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Resolution of the long-standing overprediction of the resonance to intercombination

line-intensity ratio in mid-Z neonlike ions

Kevin B. Fournier and Stephanie B. Hansen
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore, CA 94550, USA
(Dated: September 11, 2004)

The Ne-like resonance 2p° 1S - 2p®3d P (3C) to intercombination 2p° 1S - 2p°3d 3D (3D) line-
intensity ratio, R(3C/3D), has been extensively studied through high-accuracy measurements and
calculations of atomic structure and collision cross sections. However, even state-of-the-art rel-
ativistic multiconfiguration atomic-physics codes generally predict values of R(3C/3D) that are
significantly larger than those observed in coronal-density experiments. In this paper, predictions
of R(3C/3D) across the Ne-like isoelectronic sequence from chromium to silver are brought into
agreement with coronal-density experimental measurements in two steps: first by including a semi-
empirical correction in the collisional atomic data due to configuration-interaction effects, and next
by including the effects of cascades on the upper level populations. The configuration-interaction cor-
rection is inspired by the observation that nearly all data-production codes fail to predict R(3C/3D)
correctly and is justified theoretically by a careful analysis of configuration-interaction contribu-
tions to level energies. The dependence of R(3C/3D) with electron density and its agreement with
moderate-density measurements are shown. A brief description of the application of our technique

to line ratios in He- and Ni-like x-ray spectra is also given.

PACS numbers: 32.70.Fw 32.30.Rj 34.80.Kw
I. INTRODUCTION

With its closed-shell ground configuration, the Ne-
like ion is stable against ionization across a relatively
broad range of temperatures. Spectra from Ne-like ions,
with only a few strong and well-resolved emission lines,
are workhorse spectroscopic diagnostic probes of plasma
temperature and density conditions in both astrophys-
ical [1-9] and laboratory plasmas [10-14]. The Ne-like
spectrum has been extensively studied through experi-
mental measurements and theoretical calculations, and
yet there is persistent disagreement between the experi-
mental and theoretical values of the 3C/3D Ne-like line-
intensity ratio, R(3C/3D) [3C: 2522p°® 1Sy — 2522p°3d 1 Py
(LS-coupling) or (2p;/2,3ds;2)1 (jj-coupling) and 3D:
2522p% 18y — 25?2p°3d Dy or (2p3/2,3ds/2)1]. In 2003,
Beiersdorfer [15] pointed out that calculations have over-
predicted R(3C/3D) in FeXVII since the 1980’s. This
failure of theoretical atomic calculations to predict cor-
rectly a relatively simple ratio in the FeXVII spectrum
has cast doubt on the absolute accuracy of calculated
atomic data and has given rise to energetic debate about
the role of physical processes such as resonance scatter-
ing of line radiation in the solar corona [5, 16-18]. Re-
cent high-precision electron beam ion trap (EBIT) mea-
surements of the isolated 3C and 3D lines [19, 20] have
clarified the roles of line blends and resonance scatter-
ing in the observed stellar-coronae FeXVII ratios. The
EBIT experiments have shown that for observations over
a range of temperatures, FeXVI satellites give a spuri-
ous enhancement of the 3D intensity, and remove any
question about optical depth from the interpretation of
the 3C resonance line intensity from astrophysical sources
[20]. However, modern atomic physics codes (e.g. [21-23],
and many others to be discussed below) still cannot cor-

rectly predict R(3C/3D) for FeXVII. Further measure-
ments [24, 25] from low-density plasmas have shown that
the theoretical overprediction of R(3C/3D) is systematic
for mid-Z elements.

Relativistic, multiconfiguration calculations find that
R(3C/3D) decreases with higher atomic numbers, since
the relative strength of the ‘forbidden’ 3D line increases
with respect to the 3C line as ions move away from
LS-coupling and the contributions of different pure ba-
sis states to the physical upper level of each transition
change. (The strength of the forbidden line with re-
spect to the resonance line increases as ~Z5 near LS-
coupling and ~Z%, where Z, is the effective ion charge,
for more highly ionized systems.) In the present work,
we find that by making a small semi-empirical correction
to the multi-configuration contribution to the strength
of the 3D (increase) or 3C (decrease) line, we can im-
prove the agreement between predicted and observed
R(3C/3D)’s from an overprediction of 2 20% to ~ 10%
for mid-Z (Z7=24 to Z=32) elements. The magnitude
of this configuration-interaction (CI) correction is deter-
mined by comparing energy-level calculations with high-
precision measurements of energy differences between the
upper levels of the 3C and 3D lines. In Section III of
the present paper, we postulate how our semi-empirical
CI correction accounts for the infinite number of vanish-
ingly small CI corrections to the strength of the 3C and
3D transitions.

In addition to the CI correction, we examine the effects
of collisional-radiative (CR) processes on R(3C/3D),
namely collisional mixing of level populations and radia-
tive cascades following electron-impact excitation. We
show that in the coronal (low-density) limit, R(3C/3D)
is smaller than the ratio of collisional excitation rates
which is often taken to obtain low-density line ratios, be-



cause radiative cascades preferentially enhance the pop-
ulation of the upper level of 3D. At intermediate densi-
ties, R(3C/3D) decreases due to collisional processes that
tend to depopulate the upper level of 3C relative to that
of 3D, and then increases towards the LTE (high-density)
limit. By including both CI corrections and CR effects,
the predicted values of R(3C/3D) agree well with ratios
measured for many elements in plasmas with a wide range
of densities.

