
 
 

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

 

Preprint 
UCRL-CONF-204866 

Focused Crawling of the 
Deep Web Using Service 
Class Descriptions  

D. Rocco, L, Liu, T. Critchlow 
 
 

 
International Conference on Service Oriented Computing, 
New York, NY, November 15 - 18, 2004 

November, 2004 

 

 

Approved for public release; further dissemination unlimited 



 
 
 

DISCLAIMER 
 
This document was prepared as an account of work sponsored by an agency of the United States 
Government.  Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California.  The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or the University of California, and 
shall not be used for advertising or product endorsement purposes. 
 
This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be 
made before publication, this preprint is made available with the understanding that it will not be cited 
or reproduced without the permission of the author. 
 

 

labass1
Text Box
This work was in part under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.



Focused Crawling of the Deep Web
Using Service Class Descriptions

Daniel Rocco
College of Computing

Georgia Institute of
Technology

Atlanta, GA 30332

rockdj@cc.gatech.edu

Ling Liu
College of Computing

Georgia Institute of
Technology

Atlanta, GA 30332

lingliu@cc.gatech.edu

Terence Critchlow
Center for Applied Scientific

Computing
Lawrence Livermore National

Laboratory
Livermore, CA 94551

critchlow1@llnl.gov

ABSTRACT
Dynamic Web data sources—sometimes known collectively
as the Deep Web—increase the utility of the Web by pro-
viding intuitive access to data repositories anywhere that
Web access is available. Deep Web services provide access
to real-time information, like entertainment event listings,
or present a Web interface to large databases or other data
repositories. Recent studies suggest that the size and growth
rate of the dynamic Web greatly exceed that of the static
Web, yet dynamic content is often ignored by existing search
engine indexers owing to the technical challenges that arise
when attempting to search the Deep Web. To address these
challenges, we present DynaBot, a service-centric crawler
for discovering and clustering Deep Web sources offering dy-
namic content. DynaBot has three unique characteristics.
First, DynaBot utilizes a service class model of the Web
implemented through the construction of service class de-
scriptions (SCDs). Second, DynaBot employs a modular,
self-tuning system architecture for focused crawling of the
Deep Web using service class descriptions. Third, DynaBot

incorporates methods and algorithms for efficient probing of
the Deep Web and for discovering and clustering Deep Web
sources and services through SCD-based service matching
analysis. Our experimental results demonstrate the effec-
tiveness of the service class discovery, probing, and matching
algorithms and suggest techniques for efficiently managing
service discovery in the face of the immense scale of the Deep
Web.

1. INTRODUCTION
The World Wide Web is the product of two unique ap-
proaches to document publication. The traditional or “static”
Web consists of documents materialized in the secondary
storage of server systems that are hyperlinked to other Web
documents. These documents are generally accessible to
unauthenticated users and automated agents like search en-

gine crawlers. The dynamic or “Deep Web,” in contrast,
refers to the dynamic collection of Web documents that are
created as a direct response to some user query. Deep Web
services provide access to real-time information, like enter-
tainment event listings, or present a Web interface to large
databases or other data repositories. Recent studies suggest
that the size and growth rate of the dynamic Web greatly
exceed that of the static Web [11, 12]. Estimates suggest
that the practical size of the Deep Web may be greater than
550 billion individual documents [1]. More than half of the
content of the Deep Web resides in topic-specific databases,
many of which are made available through Web services. A
full ninety-five percent of the Deep Web is publicly accessi-
ble information that is not subject to fees or subscriptions.

Dynamic content is often ignored by existing search engine
indexers owing to the technical challenges that arise when
attempting to search the Deep Web. The most significant
challenge is the philosophical difference between the static
and Deep Web with respect to how data is stored: in the
static Web, data is stored in documents while in the dynamic
Web, data is stored in databases or produced as the result of
a computation. This difference is fundamental and implies
that traditional document indexing techniques, which have
been applied with extraordinary success on the static Web,
are inappropriate for the Deep Web. Related to the data
storage issue is the problem of data retrieval, since static
Web documents are retrieved via simple HTTP calls while
dynamic Web documents often reside behind form interfaces
that are impenetrable to traditional crawlers. Finally, Deep
Web sources tend to be more domain-focused than their
static Web counterparts. While there is much to be gained
from discovering and clustering Deep Web sources, any sig-
nificant exploration of the Deep Web will require techniques
that exploit service-oriented functionality through intelli-
gent analysis of search forms and result samples.

