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Abstract

In general, the Phase Retrieval from Modulus problem is very difficult [16]. In this report, we solve the
difficult, but somewhat more tractable case in which we constrain the solution to a minimum phase reconstruction.
We exploit the real-and imaginary part sufficiency properties of the Fourier and Hilbert Transforms of causal
sequences to develop an algorithm for reconstructing spectral phase given only spectral modulus. The algorithm
uses homeomorphic signal processing methods with the complex cepstrum. The formal problem of interest is:
Given measurements of only the modulus |H(k)| (no phase) of the Discrete Fourier Transform (DFT) of a real,
finite-length, stable, causal time domain signal h(n), compute a minimum phase reconstruction ĥ(n) of the signal.
Then compute the phase of ĥ(n) using a DFT, and exploit the result as an estimate of the phase of h(n). The
development of the algorithm is quite involved, but the final algorithm and its implementation are very simple.

This work was motivated by a Phase Retrieval from Modulus Problem that arose in LLNL Defense Sciences
Engineering Division (DSED) projects in lightning protection for buildings. The measurements are limited to
modulus-only spectra from a spectrum analyzer. However, it is desired to perform system identification on the
building to compute impulse responses and transfer functions that describe the amount of lightning energy that
will be transferred from the outside of the building to the inside. This calculation requires knowledge of the entire
signals (both modulus and phase). The algorithm and software described in this report are proposed as an approach
to phase retrieval that can be used for programmatic needs.

This report presents a brief tutorial description of the mathematical problem and the derivation of the phase
retrieval algorithm. The efficacy of the theory is demonstrated using simulated signals that meet the assumptions
of the algorithm. We see that for the noiseless case, the reconstructions are extremely accurate. When moder-
ate to heavy simulated white Gaussian noise was added, the algorithm performance remained reasonably robust,
especially in the low frequency part of the spectrum, which is the part of most interest for lightning protection.

Limitations of the algorithm include the following: (1) It does not account for noise in the given spectral
modulus. Fortunately, the lightning protection signals of interest generally have a reasonably high signal-to-noise
ratio (SNR). (2) The DFT length N must be even and larger than the length of the nonzero part of the measured
signals. These constraints are simple to meet in practice. (3) Regardless of the properties of the actual signal h(n),
the phase retrieval results are constrained to have the minimum phase property. In most problems of practical
interest, these assumptions are very reasonable and probably valid. They are reasonable assumptions for Lightning
Protection applications.

Proposed future work includes (a) Evaluating the efficacy of the algorithm with real Lightning Protection
signals from programmatic applications, (b) Performing a more rigorous analysis of noise effects, (c) Using the
algorithm along with advanced system identification algorithms to estimate impulse responses and transfer func-
tions, (d) Developing algorithms to deal with measured partial (truncated) spectral moduli, and (e) R & D of phase
retrieval algorithms that specifically deal with general (not necessarily minimum phase) signals, and noisy spectral
moduli.
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Chapter 1

Introduction

This report describes a homeomorphic algorithm for phase retrieval from modulus and MATLAB software for
implementing it. The algorithm exploits important properties of the Fourier Transform, the Hilbert Transform and
the Complex Cepstrum. The formal problem of interest is: Given measurements of only the modulus |H(k)| (no
phase) of the Discrete Fourier Transform (DFT) of a real, finite-length, stable, causal time domain signal h(n),
compute a minimum phase reconstruction ĥ(n) of the signal. The phase of ĥ(n) then serves as an estimate of
the phase of h(n). In general, the problem of phase retrieval from modulus is very difficult [16]. In this report,
we solve the difficult, but somewhat more tractable case in which we constrain the solution to a minimum phase
reconstruction.

This work was motivated by a phase retrieval from modulus problem that arose in DSED projects in lightning
protection for buildings [20, 21, 22, 23]. The measurements are limited to magnitude-only spectra from a spectrum
analyzer. However, it is desired to perform system identification on the building to compute impulse responses and
transfer functions that describe the amount of lightning energy will be transferred from the outside of the building
to the inside. This algorithm and software are proposed as an approach to phase retrieval that can be adapted for
programmatic needs.

In the report [16], the author proposed three main approaches to solving the problem of estimating a signal given
only its DFT modulus. (1) The first approach (short-term), was to apply the Parks-McClellan Remez Exchange
algorithm for finite impulse response (FIR) filter design. This approach was applied by C. G. Brown in [22]. (2)
The second approach (medium-term) was to explore the use of homeomorphic signal processing techniques using
the complex cepstrum. That is the approach followed in this report. It is not designed to deal with noisy signals.
(3) The third approach (long-term) was to embark upon a research and development program to create an advanced
phase retrieval algorithm that is designed to deal with general (not necessarily minimum phase) signals, including
noisy signals. The third approach is proposed for future work.

This report presents a brief tutorial description of the mathematical problem and the derivation of the phase
retrieval algorithm. The derivation is quite involved, but the final algorithm and its implementation are very simple.
The theoretical principles are demonstrated by results of processing simulated signals. A brief demonstration of
the effects of additive white Gaussian noise (WGN) is given to show the level of robustness of the technique.
Future recommended work includes applying this algorithm to real measured signals for the Lightning Protection
program, and performing a thorough evaluation of performance under noisy conditions.

The main contribution of this report lies in two main areas: (1) Bringing together a great deal of theory that is
distributed among a variety of references and documenting it in a tutorial fashion that facilitates the understand-
ing of homeomorphic systems and the phase retrieval algorithm. This includes descriptions and algorithm block
diagrams that are not found elsewhere, and (2) Applying the techniques in the distributed literature to create an
algorithm useful for phase retrieval from modulus for lightning protection systems.
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This report is organized as follows. In Chapter 2, we present the theoretical background necessary to position
ourselves for writing the proposed phase retrieval algorithm. This includes a statement of various Fourier Trans-
form and Hilbert Transform properties having to do with real-and imaginary part sufficiency, Discrete Fourier
Transform (DFT) properties, realization of the complex cepstrum using the complex logarithm and deriving a min-
imum phase realization using the DFT. In Chapter 3, we propose an algorithm for phase retrieval from modulus,
based upon the ideas presented in Chapter 2. Chapter 4 describes simulation experiments designed to demon-
strate the theoretical principles of the proposed algorithm. Chapters 5 and 6 present ideas for future work and
conclusions, respectively.
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Chapter 2

Theoretical Background

In this section, we very briefly describe the theoretical basics that lead to a phase retrieval algorithm based upon
the Discrete Fourier Transform (DFT). This theory is distributed about the literature, but summarized here in
tutorial form. For more detail and the formal derivations of the background material, the reader is referred to the
bibliography.