A recent paper [26, 27] has proposed that the theoreti-
cal R(3C/3D) can be brought into agreement with experi-
ment by using large-scale, relativistic close coupling (CC)
calculations of collision strengths, and demonstrated such
agreement for FeXVII. The present paper offers an alter-
native path for progress on improving modeled x-ray line
ratios. We find that our CI correction to calculated col-
lision strengths accounts for approximately half of the
difference between the CC results in Refs. [26, 27] and
older distorted-wave approximation (DWA) calculations
of R(3C/3D). Radiative cascades (which were also in-
cluded in [26, 27]) contribute a correction of equal magni-
tude to the ratio and bring our DWA calculations into full
agreement with experimental measurements; the present
work thus offers a general path for the improvement of
atomic structure codes and calls out the observation that
a full treatment of CR processes is required even at low
densities.

In Section II below, we present selected details of the
HULLAC suite of codes [21] we use for atomic data gen-
eration. In Section III, we introduce our CI correction to
calculations done with the HULLAC suite of codes for all
elements from Cr (Z=24) to Ag (Z=4T7). The collisional-
radiative model is introduced in Section IV, and CR ef-
fects on calculated values of R(3C/3D) are shown over
a wide range of electron densities. Evidence that these
CI and CR corrections to calculated resonance to inter-
combination line ratios may be quite general is presented
in Section V: We review published theoretical data sets
for FeXVII, showing that older calculations fail to predict
R(3C/3D) in the low-density limit and that their discrep-
ancies are all in a direction consistent with the parameter
that indicates the size of the needed CI correction. We
also note that overpredictions of resonance to intercom-
bination line ratios have been observed in He-like and
Ni-like systems and show that the present approach may
improve the agreement between experiment and theory in
those systems as well. Finally, we conclude in Section VI.

II. CHOICE OF CODES

Tn the sections that follow, we present calculations for
R(3C/3D) from Ne-like ions of several elements for both
low- and high-density plasmas. In every case, the data
used to compute the ratio come from the HULLAC (ver-
sion 7) suite of codes. Details on the codes in the HUL-
LAC package are given in [21] and the references therein;
here, we will only summarize the salient points. We

choose to work with HULLAC data because the codes
have been shown to be highly accurate [28-30] and easy
to use for collisional radiative modeling [12, 31, 32]. We
are highly familiar with the details of the HULLAC cal-
culations and can assess the contributions of parts of the
energy-level calculation to the derived energy eigenval-
ues.

Radial wavefunctions in HULLAC are computed with
the RASER [33-35] code, which is a fully relativistic,
multiconfiguration Dirac solver that operates in inter-
mediate coupling. CI is allowed between all levels in
the problem with common total angular momenta J and
common parity, or between the levels of a set of user-
specified configurations; for all calculations discussed
here, we operated in the former manner. The atomic
relativistic states are obtained from the many electron
Dirac Hamilitonian that includes the Breit [36] inter-
action and quantum electrodynamic (QED) corrections.
Wavefunctions for mixed-configuration states are found
by diagonalizing a zero?" order Hamiltonian matrix that
includes Dirac monoelectronic energies and the spheri-
cally averaged interaction between the electrons and a
first-order perturbation that includes the non-spherical
part, of the electron-electron interaction; the results are
mixed-configuration states, first-order energies and some
correlation corrections. These correlation corrections are
most important in the level energies of fairly low-Z mem-
bers of the Ne-like iso-electronic sequence (Ti'2* and be-
low) [37], and, since the shift in level energies has been
found to be nearly uniform for all levels of a configuration
[38], they cancel out of the energy difference between the
upper levels of the 3C and 3D transitions and are not
important to the present proposed CI correction.

Rather than use the variational principle that is the
basis of the Hartree-Fock and Dirac-Fock methods of
solution, RASER uses perturbation theory to minimize
configuration-averaged energies using an analytic, para-
metric potential [34]. The single potential gives orthogo-
nal wavefunctions, which are not guaranteed by the vari-
ational treatments. In the parametric potential, the ex-
act exchange contribution to the first order energies is
included without a need for an explicit exchange poten-
tial, and transition energies between nearby levels can be
computed directly, rather than as the (small) differences
between (large) total energies. For the present calcula-
tions, we minimized the energies of the 2s%2p>3( (¢ < 2)
configurations in separate potentials for each £ value, and
also used separate potentials to compute the wavefunc-
tions and energies of levels in 2s22p%, 2s'2p®3¢ (¢ < 2),
2522p°4L (£ < 3), 2522p5nl (5<n <8, £ <4), and 2s'2p%nl
(4<n <8, £ <4). Since the wavefunctions obtained using
these separate potentials may not be orthogonal, RASER
saves the optimized average energy for each configura-
tion computed in its specified potential, then computes
the energy of all fine-structure levels in the problem in
a single specified potential (usually that of the ground
configuration), thus insuring orthogonal wavefunctions.
An energy shift is applied for the difference between the



calculations in the optimal potential and the final poten-
tial, and all transition operators are evaluated with the
orthogonal final-potential wavefunctions.

