to a single vector: v1 = [V (0);V (s);V (2s); . . . ;V (ns−s)].
A column-wise format also stores V as a length n · s vector, but each single vector
(v1, v2, . . .) is stored contiguously in memory. We discuss the implications of row-wise
versus column-wise storage in Section 6.2. In either case, by processing the s individ-
ual vectors as a group, the matrix-multivector multiply routine, for example, performs
a greater number of floating-point operations for each access of a nonzero element of
the coefficient matrix A and has the potential to reduce the amount of data moved
through parts of the memory subsystem by a factor of s.
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6.2. Implementation. The PETSc 2.1.5 libraries contain the tools for storing
a multivector in an interlaced format, referred to as multi-component vectors in the
PETSc manual [5]. We use the PETSc matrix-vector multiply routine for multiplying
a matrix by a multi-component vector in B-LGMRES. Additionally, we modified
our local installation of PETSc to include multivector versions of the PETSc routines
VecDot, VecAXPY, VecMAXPY, andMatSolve. VecDot and VecAXPY are the vector
dot product and axpy routines, respectively, required in the modified Gram-Schmidt
steps. VecMAXPY adds a scaled sum of vectors to a vector, which is used when
solving the least-squares problem. MatSolve performs a forward and back solve for
use with the ILU preconditioner.

To demonstrate the benefit of the multivector optimization specifically, we im-
plemented B-LGMRES in PETSc 2.1.5 both with and without multivectors. We
refer to our implementation of B-LGMRES with multivectors as the MV implemen-
tation. This implementation produced the results given in the previous section. The
B-LGMRES implementation without multivectors, referred to as non-MV, represents
the best non-multivector implementation possible with the tools available in PETSc.
Both implementations were written so as to eliminate any copying of data from one
data structure to another and represent best coding efforts. For the problems in our
test set in Table 2, the execution time of the MV implementation is close to twice
as fast on average as the non-MV implementation with multivectors of size s = 2,
independent of problem size (n) and number of nonzeros (nnz).

The multivector optimization impacts more than just the matrix multiply routine
but rather pervades the implementation of the entire B-LGMRES algorithm. For ex-
ample, because U and V in the B-LGMRES algorithm as given in Figure 1 are stored
as multivectors, the orthogonalization routines in lines 6 - 9 require modification as
well. Three primary sections of the B-LGMRES code are impacted by the multivector
optimization: the matrix-vector multiply (MatMult), the modified Gram-Schmidt or-
thogonalization (MGS), and the application of the preconditioner (Prec), if required.
Because the Prec section of code shows similar characteristics to the MatMult section,
we only discuss the MatMult and MGS sections of code. We note that the execution
time for the MV implementation for our set of test problems is not consistently dom-
inated by a single section of the B-LGMRES code. In particular, the percentage of
time spent in each of the three primary sections varies from 18% to 83% for MatMult,
6% to 55% for MatMult, and 31% to 53% for Prec.

The MatMult section of the code corresponds to the matrix-vector multiply in
line 5 of Figure 1. For the non-MV implementation, successive calls are made to a
matrix-vector multiply routine for each individual vector in Vj . In contrast, the MV
implementation utilizes a single call to the PETSc matrix-multivector multiply rou-
tine, as described earlier in this section. The size of the data structures determines the
part of the memory most affected by the multivector optimizations for the MatMult
section. In particular, we denote the size of the data structures accessed by the Mat-
Mult section byWSMatMult which is the working set size or the size in Mbytes of data
loaded through the memory hierarchy while computing the matrix-vector multiplica-
tion. WSMatMult is approximately equal to the storage required for matrix A, which
is stored in PETSc AIJ format (equivalent to compressed sparse row). Therefore,

WSMatMult ≈ sizeof(A) = sizeof(double) ∗ nnz + sizeof(int) ∗ (n+ nnz),(8)

where double is a double precision value, int is an integer value, and function sizeof()
returns the size of its argument in bytes. If WSMatMult is significantly larger than
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the L2 cache size, then successive calls to a matrix-vector multiply routine repeatedly
read matrix A from main memory through both levels of cache. For WSMatMult

smaller than the L2 cache size but larger than L1, portions of matrix A may remain
in L2 cache and allow some L2 cache reuse for the successive calls to matrix-vector
multiply in the non-MV implementation.