2.1 Homeomorphism and the Complex Cepstrum

2.1.1 Homeomorphism

Let us review the formal definitions of metric space and homeomorphism [25]:

If X is a normed linear space and x, y ∈ X , it is easily verified that the function d(x, y) = ‖x − y‖ satisfies
the following conditions:

(1) d(x, y) ≥ 0 and is equal to zero if and only if x = y.
(2) d(x, y) = d(y, x);
(3) d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ X (triangle inequality).

DEFINITION: X , an arbitrary set will be called a metric space if there is a function d : X × X → R satisfying
properties (1)-(3) above. The mapping d itself will be called a metric.

DEFINITION: Let (X, d) and (Y, d
′
) be metric spaces and let f be a one-to-one, onto mapping such that f : X →

Y . If f and f−1 are each continuous functions (mappings of this type are called bicontinuous), then f is said to be
a homeomorphism. Further, X is said to be homeomorphic to Y if such a mapping exists.

Homeomorphisms preserve all the essential topological properties; in particular, open sets in X are mapped
into open sets in Y , and, if x is a limit point of A ⊂ X , then f(x) will be a limit point of f(A).

2.1.2 Homeomorphic Signal Processing

Homeomorphic (or homomorphic) signal processing methods have been developed as a way to deal with classes of
nonlinear systems that obey a generalized superposition principle. Such systems are represented by algebraically
linear transformations between input and output vector spaces, and have thus been called homomorphic systems [1,
2, 25]. Two classes of homomorphic systems that are especially well-suited to signal processing are those in
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which signals are combined by multiplication and convolution. It can be shown that the problem of designing
homomorphic systems for multiplication and convolution reduces to a problem of designing a linear system [1].

Homomorphic processing has been successfully applied to problems involving the superposition of multiple
signals in a variety of applications, including seismic signal processing and speech processing [1, 2, 10, 11, 12, 13].
In particular, the techniques typcially involve converting nonlinear systems with multiplicative effects into linear
systems with additive effects through the logarithm.

2.1.3 The Complex Cepstrum and the Real Cepstrum

Here we give a preview of two defintitions we develop and use later in the paper. Given a discrete-time sequence
h(n) that has a corresponding z-transform H(z), we can define the quantity Ĥ(z) as follows:

Ĥ(z) = log[H(z)] (2.1)

As we shall see later, we define the complex cepstrum ĥ(n) as follows.

ĥ(n) = Z−1[Ĥ(z)] (2.2)

= Z−1{log[H(z)]} (2.3)

In a later section, we show that the complex cepstrum ĥ(n) of a real sequence h(n) can be evaluated by means of
a Discrete Fourier Transform (DFT) as follows:

ĥ(n) = IDFT [log{DFT [h(n]}] (2.4)

where the DFT length N must be chosen to be sufficient to avoid cepstral aliasing. In addition, a complex
logarithm must be used, and the phase must be unwrapped carefully [7].

Let us now consider taking the real logarithm of the modulus of the z-transform H(z). Let

Ĥ(z) = log|H(z)| (2.5)

The real cepstrum c(n) of the real sequence h(n) is then

c(n) = Z−1{Ĥ(z)} (2.6)

= Z−1{log |H(z)|} (2.7)

In a later section, we show that the real cepstrum c(n) of a real sequence h(n) can be evaluated by means of a
Discrete Fourier Transform (DFT) as follows:

c(n) = IDFT [log |DFT [h(n]|] (2.8)

where the DFT length N must be chosen to be sufficient to avoid cepstral aliasing [7].

2.1.4 A Note on Terminology

The origin of the term cepstrum is discussed in [1]. The name “cepstrum ”was coined by Bogert, Healy and Tukey
in their 1963 paper [10]. In this paper, the authors were processing signals containing echoes. They found that
the logarithm of the power spectrum of a signal containing an echo has an additive periodic component due to the
echo. Therefore, the Fourier transform of the log-power spectrum should exhibit a peak at the echo delay. They
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called the log-power spectrum the cepstrum, as a variation of the word spectrum. They did this because, in their
words, “In general, we find ourselves operating on the frequency side in ways customary on the time side and vice
versa [10].” The authors continued defining a variety of new words, including alanysis corresponding to analysis,
quefrency corresponding to frequency, lifter corresponding to filter, etc. Since then, the concepts have been used
widely, but only the word cepstrum has been adopted widely.

In general, for cepstrum analysis, we must use the complex logarithm, the complex Fourier Transform, and the
complex Discrete Fourier Transform. Therefore, to emphasize this point, the term complex cepstrum is used. It is
also important to emphasize, however, that the complex cepstrum ĥ(n) is real when the inputs sequence h(n) is
real. In the literature, the term cepstrum is reserved only for use in the case in which the real logarithm is used [1].

2.1.5 Properties of the Complex Cepstrum

The following properties P1 through P4 of the complex cepstrum are derived in [1], p. 502.

(P1): The complex cepstrum decays at least as fast as 1/n: Specifically,

|ĥ(n)| < C

∣∣∣∣αn

n

∣∣∣∣, −∞ < n < ∞ (2.9)

where C is a constant and α equals the maximum of |ak|, |bk|, |ck|, and |dk|, the constants in a rational polynomial
model of the z-transform H(z) [1].

(P2): If h(n) is minimum phase (no poles or zeros outside the unit circle), then

ĥ(n) = 0, n < 0 (2.10)

(P3): If h(n) is maximum phase (no poles or zeros inside the unit circle), then

ĥ(n) = 0, n > 0 (2.11)

(P4): If h(n) is of finite duration, ĥ(n) will nevertheless have infinite duration.

We shall see that these properties play a very important role in the derivation of a phase reconstruction algo-
rithm.