With these challenges in mind, we present DynaBot, a
service-centric crawler for discovering and clustering Deep
Web sources. DynaBot has three unique characteristics.
First, DynaBot utilizes a service class model of the Web
implemented through the construction of service class de-
scriptions (SCDs). Second, DynaBot employs a modular,
self-tuning system architecture for focused crawling of the
Deep Web. Third, DynaBot incorporates methods and
algorithms for efficient probing of the Deep Web and for



discovering and clustering Deep Web sources and services
through SCD-based service matching analysis.

2. THE SERVICE CLASS MODEL
We introduce the concept of service classes to facilitate the
discovery and classification of Deep Web sources with re-
spect to the services that they provide. The service class
model views the Deep Web as a collection of service classes,
which are dynamic sources with related functions.

Definition 1. A service class is a set of Web sources or
services that provide similar functionality or data access.

The definition of the desired functionality for a service class
is specified in a service class description, which defines the
relevant elements of the service class without specifying instance-
specific details. It articulates an abstract interface and pro-
vides a reference for determining the relevance of a partic-
ular Deep Web source to a given service class. The service
class description is initially composed by a user or service
developer and can be further revised via automated learning
algorithms embedded in the DynaBot service probing and
matching process.

Definition 2. A service class description (SCD) is an
abstract description of a service class that specifies the min-
imum functionality that a Web source must export in order
to be classified as a member of the service class.

The service class model supports the source discovery prob-
lem by providing a general description of the data or func-
tionality provided. A service class description encapsulates
the defining components that are common to all members of
the class and provides a mechanism for hiding insignificant
differences between individual sources, including interface
discrepancies that have little impact on the functionality of
the source. In addition, the service class description should
also provide enough information to differentiate between a
set of arbitrary Web sources.

As an example, consider the problem of locating members
of the service class of Web keyword search engines such as
Google, Yahoo!, and Teoma. The relevant input features
in this service class are a text box that accepts descriptive
keywords and a button for sending the query to the server.
The relevant output features are a set of results, each of
which consists of some text containing the query keywords
and a hyperlink to a new document. Note that this descrip-
tion says nothing about the implementation details of any
particular instance of the service class; rather, it defines a
minimum functionality set needed to classify a Web source
as a member of the Web keyword search service class.

Our initial prototype of the DynaBot service discovery sys-
tem utilizes a service class description composed of three
building blocks: type definitions, a control pattern, and a
set of probing templates. The remainder of this section de-
scribes each of these components with illustrative examples.

<type name="DNASequence"
type="string"
pattern="[GCATgcat-]+" />

<type name="AlignmentSequenceFragment" >
<element name="AlignmentName"

type="string"
pattern="[:alpha:]+:" />

<element type="whitespace" />
<element name="start-align-pos"

type="integer" />
<element type="whitespace" />
<element name="Sequence"

type="DNASequence" />
<element type="whitespace" />
<element name="end-align-pos"

type="integer" />
</type>

Figure 1: Nucleotide BLAST: type definitions.

result state

type: <Summary>

result state

type: 
<EmptyResult>

indirection 
state

type: 
<indirection>

start state

type: <form>

Figure 2: Nucleotide BLAST: control flow graph.

2.1 Type Definitions
The first component of a service class description specifies
the data types that are used by members of the service class.
Types are used to describe the input and output parameters
of a service class and any data elements that may be required
during the course of interacting with a source. The Dyna-

Bot service discovery system includes a type system that is
modeled after the XML Schema [7] type system with con-
structs for building atomic and complex types. This regular
expression-based type system is useful for recognizing and
extracting data elements that have a specific format with
recognizable characteristics. Since DynaBot is designed
with a modular, flexible architecture, the type system is a
pluggable component that can be replaced with an alternate
implementation if such an implementation is more suitable
to a specific service class. For example, we are constructing
a type system that uses information retrieval techniques to
recognize medical research abstracts; this system will aug-
ment the existing type system by providing rule-based in-
ferencing for data type recognition.

The regular expression type system provides two basic types,
atomic and complex. Atomic types are simple valued data
elements such as strings and integers. The type system pro-
vides several built in atomic types that can be used to create
user-defined types by restriction. Atomic types can be com-
posed into complex types, which are formed by composition
of basic types into larger units.