The contributions from the Breit operator are com-
puted as a second-order perturbation with magnetic in-
tegrals according to the formalism of Grant (first paper
of [35]) for averages of relativistic configurations. QED
corrections (self-energy of a bound electron [39] and vac-
uum polarization [40]) are then added to the first-order
energies by equating an effective nuclear charge for each
bound electron to tabulated values (see equation 6 of
[41]). The set of configurations listed above generates
361 fine-structure levels; in the calculations investigating
R(3C/3D) for all elements from Z=24 to Z=47, we find
accuracies in the absolute energies of the 3C and 3D lev-
els compared to experimental measurements of between
1 part in 1500 to 1 part in 3300.

The piece of the HULLAC package that calcu-
lates the bound-bound electron-impact-excitation colli-
sion strengths is the COLEX suite of codes [42]. COLEX
gets the transition energies and the relativistic wave-
functions from RASER and computes collision strengths
semi-relativistically in the distorted wave approximation
(DWA) [43]. Here, semi-relativistically means approx-
imating the large radial component of the continuum-
electron wavefunction with a Schrédinger solution and
setting the small component to zero. Unlike the CC
method, which couples open and closed channels, the
DWA does not preserve unitarity. However, for highly
charged ions such as those considered here, the actual
collision-strength matrix elements are quite small, and
the unitarization correction is not needed [44]. HUL-
LAC achieves a great increase in the speed of the col-
lision strength calculation by factoring the cross-section
formulas into a radial part involving only one-electron
wavefunctions and a sum over the partial waves of the
continuum electron and an angular part involving the
coupling between the bound electrons in the target states
of each transition [42]. The latter piece is applicable to
any coupling scheme and to mixed-configuration states.
The exchange interaction between the continuum elec-
tron and the target states is kept, the effect being carried
in values of the tensor rank for angular coefficients that
might not satisfy the usual parity constraints for electric
multipole transitions. The radial part of the calculation
still depends on specific transitions through conservation
of energy, i.e. AF;y=E; - E; = €in - €ous, Where E is the
energy of a target level, and ¢ is the energy of the incom-
ing or outgoing continuum electron. However, instead of
recomputing the radial integrals for each transition and
each g4y, it was found [42] that the radial integrals are
smooth functions that can interpolated between a few
values of AFE;r. Tn particular, for a given g5y and a
given array of transitions, the integrals are calculated for
the largest, smallest and mean transition energies, and
linear interpolation on AFE;; is used to estimate the rest
(interpolation on log(AE; ;) for dipole allowed integrals).
A great speed-up of the calculation of the continnum or-

bitals has been achieved by an elaboration [45] of the
classical phase amplitude description of the free-electron
wavefunctions. The formula of Burgess [46] is used to
estimate the sum over partial waves from some upper
value to oo; the upper value for each transition array is
calculated in the COLEX suite by requiring that the esti-
mated contribution from the high partial waves be small
[21]. Given that high-Z ions can have configurations with
enormous numbers of levels, and that the transition ar-
rays coupling such configurations are also enormous, the
factorization-interpolation method of the HULLAC suite
can speed up calculations by orders of magnitude.

IIT. CI CORRECTIONS

Having described some details of the present calcu-
lations, we turn to a comparison of calculated line ra-
tios to low-density experimental values. The state of
this comparison for various elements is shown in Fig. 1.
The dashed lines show the calculated ratios of oscil-
lator strengths and electron-impact excitation collision
strengths, as labeled, and the experimental ratios are
taken from the literature [19, 20, 24, 25, 29, 32, 47]. For
iron (Z=26), two experimental data points are given, one
from an EBIT, which has a density of n. &~ 10'? cm 3,
and one from the PLT tokamak, which has n. ~ 5x10!3
ecm™?; both of these plasmas are near the low-density
limit for R(3C/3D). The EBIT value was observed from
a nearly pure Fel® plasma while the tokamak value was
observed with a line of sight that passed through a large
range of plasma temperatures and included emission from
several other iron ions, including FeXVI lines. As was
demonstrated by Brown et al. [20], the lower value of
the tokamak ratio is due to a near coincidence between
an inner-shell excited line of FeXVI with the 3D line of
FeXVII. Data for Ge (Z=32), Se (Z=34), Kr (Z=36),
Mo (Z=42) and Ag (Z=47) are also from tokamaks and
may be similarly affected by lines from other ions; this
possibility is reflected in their larger error bars.

The theoretical ratios of collision strengths given in
Fig. 1 are close to line-intensity ratios in the low-density
limit where collisional coupling and radiative cascades
between levels in the Ne-like ion are neglected. In this
limit, R(3C/3D) is