2.2 The Hilbert Transform

Let t denote the continuous time variable. Given a real-valued function x(t) in the interval −∞ < t < ∞, its
Hilbert Transform, denoted by x̂(t) and its inverse are defined by [3, 2]:

x̂(t) =
1
π

P

∫ ∞

−∞

x(τ)
t − τ

dτ = − 1
π

P

∫ ∞

−∞

x(t + τ)
τ

dτ =
1
π

P

∫ ∞

−∞

x(t − τ)
τ

dτ (2.12)

x(t) = − 1
π

P

∫ ∞

−∞

x̂(τ)
t − τ

dτ =
1
π

P

∫ ∞

−∞

x̂(t + τ)
τ

dτ = − 1
π

P

∫ ∞

−∞

x̂(t − τ)
τ

dτ (2.13)

where the symbol P denotes the Cauchy Principle Value of the integral [25, 3]. By the Cauchy Principle Value
of an integral P

∫ ∞
−∞ g(t)dt we mean

9



lim
ε→0

[∫ −ε

−∞
g(t)dt +

∫ ∞

ε

g(t)dt

]
(2.14)

as opposed to the definition

lim
R→0

[∫ R

−∞
g(t)dt + lim

S→0

∫ ∞

S

g(t)dt

]
(2.15)

where R and S approach zero independently of each other.

It can be shown that the Hilbert transform is the convolution of x(t) with 1/πt, or

x̂(t) = x(t) ∗ 1
πt

(2.16)

=
1
π

P

∫ ∞

−∞

x(τ)
t − τ

dτ (2.17)

2.3 Properties of Fourier and Hilbert Transforms

It can be shown that if a sequence is causal, then the real and imaginary parts of its Fourier Transform are related
by a Hilbert Transform integral. We shall explore this and some other key properties of these two transforms in
this section (presented without proof).

2.3.1 Real- and Imaginary-Part Sufficiency for Causal Sequences

Any sequence can be represented as the sum of an even sequence and an odd sequence. Letting he(n) and ho(n)
represent the even and odd part of h(n), where n denotes the discrete time index, then

h(n) = he(n) + ho(n) (2.18)

where

he(n) =
1
2
[h(n) + h(−n)] (2.19)

and

ho(n) =
1
2
[h(n) − h(−n)] (2.20)

If h(n) is causal, then it is possible to recover h(n) from he(n) and to recover h(n) for n 	= 0 from ho(n). If we
define

u+(n) =


2 if n ≥ 0,
1 if n = 0 ,

0 if n < 0.
(2.21)
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then we can write

h(n) = he(n)u+(n) (2.22)

and

h(n) = ho(n)u+(n) + h(0)δ(n) (2.23)

where δ(n) is the Kronecker delta function [1].

2.3.2 Definitions of Temporal Frequency

For clarity, let us define the term “frequency” in its various forms. The standard definition of temporal frequency
f in units of Hertz (Hz) is “cycles per unit of time,” or “cycles per second.” It is often useful to define radian (or
angular) frequency Ω in units of radians per second, where:

Ω = 2πf (radians per second) (2.24)

In digital signal processing, we often wish to calculate the Continuous Fourier Transform of a discrete-time se-
quence. In this case, we often use an angular “frequency. ” Let T be the sampling period in seconds, where
the sampling frequency fs = 1/T . Then, for a discrete-time signal , we can define its continuous-time angular
“frequency ” (or angle) in units of radians as

ω = ΩT (radians) (2.25)

2.3.3 Relationship Between the Fourier and Hilbert Transforms

As a consequence of the real-and imaginary part sufficiency properties of the Fourier Transform, we can show the
following: If the discrete-time signal h(n) is real, causal and stable, then its Continuous Fourier Transform

H(ejω) = HR(ejω) + jHI(ejω) (2.26)

is completely known if we know either the real part HR(ejω) or the imaginary part HI(ejω) and h(0). This is
because HR(ejω) is the Fourier Transform of he(n) and jHI(ejω) is the Fourer Transform of ho(n).

Earlier, we said that if a sequence is causal, then the real and imaginary parts of its Fourier Transform are
related by a Hilbert Transform integral. The following equations give that Hilbert Transform relationship [1].

HI(ejω) =
1
2π

P

∫ π

−π

HR(ejω)cot
(

θ − ω

2

)
dθ (2.27)

HR(ejω) = h(0) − 1
2π

P

∫ π

−π

HI(ejω)cot
(

θ − ω

2

)
dθ (2.28)

2.3.4 The Minimum Phase Condition

Consider a z-Transform H(z) of a sequence h(n) written in polar (or phasor) form:

h(n) Z←→ H(z) = |H(z)|ejarg[H(z)] (2.29)
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Now consider the consequences of taking the complex logarithm of H(z), defined as follows:

ĥ(n) Z←→ Ĥ(z) = log[H(z)] (2.30)

= log|H(z)|+ jarg[H(z)] (2.31)

= HR(z) + jHI(z) (2.32)

We know that H(ejω) = H(z)|z=ejω . The sequence ĥ(n) is commonly known as the complex cepstrum of
h(n) [1]. The use of the complex logarithm in the cepstrum forms the basis of why we call such processing
homeomorphic (or homomorphic), because the transformation is a homeomorphism [1, 25].

If we assume Ĥ(z) to be the z-transform of a real, causal, stable sequence ĥ(n), and assume that Ĥ(z) is
analytic in a region that includes the unit circle, then the results of the last section imply that log|H(z)| and
arg[H(z)] are Hilbert transforms of each other, as given in the following two equations [1].

argH(ejω) =
1
2π

P

∫ π

−π

log|H(ejω)|cot
(

θ − ω

2

)
dθ (2.33)

log|H(ejω)| = h(0) − 1
2π

P

∫ π

−π

arg[H(ejω)]cot
(

θ − ω

2

)
dθ (2.34)

The requirement that log|H(z)| and arg[H(z)] are Hilbert transforms of each other is known as the minimum
phase condition. This corresponds to the condition that ĥ(n) is causal. This also means that Ĥ(z) must be analytic
everywhere outside the unit circle [27]. Because Ĥ(z) = log[H(z)], this requires that there be no poles or zeros of
H(z) outside the unit circle. An equivalent condition is that there exist a causal, stable inverse system with system
function H−1(z) such that H(z)H−1(z) = 1.

We can summarize three equivalent expressions of the minimum phase condition as follows:

• log|H(z)| and arg[H(z)] are Hilbert transforms of each other.