The DNASequence type in Figure 1 is an example of an
atomic type defined by restriction in the nucleotide BLAST
service class description. Each type has a type name that
must be unique within the service class description. Atomic
types include a base type specification (e.g. type="string")
which can reference a system-defined type or an atomic type
defined elsewhere in the service class description. The base
type determines the characteristics of the type that can be
further refined with a regular expression pattern that re-
stricts the range of values acceptable for the new type. More
intricate types can be defined using the complex type defini-
tion, which is composed of a series of elements. Each element
in a complex type can be a reference to another atomic or
complex type or the definition of an atomic type. List def-
initions are also allowed using the constraints minOccurs

and maxOccurs, which define the expected cardinality of a
particular sub-element within a type. The choice operator
allows types to contain a set of possible sub-elements from
which one will match. Figure 1 shows the declaration for
a complex type that recognizes a nucleotide BLAST result
alignment sequence fragment, which is a string similar to:

Query: 280 TGGCAGGCGTCCT 292

The above string in a BLAST result would be recognized
as an AlignmentSequenceFragment by the type recognition
system during service analysis.

2.2 Control Flow Graph
The second component of a service class description is the
control flow graph. A service class description’s control flow
graph consists of a set of states connected by edges that re-
flect the expected navigational paths used by members of
the service class. Each state has an associated type; data
from a Web source is compared against the type associated
with the control flow states to determine the flow of execu-
tion of a source from one state to another. Control proceeds
from a start state through any intermediate states until a
terminal (result) state is reached.

Figure 2 provides an illustrative example of a service class
control flow graph for a nucleotide BLAST Web service. The
control flow graph has four state nodes that consist of a
state label and a data type. Nodes in the graph represent
control points and directed edges depict the possible tran-
sition paths between the control states. The state nodes
are typically pages expected to be encountered while inter-
acting with the site. The nucleotide BLAST service class
description, for example, has a single start state that de-
fines the type of start page a class member must contain:
in this case, any member of the nucleotide BLAST service
class must have a start page that includes an HTML form
with at least one text entry field.

The control flow graph defines the expected information flow
for a service and gives the automated service analyzer, de-
scribed in Section 3.2, a frame of reference for comparing
the responses of the candidate service with the expected re-
sults for a member of the service class. For example, the
most common transition in the nucleotide BLAST service
class is from the start state, a page with an HTML form, to
the results summary state; this transition is highlighted in

Figure 2. In order to declare a candidate service a match
for the service class description, the service analyzer must
be able to produce a set of valid state transitions in the can-
didate service that correspond to a path in the control flow
graph.

2.3 Probing Templates
The third component of the service class description is the
probing templates, which contain a set of input arguments
and can be used to match a candidate Deep Web source
against the service class description and determine if it is
an instance of the service class. Probing templates are com-
posed of a series of arguments and a single result type. The
arguments are used as input to a candidate service’s forms
while the result type specifies the data type of the expected
result. Figure 3 shows an example probing template used
in a nucleotide BLAST service class description. The prob-
ing template example shows an input argument and a re-
sult type specification; multiple input arguments are also
allowed. The attribute required states whether an argu-
ment is a required input for all members of the service class.
In this case, all members of the nucleotide BLAST service
class are required to accept a DNA sequence as input. The
argument lists the type of the input as well as a value that is
used during classification. The optional hints section of the
argument supplies clues to the site classifier that help select
the most appropriate input parameters on a Web source to
match an argument. Finally, the output result specifies the
response type expected from the source. All the types ref-
erenced by a probing template must have type definitions
defined in the type section of the service class description.

The argument hints specify the expected input parameter
type for the argument and a list of likely form parameter
names the argument might match. Multiple name hints are
allowed, and each hint is treated as a regular expression to
be matched against the form parameters. These hints are
written by the service class description writer using their
observation of typical members of the service class. For
example, a DNA sequence is almost always entered into a
text input parameter, usually with “sequence” in its name.
The DNA Sequence argument in a nucleotide BLAST service
class therefore includes a name hint of “sequence” and an
input hint of “text.”