The MGS section of code (lines 6-10 in Figure 1) often contributes significantly to
the overall cost of the B-LGMRES algorithm. This section of code required the cre-
ation of multivector versions of the PETSc routines VecDot and VecAXPY. Following
the PETSc use of Stride to denote multivector versions of common functions, we refer
to the new versions of these routines as VecStrideDot and VecStrideAXPY, respec-
tively. These routines represent the majority of the total time for the MGS section.
Therefore, we wrote the routines in a manner that limits movement of data by fusing
together computations on related data. For example, the functionality provided by
VecStrideDot for a multivector of size s is equivalent to s2 successive calls to VecDot
(the approach used in the non-MV implementation). With successive calls to VecDot,
2 · n · s2 data values must be read from the memory hierarchy. VecStrideDot reduces
the number of data values read to 2·n·s. Therefore ifWSMGS ≡ sizeof(double)·2·n·s
is greater than either the L1 or L2 cache size, use of the multivectors impacts data
movement in the MGS section of code.

Both VecStrideDot and VecStrideAXPY were written using loop temporaries and
loop unrolling to aid compiler optimization. The use of loop temporaries allows a
compiler to identify data reuse more easily at the register level. Loop unrolling further
helps register reuse and allows different iterations of the loop to occur simultaneously.
In our MV implementation we unroll the inner loop s times, where s is the block
size. We chose to write our own VecStrideDot and VecStrideAXPY routines instead
of using the level 3 BLAS DGEMM routine [14] due to the performance advantage
of a hand-coded implementation. In Table 3, the timings to perform a multivector
AXPY with s = 4 are given for the non-MV and MV implementations of our code as
well as for two DGEMM kernels. The version of DGEMM labeled “src” is compiled
from source code and the version labeled “opt” is the vendor supplied optimized
library. Timings are given in µsec for a subset of the test problems with a range of
matrix orders. The hand-tuned MV implementation of VecStrideAXPY is the clear
winner for these problems. Because the MGS section can consume a large percentage
of total execution time, simple optimizations such as those in VecStrideAXPY have
as significant an impact on overall execution time of the solver as the use of the
matrix-multivector multiply routine.

Table 3
Execution times in µsec for a single call to AXPY for the non-MV and MV implementations

as well as for the standard and optimized BLAS 3 DGEMM routines with a block size of s = 4.

Problem n non-MV MV DGEMM (src) DGEMM (opt)

13 ex40 7740 2.00 1.25 3.96 2.96
3 memplus 17758 4.55 2.85 9.18 6.73
11 bcircuit 68902 17.43 10.35 35.32 25.73
14 epb3 84617 19.54 12.58 43.49 31.88

In Table 4, we perform a similar comparison for the block dot product routine.
The improvement here is more modest for the MV implementation, though both the
MV and non-MV implementations are superior to both versions of DGEMM. Our
implementations outperform DGEMM because the loops are unrolled to the specific
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block sizes s=2 and s=4.

Table 4
Execution times in µsec for a single call to a dot product routine for the non-MV and MV

implementations as well as for the standard and optimized DGEMM routines with a block size of
s = 4.

Problem n non-MV MV DGEMM (src) DGEMM (opt)

13 ex40 7740 1.26 1.16 3.98 2.98
3 memplus 17758 2.56 2.27 9.32 6.83
11 bcircuit 68902 10.39 8.48 36.23 25.09
14 epb3 84617 12.65 12.07 44.03 30.57

As explained previously, we store the multivectors row-wise (interlaced). Alterna-
tively, one might wonder whether column-wise ordering is a viable option as column-
wise ordering better facilitates algorithmic needs such as deflation and requires less
reorganization of data. Therefore, in Table 5, we give results for the MatMult routine
on block sizes s = 2 and s = 4. MV-row and MV-col indicate row-wise and column-
wise implementations of the multivector implementation. Note that in addition to
four problems from our test set, Table 5 includes an additional problem, poisson3Db,
from the UF collection ( n= 85623 and nnz = 2374949 ). This problem has a large
bandwidth and highlights the potential performance difference between row-wise and
column-wise storage as seen in row 5 of Table 5. Our experiments seem to indicate that
the use of the column-wise storage format for multivectors on large problems with a
large matrix bandwidth causes TLB thrashing, as suggested in [28]. To illustrate this,
line 6 of Table 5 lists the results for the poisson3Db problem with Reverse Cuthill-
McKee (RCM) [10] reordering. The RCM reordering reduces the matrix bandwidth
and significantly decreases execution time for the column-wise multivector storage
format. Note that a large bandwidth does not impact the row-wise storage as much
because consecutive accesses of the multivector elements correspond to data items
that are stored contiguously.