• H(z) has no poles or zeros outside the unit circle.

• There exists a causal, stable inverse system with system function H −1(z) such that H(z)H−1(z) = 1.

2.4 Discrete Fourier Transform Properties and the Hilbert Transform

In the previous sections, we discussed Continuous Fourier Transforms (CFT’s) of discrete sequences. For im-
plementation on a computer, we must use Discrete Fourier Transforms (DFT’s). Therefore, let us examine the
properties described above in terms of finite-length periodic signals and DFT’s.

Similar to the discussion above for infinite-length sequences, any finite-length periodic sequence h̃(n) can be
represented as the sum of an even sequence and an odd sequence. If we let h̃e(n) and h̃o(n) represent the even and
odd parts of h̃(n), where n denotes the discrete time index, then we can write

h̃(n) = h̃e(n) + h̃o(n), n = 0, 1, 2, . . . , N − 1 (2.35)

where

h̃e(n) =
1
2
[h̃(n) + h̃(−n)], n = 0, 1, 2, . . . , N − 1 (2.36)

and

h̃o(n) =
1
2
[h̃(n) − h̃(−n)], n = 0, 1, 2, . . . , N − 1 (2.37)

12



Let us now define a window ũN (n) as a periodic sequence

ũN (n) =


1, n = 0, N/2
2, n = 1, 2, . . . , (N/2) − 1
0, n = (N/2 + 1), . . . , N − 1

(2.38)

From the analyses above, it can be shown that for N even, we can express h̃(n) as

h̃(n) = h̃e(n)ũN (n) (2.39)

and

h̃(n) = h̃o(n)ũN (n) + h(0)δ(n) + h(
N

2
)δ(n − N

2
) (2.40)

Note that given the even part h̃e(n), we can recover h̃(n) completely. However, because h̃o(n) is always zero
at n = 0 and n = N/2, h̃(n) can be recovered from h̃o(n) only when n 	= N/2.

Earlier, using the real-part sufficiency property of the z-transform, we were able to relate the log magnitude to
the phase when a sequence is minimum phase. However, for the Discrete Fourier Transform, it is not possible in
general to develop a parallel relationship by which the log magnitude and the phase of the DFT are related [1].

The reason for this is that for finite length sequences h(n) such as the ones we discussed above, the z-transform
has only zeros (no poles). However, the log of the transform H(z) has singularities corresponding to both the poles
and zeros of H(z). The inverse transform of such a function is of infinite duration. The DFT assumes finite length
periodic sequences in both the time and frequency domains, so the inverse transform of the log of the transform
cannot in general be represented by the Discrete Fourier Transform.

However, for real-world signals, if we are careful about choosing the size of N to avoid time domain aliasing,
we can obtain a very useful approximation that yields good results. We can write the relationship between the
real and imaginary parts of the transform in terms of DFT’s and circular convolutions as follows, assuming finite
length, periodic sequences in both the time- and frequency domains [1]:

jHI(k) =


1
N

N−1∑
m=0

HR(m)VN((k − m))N , 0 � k � N − 1

0 otherwise

(2.41)

HR(k) =


1
N

N−1∑
m=0

jHI(m)VN((k − m))N + h(0) + (−1)kh(N/2), 0 � k � N − 1

0 otherwise

(2.42)

VN(k) =

{
−j2cot(πk/N), 0 < k < N − 1 , k odd

0 otherwise
(2.43)

Where k denotes the discrete frequency index, k = 0, 1, 2, . . . , N − 1 and ((·))N denotes the quantity inside
the double brackets modulo N [1].
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2.5 Realization of the Complex Cepstrum Using the Complex Logarithm

We can exploit the process described above to build an algorithm to solve the following problem: Given a finite-
length, real, causal, stable sequence h(n), construct a realization of the complex cepstrum ĥ(n) of that signal using
the complex logarithm.

Assume that H(z) is the z-transform of a finite-length sequence h(n). If H(z) has no zeros outside the unit
circle, then we know from the discussion above that given only log|H(ejω)| we can compute arg[H(ejω)].

If we calculate Ĥ(z) = log[H(z)], it will correspond to a causal sequence ĥ(n) which in general, will have
infinite duration. So, if we use this scheme with a DFT, we must truncate the generally infinite sequence. Note that
by definition, ĥ(n) is the complex cepstrum of h(n) [1] .

We know that the DFT of the length N sequence h(n) can be written

H(k) =
N−1∑
n=0

h(n)ej 2π
N kn (2.44)

= H(z)|z=ej(2πk/N) k = 0, 1, 2, . . . , N − 1 (2.45)

where N must be chosen to have at least the length of the sequence h(n) and k is the discrete frequency index
k = 0, 1, 2, . . . , N − 1.

Using the notion of the complex cepstrum from above, consider the DFT Ĥp(k) defined by the following,
where the subscript p emphasizes the fact that the DFT is periodic:

Ĥp(k) = log[H(k)] (2.46)

= ĤR(k) + jĤI(k) (2.47)

= log|H(k)|+ jarg[H(k)] (2.48)

We know from the periodic nature of the DFT, that Ĥp(k) corresponds to a time domain aliased periodic infinite
length sequence ĥp(n) which is the complex periodic cepstrum of h(n). Therefore, if we compute ĥp(n) using
the inverse DFT, we must choose N to be at least as long as the sequence h(n) to avoid time domain aliasing. The
quantity ĥp(n) can be written as follows:

ĥp(n) =
∞∑

r=−∞
ĥ(n + rN) (2.49)

= time aliased version of ĥ(n) (2.50)

≈ ĥ(n) for N large (2.51)

where r is an integer. Note that to complete this calculation, we must also carefully unwrap the phase. Efficient
methods for calculating the complex cepstrum and unwrapping its phase are described in [1, 7]. Implementations
of this calculation are given in FORTRAN [7] and in the MATLAB command “cceps ” [28].

2.6 Minimum Phase Realization Given a Finite-Length Sequence

Consider the following problem: Given a finite-length, real, causal, stable sequence h(n), construct a minimum
phase realization ĥ(n) of h(n).