3. DYNABOT SOFTWARE DESIGN
The problem of discovering and analyzing dynamic Web
sources consists of locating potential sources and determin-
ing their interface and capabilities. There are two basic ap-
proaches to service discovery: the registry-based approach
and the crawling approach. In the registry-based approach,
services advertise their existence and capabilities with a ser-
vice registry such as the emerging UDDI directory stan-
dard. However, registry-based discovery systems have sev-
eral drawbacks. Many of these technologies are still evolving
and have limited deployment. Registry-based discovery re-
lies on services correctly advertising themselves in a known
repository, which can potentially limit the number of ser-
vices that can be discovered. Finally, despite the registry ap-
proach’s ability to avoid interacting with unrelated services,
the limited descriptive power in existing registry standards
implies that service analysis is still required to ascertain a
service’s capabilities. The second approach to service dis-



<example>
<arguments>

<argument required="true">
<name>sequence</name>
<type>DNASequence</type>
<hints>

<hint>sequence</hint>
<inputType>text</inputType>

</hints>
<value>TTGCCTCACATTGTCACTGCAAAT

CGACACCTATTAATGGGTCTCACC
</value>

</argument>
</arguments>

<result type="SummaryPage" />
</example>

Figure 3: Nucleotide BLAST: probing template.

covery is the Web crawling approach, which builds on Web
crawler technology to locate candidate services. This ap-
proach is widely applicable to the existing Web, removes
the burden of registration from service providers, and can
be extended to exploit service registries to aid service dis-
covery.

3.1 Architecture
The DynaBot crawler is a modular Web crawling platform
designed to locate and analyze Web sources relevant to a ser-
vice class of interest. Like most crawlers, it utilizes the sim-
ple but universal Web crawling algorithm that was proposed
nearly simultaneously with the Web itself. First, the crawler
chooses a URL from the URL frontier [10]—the crawler’s list
of URLs to visit, which is seeded by hand at the beginning
of each crawl run. Next, the crawler fetches the document
specified by the chosen URL. Previously unseen links are
added to the URL frontier and any further document pro-
cessing is done. The crawler then returns to the first step.
Although a Web crawler is conceptually very simple, a ro-
bust crawler must handle the immense size of the gathered
data, gracefully deal with the numerous errors that can oc-
cur, and even avoid malicious servers that manage to lure
the crawler into a trap.

Network Interaction. The network interaction modules
handle the process of retrieving documents from the Inter-
net, including the resolution of domain names. The signif-
icant costs associated with accessing data over the Inter-
net can be amortized using multithreading to handle multi-
ple requests simultaneously. This technique minimizes the
penalty incurred when attempting to access a document
from a server that is down or extremely slow. A second op-
timization technique is to cache DNS requests to reduce the
number of network interactions needed and thereby improve
document throughput. The effectiveness of DNS caching is
due to the high degree of domain locality in Web hyper-
links, which often reference different documents on the same
server. In such cases, DNS name resolution is done once for
all documents in the domain.

Global Data Management. The crawler’s global data
management and storage components include the URL fron-

tier and the visited list, which are responsible for tracking
URLs the crawler has yet to visit as well as those that have
already been processed. Managing the immense amount of
data that a Web crawler will encounter is a technically inter-
esting problem due to the sheer size of the Web. Global data
is typically stored on disk, with caches used to reduce the
disk storage penalty. Some crawlers will also store archives
of crawled pages.

Processing Modules. The network interaction and global
storage components are united by the processing modules,
which initiate document retrieval, update the global stor-
age with visited and new links, and perform any document
processing required by the crawler’s designated task. Pro-
cessing modules are pluggable components that allow the
crawler to be reconfigured for new tasks easily. A typical
Web crawler includes a link extraction module, which ex-
tracts hyperlinks from the document, converts any relative
links to their absolute form, and inserts them into the URL
frontier. More sophisticated crawlers will include modules
such as a duplicate content or mirror detector and trapped
detection facilities to prevent the crawler from becoming en-
snared in crawler traps.

3.2 Service Analyzer
The task of determining the capabilities and interface of dy-
namic Web sources is assigned to the Service Analyzer, a
processing module of the DynaBot crawler. The process of
source discovery begins with the construction of the service
class description, which directs the probing operations used
by the service analyzer to determine the relevance of a Web
source. The service analyzer consists of form filter and an-
alyzer, an extension mechanism, a query generator, a query
prober, and a response matcher.