Isc/Isp = B3cQsc/PapQsp (1)

where /3 is the radiative branching ratio for the line in
question (very near unity for 3C and 3D in all elements),
and @ is the rate coeflicient for impact excitation from
the Ne-like ground state to the upper level of the tran-
sition. For the nearly monoenergetic electron beam of
an EBIT, the rate coefficient is directly proportional to
the collision cross section and the impact electron veloc-
ity: @ =v.o(e), where e is the impact-electron energy.
The cross section for excitation is related to the dimen-
sionless collision strength by o = Ry(’;ao ), where Ry is

the Rydberg unit of energy, ag is the Bohr radius, and




& 1
5.0 Ay e LLNL EBIT, Ref. [25]
4.0 ¥ > ALCATOR Tokamak, Ref. [29]
d A B PLT Tokamak, Ref. [24,47]
NN, FTU Tokamak, Ref. [32]
3.0 TNNE - -#-- gf(3C)/gf(3D) calculated
= m ONNe — & - Q(3C)/Q(3D) calculated
) '\t., —=— Q(3C)/Q(3D) w/ CI correction
X 2.0
O
2
o
1.0 |
0.9
0.8 |
07 -
0.6
L @® Brown et al., Ref. %19;3 i
A Rice et al., Refs. [29,30] -
B Beiersdorfer, Ref. [47]
A NIST Web page [5OIJl
® X Shlyaptseva et al., Ref. [51] | =2
i & Osterheld et al., Ref. [53] 1105 M
A AAy - Boiko et al., Ref. [52] j o
| —
X | o
| m
o
& | 5
—————————— o QL i e X R
- N - - - | 0.95
25 30 35 40 45
element

FIG. 1: Color online - (top) Summary of experimental 3C to 3D intensity ratios from low-density sources along with HULLAC
calenlations of the ratios of oscillator strengths (short dashes) and collision strengths (long dashes, with CI correction, solid
line). (bottom) The relative differences between calculated and measured 3C and 3D upper level energies.

go is the statistical weight of the initial level. Thus, for
the EBIT observations, the R(3C/3D) values are simply
the ratios of any of the quantities @), o or 2, and are
identically given in Fig. 1, where we have calculated col-
lision strengths at the electron beam energies reported
for the EBTT experiments. We find that the ratio of
Qzc(e) to Q3p(e) changes by less than 5% for Ne-like
Fe when ¢ increases by two orders of magnitude from
near the threshold energy for 3C, and by less than 2.5%
for Ne-like Mo when ¢ increases by three orders of magni-
tude. For tokamaks, which have Maxwellian electron dis-
tributions characterized by an electron temperature T,
collision rate coefficients (vo) are obtained by averaging
collision strengths over the electron distribution. This
averaging introduces a factor of exp(—AE;;/T.) to the

rate coeflicients. Since the ratio of the 3C to 3D collision
strengths is nearly constant for impact-electron energies
from threshold to tens of keV, the ratio of Maxwellian
collision rates reduces to the ratio Q3¢ /f23p and a fac-
tor exp(—dE/kT), where 6E = AE(3C) - AE(3D). The
exponential factor is near unity for temperatures much
larger than the energy difference § E, and for typical toka-
mak temperatures of 1-2 keV, the collision strength ratios
given in Fig. 1 are within 5% of the Maxwellian-averaged
collision rate ratios. Figure 1 shows that both EBIT and
tokamak measurements of R(3C/3D) are systematically
overpredicted by about 20%.

Tn pure LS coupling, the 3D transition is strictly for-
bidden by both the AS and AL selection rules. The
transition proceeds in intermediate coupling because the



physical state of the upper level of the 3D transition con-
tains admixtures from the upper levels of both 3C and
3E (2p% 'Sg - 2p°3d ®Py). The increase of the 3D tran-
sition with larger atomic numbers is due to increasing
relativistic effects in the upper level wavefunctions that
move the system farther from LS coupling. Strength is
transferred between upper levels of ionic transitions by
configuration interaction, which takes place due to off-
diagonal elements of the Coulomb interaction operator
(7. The strength of the interaction depends on the sepa-
ration of the interacting levels. For some state 41, to first
order in the perturbation by the G operator, the mixed
state reads:

{1}y =) + Z [Va) (Wil Gl By — Ei] - (2)

where the state in curly brackets is mixed, and the sum
runs over all levels with the same parity and total angular
momentum as |1). From Eq. 2, it is possible to deduce
the strength of the transition from [{¢1}) to some level
1p (mixed or pure) that is created by the interaction with
basis states |1;)

S10= Y X {wol D wawilGlen)/ B - B} )

where D = er is the electric dipole operator. Thus, the
strength transferred to the transition 1—0 by CI is pro-
portional to the inverse square of the energy-level separa-
tion between level 1 and the perturbing level. (The case
of level 0 being strongly mixed can be included too, such
is not the case for the ground state of the Ne-like ions
considered here.) Strong CI effects have been observed
in the n=3 levels of higher-Z Ne-like ions when levels
approach each other [48], and dramatic examples of the
transfer of strength between nC and »'D (n > n') transi-
tions in n' > 3 levels have been documented when levels
with different principal quantum numbers approach each
other [28-30, 49]. Since collision strengths are propor-
tional to the transition strength in Eq. 3, the effect of CI
on collision strengths manifests as the inverse square of
the energy difference between the mixing levels. In our
calculations, the upper levels of 3C and 3D are strongly
mixed with each other for lower-Z elements (from Cr to
Kr), and the upper level of 3D also mixes strongly with
the upper level of 3E for all elements from Cr to Ag.
The convergence of the CI effect with increasing num-
bers of mixing levels is shown in Fig. 2 for the case of
FeXVIIL In Fig. 2, we plot the calculated difference be-
tween the upper energy levels of the 3C and 3D transi-
tions, 6E°, relative to the difference measured by Brown
et al., SE*P. Each point in the figure is calculated includ-
ing another manifold of levels (all with principal quan-
tum number n) to interact with all previously included
levels: the circles are for calculations that are formed
by the promotion of a single n=2 electron, the squares
have configurations formed by promoting either one or
two n=2 electrons. That is, the circle at n=3 includes
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FIG. 2: FeXVII §E®*P/§E® versus highest principal quan-
tum number included in the structure calculation: circles -
calculations with only singly excited levels, squares - with
doubly excited levels included (§E®*® = 13.365 from Brown
et al. [19]).