This is not the phase retrieval problem we eventually wish to solve, but it gives us some extremely important
insights into some key issues, and suggests a direction toward the solution we desire. Special consideration is given
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to the fact that for computer implementation with a DFT we must use finite-length sequences and assume that they
are periodic. We adapt the theory of infinite length sequences for use with finite-length sequences.

First, let us compute the DFT H(k) of h(n) and the spectral modulus |H(k)|. Next calculate the logarithm of
the DFT modulus |H(k)|. From Equation (2.46) in the last section, we see that this result will correspond to the
real part ĤR(k) of Ĥp(k). We write this as follows:

ĤR(k) = log|H(k)| (2.52)

From ĤR(k) we can compute the periodic real cepstrum cp(n) as follows:

cp(n) = IDFT{ĤR(k)} (2.53)

=
∞∑

r=−∞
c(n + rN) (2.54)

= Aliased Even Part of ĥ(n) (2.55)

Note that cp(n) is a periodic, time-aliased version of the real cepstrum c(n). Similar to the analysis in the last
section, we can compute the periodic complex cepstrum ĥcp(n) from the periodic real cepstrum cp(n). We can
write

ĥcp(n) =


cp(n), n = 0, N/2
2cp(n), n = 1, 2, . . . , (N/2) − 1
0, n = (N/2 + 1), . . . , N − 1

(2.56)

= cp(n)ũN(n) (2.57)

=
[ ∞∑

r=−∞
c(n + rN)

]
ũN (n) (2.58)

=
[

Aliased Even Part of ĥ(n)
]
ũN (n) (2.59)

≈ ĥ(n), for large N (2.60)

where ĥ(n) is the complex cepstrum of h(n). Comparing (2.49) and (2.56), we see that

ĥcp(n) 	= ĥp(n) (2.61)

because in ĥp(n) the even part of ĥ(n) is aliased, rather than ĥ(n) itself. Nonetheless, in Equation (2.56) we claim
that the periodic complex cepstrum ĥcp(n) is an approximation to ĥ(n) when the number of samples N is large.
Let us explore the justification for this assertion.

From the properties of the complex cepstrum discussed earlier, we saw in property P4 that if h(n) is of finite
duration, then ĥ(n) will nevertheless have infinite duration. In spite of property P4, it can be shown that for an
input sequence of length N, we need only N samples of ĥ(n) to determine x(n) [1].

From Property P1, we note that in general, ĥ(n) decays faster than an exponential sequence, so it is expected
that the approximation ĥcp(n) ≈ ĥ(n) would become increasingly better as N becomes larger. This means that for
real-world signals, we may need to take steps to ensure that the complex logarithm is sampled at a high enough rate
to avoid severe aliasing in the computation of the complex cepstrum. For example, (1) If we are given a sequence
h(n) and wish to construct a minimum phase realization, then we may need to append zeros to h(n) so that the
effective DFT H(k) is interpolated. (2) If we are given Ĥ(k) and wish to construct a minimum phase realization
of h(n) or reconstruct the phase, we may need to increase N in the frequency domain (make the frequency domain
sampling interval ∆f smaller) by interpolating the spectrum using other means [28].

15



Figure (2.1) shows a block diagram of the algorithm for calculating a minimum phase realization of ĥ(n) given
a finite-length, real, causal, stable sequence h(n). Note that implementations of this calculation are available in
FORTRAN [7] and in the MATLAB command “rceps ” [28].
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Figure 2.1: Block Diagram of the Minimum Phase Reconstruction Algorithm. Given a finite-length, real causal,
stable sequence h(n), we can construct a minimum phase realization ĥ(n) of h(n). The signal ĥ(n) is an estimate
of the complex cepstrum of h(n).
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Chapter 3

Phase Reconstruction Given Only the
Spectral Modulus

Using the results of the last chapter, we show that if we are given only the modulus | Ĥ(k)| (as we are in the
Lightning Protection Program), we can reconstruct a minimum phase sequence ĥ(n) and recover its phase from
the imaginary part of its DFT. The algorithm is summarized and depicted in Figure (3.1).

Let us now consider the following problem: Given only the modulus of a DFT, reconstruct the phase of the
DFT. We can use some of the results from the last section and expand on them to build a reconstruction algorithm.

3.0.1 Construct an Estimate of the Minimum Phase Realization Given Only the Spectral
Modulus

First, calculate the logarithm of the given DFT modulus |H(k)|. From the earlier discussion of Equation (2.46),
we see that this result will correspond to the real part ĤR(k) of Ĥp(k). We write this as follows:

ĤR(k) = log|H(k)| (3.1)

From ĤR(k) we can compute the periodic real cepstrum cp(n) as follows:

cp(n) = IDFT{ĤR(k)} (3.2)

=
∞∑

r=−∞
c(n + rN) (3.3)

= Aliased Even Part of ĥ(n) (3.4)

Note that cp(n) is a periodic, time-aliased version of the real cepstrum c(n). Similar to the analysis in the last
section, we can compute the periodic complex cepstrum ĥcp(n) from the periodic real cepstrum cp(n). We can
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write

ĥcp(n) =


cp(n), n = 0, N/2
2cp(n), n = 1, 2, . . . , (N/2) − 1
0, n = (N/2 + 1), . . . , N − 1

(3.5)

= cp(n)ũN(n) (3.6)

=
[ ∞∑

r=−∞
c(n + rN)

]
ũN (n) (3.7)

=
[

Aliased Even Part of ĥ(n)
]
ũN (n) (3.8)

≈ ĥ(n), for large N (3.9)

where ĥ(n) is the complex cepstrum of h(n). Comparing Equation (2.49) and Equation (3.5), we see that

ĥcp(n) 	= ĥp(n) (3.10)

because in ĥp(n) the even part of ĥ(n) is aliased, rather than ĥ(n) itself. Nonetheless, in Equation (3.5) we claim
that the periodic complex cepstrum ĥcp(n) is an approximation to ĥ(n) when the number of samples N is large.
In the previous section, we showed that the approximation for large N is theoretically justified. Later in this report,
we demonstrate with simulated signals that this approximation is justified in practice and very useful.

