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Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
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Executive Summary:

The concepts of Verification and Validation (V&V) can be oversimplified in a succinct manner
by saying that “verification is doing things right” and “validation is doing the right thing”. In the
world of the Finite Element Method (FEM) and computational analysis, it is sometimes said
that “verification means solving the equations right” and “validation means solving the right
equations”. In other words, if one intends to give an answer to the equation “2+2=", then one
must run the resulting code to assure that the answer “4” results. However, if the nature of the
physics or engineering problem being addressed with this code is multiplicative rather than
additive, then even though Verification may succeed (2+2=4 etc), Validation may fail because
the equations coded are not those needed to address the real world (multiplicative) problem.
We have previously provided a 4-step “ABCD” quantitative implementation for a quantitative
V&YV process:

A. Plan the analyses and validation testing that may be needed along the way. Assure that
the code[s] chosen have sufficient documentation of software quality and Code
Verification (i.e., does 2+2=47). Perform some calibration analyses and calibration
based sensitivity studies (these are not validated sensitivities but are useful for planning
purposes). Outline the data and validation analyses that will be needed to turn the
calibrated model (and calibrated sensitivities) into validated quantities.

B. Solution Verification: For the system or component being modeled, quantify the
uncertainty and error estimates due to spatial, temporal, and iterative discretization
during solution.

C. Validation over the data domain: Perform a quantitative validation to provide
confidence-bounded uncertainties on the quantity of interest over the domain of
available data.

D. Predictive Adequacy: Extend the model validation process of “C” out to the application
domain of interest, which may be outside the domain of available data in one or more
planes of multi-dimensional space. Part “D” should provide the numerical information
about the model and its predictive capability such that given a requirement, an
adequacy assessment can be made to determine of more validation analyses or data
are needed.
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Step “B” in the 4-step “ABCD” validation process is that of Solution Verification. Solution
Verification is the process of assuring that a model approximating a physical reality with a
discretized continuum (e.g. finite element) code converges in each discretized domain to a
converged answer on the quantity of subsequent validation interest. This is accomplished
in the spatial domain by subdividing the elements or cells on the entire grid or portions of
the grid, as shown in Figure 1.

Figure 1. “B” of “ABCD”: Solution Verification quantifies the proximity to convergence,
and the model uncertainties we may be forced to accept.

Stated to the extreme, we do not care, in solution verification, if the converged answer is right
or wrong; the issue of obtaining the correct (i.e. 2+2=4) answer is the realm of code
verification. If we modeled finer and finer meshes and converged to 2+2=5, with an order of
convergence consistent with our numerical technique, we should be happy. The fact that we
obtained 2+2=5 would be dealt with as a code verification error, not a failure of solution
verification. So the process for solution verification would be to run our discretized continuum
model at finer and finer meshes, and obtain both a converged solution and a smooth order of
convergence. Such a “smooth” convergence plot is shown in Figure 2.

When the mesh convergence results such as the combustion example shown in Figure 2, we
can proceed to obtain estimates of uncertainty due to Solution Verification as detailed in the
full paper and in many prior references. The result is typically expressed as error estimate on a
log-log plot, with a straight line showing the order (power) of convergence as in Figure 3:
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Figure 2. Mesh convergence study for solution verification: Combustion example.
Smooth, monotonic results shown for this case.
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Figure 3. Order of convergence for the smooth example of Figure 2. Straight log-log
lines and clear order of convergence for this monotonic example.
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The modeling reality is that often we are modeling a problem with a discretized code because
it is neither smooth nor continuous spatially (e.g. contact and impact) or in relevant physics
(e.g. shocks, melting, etc). The typical result is a non-monotonic convergence plot that can
lead to spurious conclusions about the order of convergence, and a lack of means to estimate
residual error or uncertainty. We offer one emerging technique that enables a quantification of
solution verification uncertainty at confidence and order of convergence for monotonic and
non-monotonic mesh convergence studies. The method offers insight into both code
development (convergence order versus that expected), and supplies the quantitative terms
needed for inclusion into subsequent model validation, confidence, and reliability analyses. We
show that this method can preclude the calculation of spurious high values of convergence
order, and give reasonable uncertainty estimates for inclusion into the quantitative validation
process, parts “C” and “D” of “ABCD” validation. We demonstrate this on a real system
example.

(V)

Page 4 of 4



