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Biot’s (1962) Strain Energy Functional

2E = He2 − 2Ceζ + Mζ2 − 4µI2

where H, C, M , and µ are poroelastic constants,

e = ∇ · ~u = frame dilatation,

ζ = −∇ · ~w = increment of fluid content,

φ = porosity,

~u = solid frame displacement,

~uf = pore fluid displacement,

~w = φ(~uf − ~u) = relative displacement, and

I2 = exey + eyez + ezex − 1

4
(γ2

x + . . .) = a strain invariant.



Biot’s Equations of Dynamic Poroelasticity

ω2ρ~u + (H − µ)∇e + µ∇2~u = −ω2ρf ~w + C∇ζ,

ω2q(ω)~w − M∇ζ = −ω2ρf~u − C∇e,

where

ω = 2πf = angular frequency,

ρ = φρf + (1 − φ)ρm = the average density,

q(ω) = ρf [τ/φ + iF (ξ)η/κω], and

pf = −M∇ · ~w − C∇ · ~u = fluid pressure.



Some Relations Among Poroelastic Constants

H = Ku + 4

3
µ,

C = BKu,

M = BKu/α = C/α,

where

α = 1 − K/Km = the effective stress coefficient, and

Ku is the undrained or Gassmann bulk modulus of the

system.



Dispersion Relations

• For shear wave:

k2

s = ω2(ρ − ρ2

f/q)/µ

• For fast and slow compressional waves:

k2

± = 1

2

[

b + f ∓ [(b − f)2 + 4cd]1/2
]

b = ω2(ρM − ρfC)/∆, c = ω2(ρfM − qC)/∆

d = ω2(ρfH − ρC)/∆, f = ω2(qH − ρfC)/∆

where

∆ = HM − C2.



SOME UP-SCALING RESULTS

via effective medium theory or homogenization methods

• Electrical Conductivity (scale invariant)

J = σE → 〈J〉 = σ∗ 〈E〉

• Navier-Stokes equation → Darcy’s equation

definitely not scale invariant!

• Linear elasticity + Navier-Stokes equations →

Biot’s equations of poroelasticity

• Heterogeneous Biot → ????

Possibly to the double-porosity model in a variety of

circumstances (last year’s talk!).



First Method: Effective Medium Theory

Effective medium theory is designed to produce

estimates of coefficients in the equations of motion.

Various good alternatives are available:

◦ Average T-matrix (Mori-Tanaka, Kuster-Toksöz)

◦ Self-consistent (SC or CPA)

◦ Differential effective medium (DEM)

◦ Also, rigorous bounding methods are known.



Second Method: Mixture Theory

Mixture theory is designed to keep careful

track of the energy in the system. So this

approach includes:

◦ Hamiltonian and Lagrangian methods

◦ Biot’s original method

◦ Drumheller and Bedford’s method

This method is especially powerful for nonlinear

problems, but also provides a good method to derive

Biot’s linear equations.



Third Method: Homogenization Theory

Homogenization theory is probably the newest

of the methods, being first developed in the

1970s. Other methods can be traced back to earlier

periods of history. Periodic boundary conditions

are normally used to implement the method.

Development is designed to determine rigorously

the form of the equations in some fixed

frequency regime. So it may not determine how

the equations change as frequency is varied widely.



Fourth Method: Volume Averaging

Volume averaging was apparently first developed

in the 1960s for application to Darcy flow.

There are similarities to homogenization theory,

but does not require periodic boundary conditions.

Uses rigorous identities concerning volume

integration in 3D to smooth the equations of interest.

Not restricted to a fixed frequency domain,

but requires supplementary information to obtain

estimates of the coefficients.



Other Methods: Were Any Left Out?

• There are other methods I have not talked about

today, including:

◦ Double-porosity up-scaling (my talk last year)

◦ Numerical methods

◦ Hybrid methods — using two or more methods

simultaneously: for example, mixture theory

supplemented with effective medium theory is

one very powerful combination.



CONCLUSIONS

I take a very democractic viewpoint concerning

all these methods. I have never seen an up-scaling

method I did not like. (Well, almost never!)

All these up-scaling methods have some advantages

and some disadvantages.

I have stressed the advantages today.
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