3.0.2 Reconstruct the Phase from the Estimated Complex Cepstrum

Now, if we wish to reconstruct the phase, we need only compute the DFT of ĥ(n) and save its imaginary part
because we know that Ĥ(k) provides a discrete-time estimate of the log of the continuous time Fourier transform
as follows:

Ĥ(k) = log[H(k)] (3.11)

= log|H(k)|+ jarg[H(k)] (3.12)

Saving the imaginary part of Ĥ(k) gives us the reconstructed phase.

arg[H(k)] = Im{Ĥ(k)} (3.13)

This algorithm is depicted in block diagram form in Figure (3.1).

3.1 Relationship with the Minimum Phase Realization Algorithm

The minimum phase realization algorithm is depicted in block diagram form in Figure (2.1). Comparing Figure
Figure (3.1) and Figure (2.1), we see that they contain many of the same elements.

3.2 Limitations of the Algorithm

Every algorithm has limitations and tradeoffs. When using this phase retrieval algorithm, the following points
must be kept in mind. (1) The algorithm is not designed to be used with noisy signals. We show later that the
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Figure 3.1: Block Diagram of the proposed Phase Reconstruction Algorithm. Given the input spectral modulus
|H(k)|, we can construct a finite-length, real, causal, stable sequence ĥ(n) corresponding to that spectral modulus.
The signal ĥ(n) is a minimum phase reconstruction of h(n), and it is an estimate of the complex cepstrum of h(n).
We can retrieve the phase of H(k) by saving the imaginary part of the DFT of ĥ(n).
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algorithm can be fairly robust to noise effects, but more study is needed to determine its efficacy for any given
application. (2) Regardless of the properties of the actual signal h(n), the reconstruction ĥ(n) obtained from the
algorithm is constrained to have the minimum phase property. For some systems (mostly theoretical ones), this
would not be appropriate. However, for most practical experimental applications of interest, the minimum phase
assumption is very reasonable. This is the case for the lightning protection application. The measurements are
real, causal and stable. (3) The number of samples in the signals (N ) must be even. This requirement is easy to
meet in practice, and is likely to be met naturally. This is because most signal processing systems are designed to
use Fast Fourier Transforms (FFT’s), which are fast only when the FFT size is a power of two (N = 2 r) where
r is an integer. One can easily adjust the signal length and FFT size by a variety of means, including adjustments
in the data acquisition system and zero padding. (4) The length of the signals must be large compared with the
nonzero part of the measurements to avoid cepstral aliasing. Again, this length is easily adjustable using the data
acquisition system and/or zero padding.

3.3 MATLAB Implementation

The author has written a MATLAB M-file named “Phase Retrieval GAC.m ” that implements the phase retrieval
algorithm and the simulations shown in this report. The code simulates an appropriate signal, asks the user to
specify the desired signal-to-noise ratio (SNR), then reconstructs the phase and plots the results.

To facilitate understanding, the plots in this report have labels that use the variable names use in the M-file
Phase Retrieval GAC.m. This M-file can be easily edited to create a code for use in a Lightning Protection project.
A function called Build W V GAC New.m is called by the main code to simulate additive white Gaussian noise
(WGN). The two M-files are available by contacting the author.

21



Chapter 4

Simulation Experiments

In this section, we examine the efficacy of the phase reconstruction algorithm by testing it with simulated signals,
both noiseless and noisy. We use three simulated signals; A noiseless signal, a signal containing moderate additive
noise, and a signal containing heavy additive noise.

4.1 Experimental Approach

In this report, we do not embark upon a full analysis of noise effects on reconstruction performance. Such an
analysis is left for future work. The goal here is to obtain a rough idea of the robustness of the algorithm to noisy
measurements to assess whether or not it is reasonable to proceed with further work with real-world measurements.
To this end, we simply simulate noisy measured spectral moduli, reconstruct minimum-phase realizations, and use
visual inspection of plots of those realizations to make an engineering judgment as to robustness. Future work
should include a statistical error analysis.

4.2 Definitions for the Simulations

We define three simulated signals; A noiseless signal, a signal containing moderate additive noise, and a signal
containing heavy additive noise. The noiseless case demonstrates the theory as developed above. The noisy signals
are examined because for real-world applications, there is generally some noise included in the signals. For the
Lightning Protection applications the measured moduli contain a small amount of noise. The simulations here
contain more noise than that observed in the Lightning Protection measurements. In this analysis, we wish to
examine the robustness of the algorithm to moderate and heavy noise so we can estimate whether the algorithm
might be useful for general Lightning Protection work. A full analysis of this possibility with real signals should
be carried out in future work.

4.2.1 Define the Noiseless Simulated Signal

The simulated signals are designed to meet the requirements of the algorithm’s assumptions. Let

x(n) = αnu(n) (4.1)

where we have assumed that the sampling period T is unity, and u(n) is the unit step or Heaviside function [1, 4, 6].
We assume that α is a real constant and |α| < 1. This signal is causal because of the unit step function.
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The z-Transform of h(n) is given by

X(z) =
1

1 − αz−1
, |α| < 1 (4.2)

H(z) has one zero at z = 0 and one pole at z = α. Because |α| < 1, all of the poles and zeros lie inside the unit
circle. This means that the signal x(n) satisfies the minimum phase condition. We see that all of the requirements
of the phase reconstruction algorithm are met. The signal x(n) is real, causal, and stable. In addition the minimum
phase condition is useful, as we shall demonstrate.

For the noiseless case, we assume that the signal we wish to reconstruct is x(n) as defined above. Using the
notation of the last chapter, the reconstructed signal ĥ(n) should be a close estimate of x(n).

To simulate the problem of phase reconstruction from modulus, we compute |X(k)| and assume that this is
the only knowledge we are given from our measurements. This simulates the case we encounter in the Lightning
Protection problem.