Table 5
Execution times in µsec for the non-MV and MV implementations of the MatMult routine for

block sizes s = 2 and s = 4.

block size = 2 (µsec) block size = 4 (µsec)
Problem non-MV MV-row MV-col non-MV MV-row MV-col

13 ex40 30.7 24.7 25.1 47.1 27.4 27.4
3 memplus 17.8 13.4 13.4 32.4 15.7 16.2
11 bcircuit 65.3 46.2 46.5 116.4 61.9 63.1
14 epb3 84.6 57.8 60.2 134.2 71.0 75.6
- poisson3Db 424.2 263.5 369.2 831.7 367.6 927.2
- poisson3Db (rcm) 339.2 152.7 153.6 679.9 184.9 183.5

Having described the multivector modifications to the MatMult and MGS sec-
tions, we now determine the effects of these changes by comparing the execution
times for both sections of code in the non-MV and MV implementations. In Figure
5, the y-axis indicates the execution time for the non-MV implementation divided
by the execution time for the MV implementation for both the MatMult and MGS
sections of code for the 17 test problems. A value greater than one indicates that the
execution time for MV is less than that for non-MV. The MV implementation reduces
the execution time of the MatMult section by a factor 1.4 to 2.7 over the non-MV
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Fig. 5. A comparison of execution time for the MatMult and MGS sections with the non-MV
implementation of B-LGMRES(15,1) versus the MV implementation for ten restart cycles for the
17 test problems.

implementation. The least improvement in execution time for the MatMult section
occurs for problems 4 and 9. These problems have neither the largest nor smallest n
or nnz, but they do have the lowest average number of nonzeros per row: 4.9 and 4.3,
respectively. However, problems 6 and 13 have the highest average number of nonze-
ros per row at 178.9 and 59.2, respectively, and do not show the most improvement in
execution time. It is an open question what impact matrix density (or even nonzero
structure) has on the effectiveness of the multivector optimizations in general. The
execution time for the MGS section shows an even greater improvement on average:
the MV implementation of MGS reduces execution time by a factor 2.3 to 2.7 over
the non-MV implementation.

6.3. Impact of data movement on execution time. We now explain reduc-
tions in execution time due to the multivector optimization using data from hardware
performance counters that monitor data movement through the memory hierarchy.
We focus on two counters that measure the number of cache lines read from main
memory to the L2 cache and the number of cache lines read from the L2 to the L1
cache because their measurements correlate strongly with execution time. We refer
to the megabytes of data moved between main memory and L2 cache as MbytesL2

and between L2 and the L1 caches as MbytesL1.

To determine the specific source of performance gains for the MV implementation,
we first examine data movement between main memory and the L2 cache for the non-
MV and MV implementations. In Figure 6, the y-axis indicates the ratio ofMbytesL2

for non-MV to MV for both the MatMult and MGS sections. Bars extending above
one indicate that the non-MV implementation requires greater data movement for all
test problems than does the MV implementation for both sections of code.

As s = 2, we expected a factor of two reduction in MbytesL2 for both MV
implementations (MatMult and MGS) for test problems with a working set size sig-
nificantly larger than the L2 cache. Using (8), we determined that eight test problems
have WSMatMult larger than the 4 Mbytes L2 cache on our test system, and these
problems (6 and 11-17) all have ratios from 1.75 to 2.0 in Figure 6. These ratios cor-
relate well with factor of two reductions in execution time for those problems seen in
Figure 5. For the MGS section of code, only problem 16 hasWSMGS greater than the
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Fig. 6. A comparison of data movement from main memory to L2 cache in the MatMult and
MGS sections for the non-MV implementation of B-LGMRES(15,1) versus the MV implementation
for ten restart cycles for the 17 test problems.

4 Mbyte L2 cache size. However, problem 16 shows a ratio of MbytesL2 for non-MV
to MV of 1.4 which does not correlate well with the factor of 2.4 improvement in exe-
cution time shown in Figure 5. The results in Figure 6 are also inconsistent with those
in Figure 5 in other ways: several problems appear to show an increase in MbytesL2

for the MGS and MatMult sections for the MV implementation. In fact, for these
problems the amounts of data moved are quite small for both implementations and the
apparent increases are likely the result of measurement error. Nonetheless, the MV
implementation is faster than the non-MV one. These inconsistencies indicate that
a reduction in MbytesL2 does not accurately predict a reduction in execution time
for MGS for most of the test problems. We show subsequently that the multivector
optimization impacts a different part of the memory hierarchy for those problems.