interaction between all levels with a promotion of either
a 2s or 2p electron to a 3£ (£ <2) orbital, and the square
at n=3 includes those same singly excited configurations
plus 25%22p*3£3¢' and 25'2p°3¢3¢'. Likewise, the circle at
n=4 includes the n=3 configurations and all singly ex-
cited 44 (£ < 3) orbitals, and the square at n=4 includes
all the singly and doubly excited n=3 configurations plus
the singly excited n=4 configurations and 2s*2p*3£4¢'
and 2s'2p°304¢' (¢’ < 3). For n > 5, only nf orbitals
with (¢ < 4) have been considered and for n > 8, the
2snf channels have been neglected. Beyond n=6, the
doubly excited channels become too large to compute in
an integrated fashion.

Figure. 2 illustrates that the calculated value of §E<!
gets closer to the experimental value as the number of
channels included in the CI correction increases (either
by increasing the maximum value of n or by including
doubly excited channels as well as singly excited chan-
nels). This decrease of §E“® towards §E®*P is due to a
much faster repulsion of the 3C upper level away from
the continuum (towards 3D) than for the upper level of
3D. In the singly excited case, the actual change of the
3C level energy going from n=3 to n <15 is &~ 0.25 eV
out of ~ 826 eV, while the shift of the 3D level energy
is only = 0.095 eV out of & 812 eV. The introduction of
doubly excited configurations in the calculations is dra-
matic; their inclusion in just the n=3 case captures more
of the correction required to get agreement with mea-
sure FeXVII level energies than does going to n < 15 in
the singly excited channel. The ratio of Q3¢ /Q3p is also
affected by the limit of CI in the calculation. For the
singly excited case, the Qsc/Q3p ratio goes from 3.85
(n=3 only) to 3.68 (n < 8, the value shown in Fig. 1),
and is almost constant with n thereafter. Adding doubly
excited levels with n < 4 (the largest model for which we
could get COLEX to run), the Q3¢ /Q3p ratio decreases
to 3.51.

The FeXVII example above shows that the agreement
of the calculated §E with high-precision experimental



measurements improves significantly when CI effects are
explicitly included for a large number of states, and that
better agreement in 6E°! leads to better agreement in
Q3¢ /Qsp. These same observations obtain in all the Ne-
like systems studied here. However, since the number of
channels which can contribute to the CI effects on E!
is potentially infinite, we propose a semiempirical correc-
tion which can be used with calculations of any complex-
ity. Following Eq. 3, the correction to R(3C/3D) for the
strength transferred by an infinite number of CI chan-
nels can be obtained by adjusting the dominant mixing
in the upper levels of 3C (or 3D) by the experimental
energy separation of the interacting levels, giving

_ Q3cfse <5Ee"p>2
~ Q3pBsp \ SEC

As evidence for the general applicability of this formula-
tion, we note that the two values of the Q34/{l3p ratio
quoted above (3.68 and 3.51) give nearly the same value
(3.28 and 3.25) when the corrections from Fig. 2 are used.
Therefore, throughout the remainder of this section and
the next, we use calculations which include only CT con-
tributions from singly excited states with n < 8.

The theoretical ratios of collision strengths given by
the dashed line in Fig 1 overestimate the experimental
data points by an average of about 20% for 7 < 35,
falling well outside the experimental error bars. However,
as shown in the bottom panel of Fig. 1, the HULLAC
data also systematically overpredicts E® in compari-
son to precise experimental measurements [19, 30, 50—
54]. The intensity ratios given by the solid line in Fig. 1
are obtained by modifying the HULLAC intensity ratios
according to Eq. 4. The corrected theoretical ratios are
within about 10% of the experimental ratios. The CI cor-
rection is largest for 7 < 32, where the system is far from
both LS and jj-coupling and where the disagreement in
R(3C/3D) was greatest to begin with. The HULLAC
predictions for the 3D level energy are less than 1 eV
below the measured energies for 24 < 7 < 34, while the
predicted 3C level energies are < 1 eV larger than mea-
sured. For 7 > 36, the energies of both 3C and 3D are
predicted to be 1 — 2 eV larger than observed. The op-
posite direction of the disagreements at the low-Z end of
the range leads to the larger divergence between theory
and observation seen in the lower panel of Fig. 1.

The magnitude of this CT effect, and the impracticality
of including every important CI channel in ab initio cal-
culations of energy levels, suggests that atomic-structure
codes should have an option to converge their calculated
energy levels to highly accurate spectroscopic measure-
ments in order to improve atomic data for CR models.
However, it is an open question whether the CI correc-
tion ought to be applied by increasing the rates into and
out of the upper level of 3D or by decreasing those of 3C.
Either method will decrease R(3C/3D), but the choice
made here will affect other line ratios as well. Some guid-
ance on this question is provided in [55], where several
ratios of various 2p — 3s and 2d — 3d line intensities in

R(3C/3D)

4)

the Fe XVII spectrum indicate that an overestimation of
the 3C line intensity is the source of the disagreement
between theory and experiment.