4.2.2 The Simulated Lightning Signal

Actual lightning signals have extremely high amplitudes and energies, making them difficult to measure and pro-
cess directly. In the lightning protection literature it is typical to simulate a scaled down lightning waveform and
use that in studies of buildings [24]. The model used for simulating a lightning current signal is typically a double
exponential of the following form:

I(t) = I0[−e−βt + e−γt] (4.3)

where I0 is a constant initial current, and β and γ are time constants with size about three orders of magnitude
apart. A typical set of parameters used is β = 1.e4/sec and γ = 1.e7/sec. If we discretize the time using the time
index n, we can write the lightning current as follows:

I(n) = I0[−e−βn + e−γn] (4.4)

If we let a1 = e−β and a2 = e−γ and use the unit step function u(t) to enforce causality, then the current becomes:

I(n) = I0[−a1
nu(n) + a2

nu(n)] (4.5)

This function now has a form very similar to that of the simulation signal we used above. Its z-transform can be
shown to be:

I(z) = I0

[
− 1

1 − a1z−1
+

1
1 − a2z−1

]
(4.6)

where the regions of convergence are |z| > |a1| for the first term and |z| > |a2| for the second term. The function
is stable for |β| < 1 and |γ| < 1. We see by inspection that the signal is real, causal, stable and satisfies the
minimum phase property when a1 and a2 are chosen inside the unit circle. Therefore, the signal I(t) satisifies all
of the requirements of the proposed phase retrieval algorithm. This result gives us confidence in the efficacy of the
algorithm for the lightning protection application.

4.2.3 Define the Simulated Noisy Signals

Let us now assume that the measured spectrum (and thus its inverse DFT), are corrupted by white Gaussian noise
(WGN) v(n) having zero mean and variance σv

2. We denote the characteristics of the noise by v(n) ∼ N [0, σv
2].

We can then write the noisy time domain signal z(n) as

z(n) = x(n) + v(n) (4.7)

= αnu(n) + v(n) (4.8)
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where x(n) is the same signal used in the noiseless case above, and v(n) ∼ N [0, σv
2].

For the noisy case, we assume that the signal we wish to reconstruct is x(n) as defined above. However, given
that the measurements are noisy, we expect that the estimate of the reconstructed signal ĥ(n) will be degraded
from that obtained in the noiseless case. Using the notation of the last chapter, we wish to assess whether or not
the reconstructed signal ĥ(n) is a useful estimate of x(n).

To simulate the problem of phase reconstruction from modulus, we compute the modulus |Z(k)| of the noisy
spectrum and treat it as though it is the only knowledge we have of the underlying signal. Thus, |Z(k)| becomes
our input measurement as depicted in Figure (3.1). We then process |Z(k)| to obtain the reconstructed signal ĥ(n)
and its reconstructed phase arg[H(k)].

4.2.4 Define Noise and Signal-to-Noise Ratio (SNR)

In general, we define the signal-to-noise ratio (SNR) as follows [5]:

SNR � Signal Energy
Noise Variance

(4.9)

� Ex

σv
2

(4.10)

where the energy in signal x(n) is given by

Ex �
n1∑

n=n0

x2(n) (4.11)

and we calculate the energy over the time interval between time indices n 0 and n1. We denote noise variance by
σv

2. Here, we have assumed that the discrete-time signal has time sampling interval T = 1 for convenience. For
our simulations, we compute the energy over the entire length of the data record, n = 0, 1, 2, . . . , N − 1. Note that
by Parseval’s Theorem, we could equivalently calculate the energy in the frequency domain [8, 4]. We can express
the SNR in decibels using the following definition:

SNR(db) = 10 log10

[
Ex

σv
2

]
(4.12)

= 10 log10[R], where R � Ex/σ2
v (4.13)

So, once we are given Ex for our particular signal, and we know our desired SNR(dB), we can solve for the
required noise variance. If we define G as follows, then we have:

G � SNR(db)/10 (4.14)

R = 10G (4.15)

σv
2 = Ex/R (4.16)

Consider an example from this simulation. Let Ex = 4.2632 and the desired SNR(dB) = 40. Then, we see that
G = 4, R = 104, and σv

2 = 4.2532e − 4.
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Figure 4.1: (Upper Left): The simulated noiseless minimum phase signal x(n), N = 128. Clearly, this finite-
length signal is real, causal and stable. (Upper Right): The magnitude squared of the N-point DFT of the noiseless
signal x(n). (Lower Left): The magnitude and phase of the N-point DFT of the noiseless signal x(n). (Lower
Right): c(n) = The real cepstrum ĥ(n) of h(n) for the noiseless case.

4.3 Simulation Example for the Noiseless Case

Here, we simulate the case in which the signal x(n) is noiseless. Later, we add noise compare algorithm perfor-
mance for the various cases. In the plot labels, we often use f for frequency to indicate the frequeny in Hz rather
than indicating the discrete frequency index k. Because the time sampling period T = 1, however, the two have
the same value.

The next three figures present the processing results for this experiment. They follow the processing flow in
the block diagram of the last section. The figure captions are self explanatory. We see that the reconstruction ĥ(n)
and its phase provide excellent estimates. Clearly, the algorithms performed very well for this noiseless signal.
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Figure 4.2: (Upper Left): The reconstructed minimum phase signal ĥ(n) for the noiseless case (N = 128).
(Upper Right): The signal x(n) overlayed with the reconstructed signal ĥ(n) for the noiseless case. The agreement
between the two is excellent (N = 128). (Lower Left): Magnitude squared of the DFT of the reconstructed signal
ĥ(n) for the noiseless case (N = 128). (Lower Right): Magnitude |Ĥ(k)| and phase arg[Ĥ(k)] for the noiseless
case (N = 128).
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Figure 4.3: Magnitude |X(k)| and phase arg[X(k)] overlayed on the reconstructed magnitude |Ĥ(k)| and phase
arg[Ĥ(k)] for the noiseless case (N = 128). The agreement is excellent.
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Figure 4.4: (Upper Left): The noisy minimum phase signal z(n) for SNR = 1.e5 (50 dB). (Upper Right): The
magnitude squared of the DFT of the noisy signal z(n) for SNR = 50 dB. (Lower Left): The magnitude and phase
of the DFT of the noisy signal z(n) for SNR = 50 dB. (Lower Right): c(n) = the Real Cepstrum of h(n) for SNR =
50 dB.

4.4 Simulation Example For SNR = 1.e-5 (50 dB)

The lightning protection signals measured in the field generally have small amounts of noise [23, 22, 20, 21].
Therefore, in our first example, we wish to approximate that scenario.

We calculated the signal energy for our simulated signal and found it to be Ex = 4.2632. Using the relations
in the previous section, this means that if we assign the value of the noise variance to be σ 1

2 = 4.2632.e − 5, we
achieve SNR(dB) = 50dB, which corresponds to a magnitude ratio of 1.e5. This SNR is very reasonable for the
lightning protection work. In fact, it may even be small in many situations.