We now consider data movement between the L1 and L2 caches. Analogously to
Figure 6, Figure 7 shows the ratio of MbytesL1 for the non-MV to MV implementa-
tions for both the MatMult and MGS sections of code. For the MatMult section of
code, we expected test problems with WSMatMult À sizeof(L1 cache) to show a
reduction in MbytesL1. Test problem 1 has the smallest WSMatMult at 978 Kbytes,
which is significantly larger than the 16 Kbyte L1 cache. Thus, all of the test problems
have a WSMatMult larger than the L1 cache size. Figure 7 shows that the ratios of
data moved do in fact range from 1.5 to 1.9. Similarly for the MGS section of code,
problem 12 has the smallest WSMGS at 241 Kbytes, which is also significantly larger
than the L1 cache. Consequently, all of the test problems have ratios of non-MV to
MV that range from 1.6 to 2.0. The reduction in MbytesL1 is thus consistent with
the reduction in execution time seen in Figure 5 for both sections of code.

Therefore, from Figures 6 and 7, one can infer that the reduction in total execution
time due to the MV implementation correlates to the reduction in MbytesL1 for
our test problems (see [3] for more details). The importance of optimizations that
reduce movement of data between levels of cache was unexpected in that emphasis
is traditionally placed on reducing data movement between cache and main memory,
which is of most concern to large problems. For much larger test problems, where
both WSMatMult and WSMGS are much larger than the L2 cache size, for example,
we expect that the reduction MbytesL2 would more strongly correlate to execution
time. However, our results indicate that data movement is not just an issue for very
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Fig. 7. A comparison of data movement from L2 cache to L1 cache in the MatMult and MGS
sections for the non-MV implementation of B-LGMRES(15,1) versus the MV implementation for
ten restart cycles for the 17 test problems.

large problems.

In fact, the results presented in this section demonstrate that reformulating an
iterative solver to use multivectors enables an efficient implementation that can re-
duce data movement for problems of any size. The key advantage of the multivector
implementation is processing the group of vectors together, which enables the re-use
of matrix data, for example, when performing a matrix-vector multiply. An efficient
implementation of a block version of an iterative method may be only marginally
more expensive per access of coefficient matrix A than a non-block version. While we
focused on the B-LGMRES algorithm which performs best for a block size of s = 2,
clearly these multivector optimizations would benefit larger block sizes and other types
of block methods, including those that solve systems with multiple right-hand sides.

7. Concluding remarks. In this paper, we explore the feasibility of modify-
ing restarted GMRES to reduce data movement. We show that for iterative linear
solvers, the time to solution is largely dependent on the number of accesses of A from
memory as opposed to the total number of matrix-vector multiplies. Therefore, mod-
ifications that reduce data movement are a particularly effective means of improving
performance. Furthermore, our results indicate that careful attention to implemen-
tation details can be quite beneficial and using available performance programming
techniques to drive algorithm development can be effective. A unique aspect of this
study is the thorough investigation of data movement through the memory hierar-
chy. Typically the impact of memory performance on an iterative linear solver is not
studied in this detail.

Our investigation led to a block variant of the GMRES method that solves a lin-
ear system with a single right-hand side. This new method, B-LGMRES, results from
choosing error approximation vectors and additional right-hand side vectors. This
choice mimics a truncated polynomial-preconditioned conjugate gradient method. In
our experiments, B-LGMRES performed best with a block size of two for an ap-
proximation space of dimension 30. For larger approximation space sizes and larger
problems, a larger block size may prove more beneficial. We find that predicting
the algorithm’s performance is non-trivial due to its dependence on many factors:
problem size (number of nonzeros and matrix order), restart parameter, block size,
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matrix properties, preconditioner choices, and machine characteristics. Furthermore,
other right-hand side vectors may be more appropriate for particular problem classes.
Given the potential performance gains from larger block sizes described in Section 6,
our implementation of B-LGMRES can serve as a template for other block methods.

Nevertheless, the substantial improvement in performance due to reduced data
movement is sufficient enticement toward pursuing block methods for single right-hand
side problems. Given the increasing gap between processor performance and memory
access time, re-examining popular linear solver algorithms is particularly important
to achieving respectable performance on modern architectures.
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[49] R. Vudoc, J. Demmel, K. A. Yelick, S. Kamil, R. Nishtala, and B. Lee, Performance opti-

mizations and bounds for sparse matrix-vector multiply, in Proceedings of Supercomputing
’02, 2002.

[50] W. A. Wulf and S. A. McKee, Hitting the wall: Implications of the obvious, Tech. Report
CS-94-48, University of Virginia, Department of Computer Science, 1994.