IV. CR CORRECTIONS AND DENSITY
EFFECTS

Including CI corrections in the data is a necessary step
towards reaching agreement with the experimental mea-
surements, however, even with this correction, many the-
oretical points still fall outside the experimental error
bars in Fig. 1. The intensity ratios given in Fig. 1 ne-
glect radiative cascades and collisional processes, an ap-
proximation that is nearly ubiquitous in the literature.
However, CR processes can affect line intensities even
at low densities, particularly in closed-shell ions, where
radiative cascades from excited levels that cannot decay
directly to the ground state can feed into the upper levels
of dipole-allowed lines. We have performed CR calcula-
tions using models based on HULLAC data to quantify
the effects of CR. processes on the 3C and 3D line inten-
sities. The models include levels up to n=8 for Ne-like
ions and up to n=4 (5) for F- (Na-) like ions. Selected
autoionizing states with n up to 5 are included in the
Na-like ions.

Figure 3 shows the results of these CR calculations for
Fe, Ni, and Ge at Maxwellian temperatures from 0.1 to
0.2 times the ionization energy of the Ne-like ion. Ra-
tios of the Cl-corrected collisional rate coefficients (low-
density limit) and ratios of radiative decay rates with
Boltzmann factors (LTE/high-density limit) are given in
Fig. 3 by dashed and dotted lines, respectively. Note that
while the ratios reach the LTE limit at high densities, the
ratios of collisional rates are about 5% larger than the in-
tensity ratios found using a full CR treatment. This is
because radiative cascades from high-n levels preferen-
tially populate the upper level of 3D in AL=1 transi-
tions over the upper level of 3C. The effects of cascades
are largest for the low-Z models — decreasing R(3C/3D)
by almost 10% for Cr and only 3% for Mo — because the
LS selection rules that govern radiative decay are most
strict in low-Z systems. The effects of radiative cascades
on R(3C/3D) have been found to converge in the low-
density limit when levels up to n & 5 are included in the
CR models [56]. At intermediate densities, collisional
processes (including ionization and recombination) tend
to depopulate 3C preferentially over 3D, and the inten-
sity ratio falls further below the low- and high-density
limits. The ratio reaches a minimum at some n. which
increases with Z, and then increases to its LTE limit at
very high n..

With both the CR and the CT corrections, almost all
of the calculated data points fall within the error bars of
the low-density experimental data, as shown by the solid
line in Fig. 4. Figure 4 also shows moderate-density ra-
tios derived from published spectra from pinch and laser-
produced plasmas [10, 14, 57-61]. The error bars on the



R (3C/3D)

1 Ge (315 eV)

102 10

FIG. 3: Color online - Density dependence of modeled 3C/3D intensity ratios for Fe, Ni, and Ge. The intensity ratios approach
LTE limits (dotted) at high densities but deviate from ratios of collision rates (dashed) in the low-density limit due to radiative

cascades.

moderate-density data points are large because of pos-
sible intensity contributions to 3C and 3D from F- and
Na-like lines. In both density regimes, the calculated
data agree well with experimental values. Both the CI
and CR. corrections to R(3C/3D) are largest for smaller
7, where the deviation from experiment has historically
been the most dramatic. For Z from 24 to 30 in partic-
ular, both inaccuracies in calculated level energies and
significant CR. effects conspire to invalidate simple ratios
of ab initio collision strengths as predictors of R(3C/3D).

V. DISCUSSION

In the preceding Sections, we have shown how the com-
bination of a semiempirical configuration-interaction cor-
rection and the inclusion of CR effects on line intensities
can bring predicted values of R(3C/3D) into agreement
with experimental measurements over a wide range of
electron densities across a significant swath of the neon
isoelectronic sequence. In this Section, we present evi-
dence to show that such corrections may be very gen-
erally useful. First, we present a survey of R(3C/3D)
valies obtained using published data for Fe XVII from

a number of independent codes that treat CI in vari-
ous levels of detail. We show that the deviation of the
theoretical R(3C/3D) values from experiment is strongly
correlated with the deviation of SE® from 6E®*P, and
that applying the correction in Eq. 4 brings the theoret-
ical ratios much closer to the experimental values. We
then reprise overpredictions of resonance to intercombi-
nation line-intensity ratios which have been observed in
other closed-shell ions, including He-, Mg- and Ni-like
ions, and discuss the possibility that corrections similar
to those presented here for Ne-like ions may be applicable
to other isoelectronic systems.