The next three figures present the processing results. The figure captions are self explanatory. We see that for
the reconstruction ĥ(n), the estimation errors are reasonably small, despite the noise. The errors in the magnitude
estimate are similarly small. The errors in the phase estimate appear to be small at low frequencies. They then
grow and reach a maximimum near the folding frequency. This is encouraging for the lightning protection problem,
because the most important part of the spectrum lies in the low-frequency region [20, 21, 22, 23].
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Figure 4.5: (Upper Left): The Reconstructed Minimum Phase Signal ĥ(n) when SNR(dB) = 50 dB. (Upper
Right): The noiseless signal x(n) and the Reconstructed Signal ĥ(n) for SNR = 50 dB. (Lower Left): The magni-
tude squared of the DFT of the Reconstructed Signal ĥ(n) for SNR = 50 dB. (Lower Right): The magnitude and
phase of the DFT of the reconstructed signal ĥ(n) for SNR(dB) = 50 dB.
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Figure 4.6: The noiseless magnitude and phase of X(k) and the reconstructed magnitude and phase of Ĥ(k) for
SNR = 50 dB.
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4.5 Simulation Example For SNR = 1.e4 (40 dB)

In this example, we wish to simulate high noise measurements.

We calculated the signal energy for our simulated signal and found it to be Ex = 4.2632. Using the relations
in the previous section, this means that if we assign the value of the noise variance to be σ 1

2 = 4.2632.e − 4, we
achieve SNR(dB) = 40dB, which corresponds to a magnitude ratio of 1.e4. This SNR is much lower than that
observed in the field [23, 22, 20, 21]. Therefore, the results should represent at least a worst case scenario in most
situations.

Figure (4.7) and Figure (4.8) present the processing results. The figure captions are self explanatory. The errors
in the spectral modulus estimate are reasonably small, despite the noise. The errors in the phase estimate appear
to be small at low frequencies. They are much larger closer to the folding frequency. This is encouraging for the
lightning protection problem, because the most important part of the spectrum lies in the low-frequency region
[20, 21, 22, 23].
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Figure 4.7: The noisy minimum phase signal z(n) for SNR = 1.e4 (40 dB).
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Figure 4.8: The noiseless magnitude and phase of X(k) and the reconstructed magnitude and phase of Ĥ(k) for
SNR(dB) = 40 dB. The errors in the phase estimate appear to be small at low frequencies. They are much larger
closer to the folding frequency.
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Chapter 5

Future Work

5.1 Evaluation of the Algorithm Using Measured Lightning Protection
Moduli

Processing real-world signals such as the ones reported in the references [20, 21, 22, 23] with the proposed algo-
rithm will provide definitive information about its efficacy. At this point, a statistical error analysis should be done
to quantify the effects of noise, etc. This could include comparing the phase retrieval results with those obtained
using the frequency domain division method and the Parks-McClellan FIR filter design algorithm to estimate a
minimum phase signal [16, 22].

5.2 Apply Optimal Least-Squares Impulse Response Estimation
Algorithms for System Identification

Currently, the system identification analysis for lightning protection systems is carried out by dividing the moduli
of the DFT’s of input and output signals. The result is the modulus of a transfer function [20, 21, 22, 23]. The
This process is suboptimal for many reasons, including the facts that phase is not known (but it is required for
system identification), the system identification problem is ill-posed (has no unique solution) and the problem is
very sensitive to numerical errors [17, 19]. We propose that the process can be improved greatly by combining the
proposed phase retrieval algorithm in this report with advanced system identification algorithms [17, 19, 16].

First, reconstruct minimum phase signals for both input and output measurements. Second, carry out the system
identification task for Lightning Protection much more effectively using well-known optimal impulse response
estimation algorithms [16, 17, 19]. A comparison of the results of such and analysis with the magnitude only
results of [20, 21, 22, 23] would provide the ability to make improved evaluations of lightning safety.

5.3 Phase Retrieval for Partial Moduli

Sometimes, the lightning protection measurements provide an incomplete spectral modulus. The spectrum ana-
lyzer results are sometimes truncated in frequency, so only part of the spectral moduls is available. Systematic
methods for coping with this scenario need study. We propose to examine possible approaches, including Ban-
dlimited Spectrum Extapolation algorithms [17].
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5.4 R&D of Generalized Phase Retrieval Algorithms

In [16], the author proposed R&D directions. It is recommended that those be pursued. In particular, we are inter-
ested in the following generalizations: (1) Algorithms that are not constrained to a minimum phase reconstruction,
and (2) Algorithms that are designed to cope with noisy spectral measurements.
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Chapter 6

Conclusions

In general, the phase retrieval from modulus problem is very difficult. We exploited the real-and imaginary part
sufficiency properties of the Fourier and Hilbert Transforms of causal sequences to develop an algorithm for re-
constructing spectral phase given only spectral modulus. The algorithm uses homeomorphic signal processing
methods with the complex cepstrum. The development of the algorithm is quite involved, but the final algorithm
and its implementation are very simple.

Limitations of the algorithm include the following: (1) It does not account for noise in the given spectral mod-
ulus. Fortunately, the lightning protection signals of interest generally have a reasonably high SNR. (2) The DFT
length N must be even and larger than the length of the nonzero part of the measured signals. These constraints
are simple to meet in practice. (3) Regardless of the properties of the actual signal h(n), the phase retrieval results
are constrained to have the minimum phase property. In most problems of practical interest, these assumptions are
very reasonable and probably valid. They are reasonable assumptions for Lightning Protection applications.

The efficacy of the theory was demonstrated using simulated signals that meet the assumptions of the algorithm.
We saw that for the noiseless case, the reconstructions are extremely accurate. When moderate to heavy simulated
white Gaussian noise was added, the algorithm performance remained reasonably robust, especially in the low
frequency part of the spectrum, which is the part of most interest for lightning protection.

Proposed future work includes (a) Evaluating the efficacy of the algorithm with real Lightning Protection
signals from programmatic applications, (b) Performing a more rigorous analysis of noise effects, (c) Using the
algorithm along with advanced system identification algorithms to estimate impulse responses, (d) Developing al-
gorithms to deal with measured partial spectral moduli, and (e) R & D of phase retrieval algorithms that specifically
deal with general (not necessarily minimum phase) signals, and noisy spectral moduli.
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