A. Review of other calculations

Figure 5 summarizes the predicted 3C/3D ratios for
FeXVII available from large, calculated data sets in the
literature [18, 27, 62-68]. The ratios are plotted against
(6Ee*P /§E@)2 (i.e. the correction factor given in Eq. 4).
Also shown in Fig. 5 is the upper half of the error band
reported by Brown et al. for R(3C/3D) from a low-
density, optically thin, purely Fe'®t plasma in an EBIT,
R(3C/3D)=3.04+0.12. The ratios in Fig. 5 are computed
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taking the ratios of collision strengths (2): A (HULLAC,
present work), B: (Cornille, Dubau and Jacquemot) [62],
D: (Zhang and Sampson) [64], and G: (Bhatia, Feldman
and Seely) [67], cross sections (o): E: (Hagelstein and
Jung) [65], and rate coeflicients or tabulated emissivi-
ties (y): C: (Bhatia and Doschek) [63] at T,=345 eV, F:
(Smith et al.) [66] at T,=172 eV, and H: (Chen et al.)
[27] for Ebeam = 1150 eV. The tabulated emissivities of
Bhatia and Doschek (C) include many of the CR. cor-
rections we discuss in Section IV and we have explicitly
removed cascade contributions to the data of Smith et
al. (F) [66]. We note that Waljeski et al. [18] give a
calculated ratio of emissivities R(v(3C)/v(3D))=3.8 for
T, between 172 and 259 eV, based on a compilation of
the other listed data sets, but since no calculated tran-
sition energies are given in [18], this point is not plot-
ted in Fig. 5. Also left off the plot are published values
of the ratio of collision strengths by Mohan [68], which
had 6E < JE®P (thus, the point would have been far
to the right of 1.00 in Fig. 5), in spite of the fact that
their R(3C/3D)=3.99 value is consistent with the oth-
ers shown. The same set of ratios is plotted chrono-
logically in Ref. [15], along with two older calculations.
Both of the older calculations [69, 70] give R(3C/3D)

values that fall in the error band given by Brown et al.
but do not give calculated transition energies. Generally,
Fig. 5 shows that the calculations with larger discrep-
ancies in the predicted 3C and 3D level separation also
have R(3C/3D) values that are farther away from the
measured data.

We note that the calculations in [62, 64, 66, 68] (points
B, D, F, and the point from [68] not plotted) included
interaction between singly excited n=3 and n=4 levels,
and the calculations in [63, 65, 67] (points C, E, and
G) only had n=3 levels. As indicated by the convergence
study given in Fig. 2, all are deficient in accounting for CI
effects on level energies. When the CI corrections given
by Eqg. 4 are included in the given data points according
to, the calculated ratios fall much nearer the measured
value (crosses in Fig. 5).

The data in Fig. 5 emphasize the motivation for this
work: so far, calculations have been unable to provide
consistent or reliable predictions for the optically thin
value of this relatively simple line ratio. Figure 5 in-
cludes data from a wide variety of different calculations
for (1) bound-state wave functions and (2) the collision
strength of the bound-bound electron-impact excitations.
The calculations of [68] (not plotted) used the CIV3 code
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[71] with orthogonal orbitals, and accounted for rela-
tivistic effects and limited CI (only with LS terms of
2522p% and 2s22p°3¢ configurations) at the first step,
and then performed a CC calculation to obtain colli-
sion strengths. The works in Refs. [62] (B) and [63, 67]
(C and G) were performed with the SUPERSTRUC-
TURE code of Eissner [72]; wavefunctions were found
from minimizing a non-relativistic Hamiltonian with ei-
ther a Thomas-Fermi-Dirac-Amaldi or a Thomas-Fermi
potential, respectively, and relativistic effects were added
later. In Ref. [62] (B), CI only from configurations of the
form 2s522p® and 2s22p°nf for n < 4) was allowed; in
[67] (G) CI with only 2s?2p°3¢ was considered, while in
[63] (C), 252p%3¢ configurations were added. DWA colli-
sion strengths, with various values of the highest-angular-
momentum partial wave considered, were carried out in
[62, 63, 67] (B, C, and G), and extrapolations beyond
that cut-off value were considered for convergence. The
calculations in [64] (D) are very similar to those done by
the HULLAC package for both the bound wavefunctions
and the collision strengths: a Dirac-Fock-Slater poten-
tial is minimized in solving the Dirac equation to find
the bound wavefunctions; wavefunctions are automati-
cally orthogonal, and the exchange potential is included
from the beginning. The calculations are fully relativis-
tic, and consider CI with all n=3 and n=4 levels formed
from a single promotion of a 2s or 2p electron. The col-
lision strengths in [64] are given by a relativistic DWA
calculation that employs the same factorization technique
originally developed for the HULLAC suite [42]. Finally,

the calculations of [65] (E) provide relativistic DWA col-
lision strengths. These calculations employ the YODA
package, which uses relativistic Hartree-Fock orbitals to
evaluate Coulomb and Breit terms [36] in the Hamil-
tonian, as well as self-energy and vacuum polarization.
A finite-sized atomic nucleus is considered with a Fermi
charge distribution. Continuum orbitals for the collision
strength calculation are computed in the DWA, neglect-
ing exchange with bound-state orbitals.

Thus, a wide range of codes that employ a wide range
of techniques and approximations have been used to com-
pute the ratio R(3C/3D), and in each case, the calculated
ratios can be reduced towards the experimental value by
applying our proposed semiempirical correction. (The
special case of point '"H’ will be discussed further be-
low.) Note that even with the imposed CI correction, the
crosses shown in Fig. 5 still lay outside the error band of
the Brown et al. measurement, indicating that the fur-
ther correction to the ratio due to CR. effects is required.
(If one uses the ratio of collision rates at T, = 172 eV in
[66] that includes the effect of cascades, one finds a ratio
R(3C/3D)=3.08 that falls within the error band in Fig. 5
without modification.)

Special discussion must be given to the recent calcula-
tions of Chen, Pradhan and Eissner [26, 27]. Extensive
CC calculations for all the collision strengths among the
89 fine-structure levels (generated by configurations of
the form 2s22p8, 2¢73¢" and 2¢74¢"), have been applied in
a collisional radiative model to calculate R(3C/3D) and
R(3E/3D) line-intensity ratios. The CI contributions to



the CC collision strength calculations in [26, 27] are much
more extensive than those of both the CC calculations
of [68] and the DWA calculations in [62, 63, 67]. The
atomic-structure calculations in [26, 27] are done with ra-
dial functions from SUPERSTURCTURE that are used
to find fine-structure level energies from the Breit-Pauli
Hamiltonian [73]. The 3C and 3D upper level energies
that come out of this are very close to the measured value,
with JE® = 13.874 eV (versus 6E®*P = 13.365 eV). A
Breit-Pauli R-matrix code [74] is used to compute the CC
collision strengths in a manner that accounts for the V-
shell (n=4) contribution to resonance structure. Taking a
Gaussian average over resonance structures in the data of
[27], which approximates the physical spread in the elec-
tron beam energies in Ref. [19], the authors find a value
of R(v(3C)/v(3D)) = 3.10 at an energy ~ 324 eV ahove
the threshold for the 3C transition. We have shown above
that a semiempirical accounting for the infinite spectrum
of CI corrections to the calculated collision strengths,
which arise from singly excited Ne-like levels from higher-
n configurations, and, primarily, from doubly excited Ne-
like configurations, has approximately the same effect on
R(3C/3D) as the spectrum of resonances in Ref. [27].

B. Other closed-shell ions

The Ne-like systems investigated in this paper are not
the only closed-shell ions for which overpredictions of
resonance-to-intercombination line ratios have been ob-
served. A previous work has noted difficulty in predicting
the resonance to intercombination line-intensity ratio in
An=0 transitions in Mg-like ions for almost the same
range of elements looked at here [75]; there, an appeal
to an unlikely departure from ionization equilibrium was
needed to bring models into agreement with observations.

Tn 2000, a survey [76] of low-density measurements on
the Livermore EBIT of n = 3—1 line ratios in He-like sys-
tems with Z from 12 to 26 showed that the resonance line
(183p 1Py - 152 1Sy) to intercombination line (1s3p *P; -
1s% 18y) ratio was systematically overpredicted by both
HULLAC and MCDF [77] codes. Although no high-
precision transition energy measurements were given in
[76], we have compared reference data from [50] to data
calculated using the FAC code [22] for several He-like
ions and have found that the calculated energy differ-
ence between the upper levels of the resonance and inter-
combination lines is larger than the reference energy dif-
ference. Including the implied CI correction in a manner
analogous to Eq. 4 would decrease the theoretical He-like
resonance to intercombination line-intensity ratios given
in [76], bringing them closer to the measured ratios. We
note that the experiment in [76] was designed to prevent
excitation into He-like states with n<4 in order to min-
imize the effects of radiative cascades on the measured
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line intensities (such flexibility is one of the great advan-
tages of EBIT measurements); however, preliminary CR
calculations suggest that collisional interactions may still
play a role in the He-like line formation processes.

More recently, high-precision measurements of Ni-like
Au [78] and W [79] spectra have been performed on the
Livermore EBIT. The Ni-like ion has a ground state con-
figuration of 3s23p®3d'° 'Sy and strong excitation chan-
nels from that ground state to the 3d°4f 'P; (resonance)
and 3d?4f Py (intercombination) states. Although anal-
vsis of the Ni-like systems is not as well developed as
that of the He- and Ne-like systems discussed above, in
this case, too, the resonance to intercombination line ra-
tios appear to be overpredicted by theoretical calcula-
tions. For both Ni-like Au and Ni-like W, the theoretical
energy differences hetween the upper levels of the res-
onance and intercombination transitions deviates from
the experimental §F in the direction that would reduce
the theoretical ratio when applying the CI correction of
Eq. 4. A preliminary model of the Ni-like Au system
based on HULLAC data predicts that the CI correction
would reduce the theoretical line ratio by about 13%,
and that CR effects included using the CR model would
decrease the calculated ratio by another 5%. The two
corrections would bring the calculated ratio into reason-
able agreement with the measured value. Further study
of the He-like and Ni-like systems may help resolve the
question of how best to implement the proposed CI cor-
rections in large data sets used for collisional-radiative
modeling.

VI. CONCLUSION

We have shown that theoretical predictions of the Ne-
like 3C/3D line-intensity ratio can be brought into agree-
ment with experimental data across a wide range of elec-
tron densities by including a semiempirical configuration-
interaction correction and collisional-radiative effects,
thus resolving a significant overprediction that has been
troublesome for decades. We have shown that the
semiempirical correction can be used to bring calcula-
tions of R(3C/3D) in Fe XVII from a wide variety of
codes much closer to agreement with high-precision low-
density measurements, and have pointed to evidence that
similar CI corrections and CR. effects may also be im-
portant in describing resonance-to-intercombination line
ratios in Ni- and He-like ions. These results should point
the way for development of robust spectroscopic plasma
diagnostics in both astrophysical and laboratory plasmas.

This work was performed under the auspices of the
U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48.
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