Overview. When the processor encounters a new site to
test, its first task is to invoke the form filter, which en-
sures that the candidate source has a form interface (Fig-
ure 5(1)). The second step (2) is to extract the set of forms
from the page, load the service class description, and load
any auxiliary modules specified by the service class descrip-
tion (3). The query generator (4) produces a set of query
probes which are fed to the query probing module (5). Re-
sponses to the query probes are analyzed by the response
matcher (6). If the query response matches the expected
result from the service class description, the Web source has
matched the service class description and a source capability
profile (7) is produced as the output of the analysis process.
The capability profile contains the specific steps needed to
successfully query the Web source. If the probe was unsuc-
cessful, additional probing queries can be attempted.

Definitions. The process of analyzing the Web source be-
gins when the crawler passes a potential URL for evaluation
to the source analysis processing module. A source S for
our purposes consists of an initial set of forms F . Each
form f ∈ F, f = (P, B) is composed of a set of parameters
p ∈ P, p = (t, i, v) where t is the type of the parameter, such
as checkbox or list, i is the parameter’s identifier, and v is
the value of the parameter. The form also contains a set of
buttons b ∈ B which trigger form actions such as sending
information to the server or clearing the form. The source
S may specify a default for each parameter value v.



DNS 
Resolver

texttext
Document 
Fetcher

I
N
T
E
R
N
E
T

Link 
Extractor

Document 
Archiver

Duplicate 
Detector

Trap 
Detector

Service Class Analyzer

URL FrontierVisited List
Seed 
listMatched 

services

Document processing modules

Global data management

Network interaction
 modules

Figure 4: DynaBot System Architecture

Search form 
filterDocument

Service analyzer

Service 
class 

description

Form 
interface 
analyzer

Module 
selection

Type 
system

Helper 
modules

Probing 
strategy

Query 
generator

Query 
selection & 
probing

Response 
matching Source 

capability 
definition

1

2

3

4

5 6
7

Figure 5: DynaBot Service Analyzer

The process of query probing involves manipulating a source’s
forms to ascertain their purpose with the ultimate goal of
determining the function of the source itself. Although the
expected inputs and purpose of each of the various param-
eters and forms on a source is usually intuitive to a human
operator, an automated computer system cannot rely on hu-
man intuition and must determine the identity and function
of the source’s forms algorithmically. The query probing
component of the DynaBot service analyzer performs this
function. Our query prober uses induction-based reasoning
with examples: the set of examples e ∈ E is defined as part
of the service class description. Each example e includes a
set of arguments a ∈ A, a = (r, t, v), where r indicates if the
example parameter is required or optional, t is the type of
the parameter, and v is the parameter’s value.

Form Filter and Analyzer. The form filter processing
step helps to reduce the service search space by eliminating
any source S that cannot possibly match the current service
class description. In the filtration step, shown in step 1 of
Figure 5, form filter eliminates any source S from considera-
tion if the source’s form set is empty, that is F = ∅. In form
analysis, shown in step 2, the service class description will be
compared with the source, allowing the service analyzer to
eliminate any forms that are incompatible with the service
class description. Algorithm 1 sketches the steps involved in
the form filter process.

Algorithm 1 Form Filter

Let S ← source with forms f ∈ F, f = (P, B)
Let D ← the service class description with examples e ∈ E

for all f = (P, B) ∈ F do
for all e ∈ E do

for all a = (r, t, v) s.t. required(a) = true do
if ∃/ p = (t, i, v) ∈ P s.t. at = pt then

F = F − f
if F 6= ∅ then

processForms(F )

Module Selection. The modular design of the service
class description framework and the DynaBot discovery
and analysis system allows many of the system components
to be extended or replaced with expansion modules. For
example, a service class description may reference an alter-
nate type system or a different querying strategy than the

included versions. Step 3 in the service analysis process re-
solves any external references that may be defined in the
service class description or configuration files and loads the
appropriate code components.

Query Generation. The heart of the service analysis pro-
cess is the query generation, probing, and matching loop
shown in steps 4, 5, and 6 of Figure 5. Generating high
quality queries is a critical component of the service analysis
process, as low-quality queries will result in incorrect clas-
sifications and increased processing overhead. DynaBot’s
query generation component is directed by the service class
description to ensure relevance of the queries to the ser-
vice class. Queries are produced by matching the probing
templates from the service class description with the form
parameters in the source’s forms; Figure 3 shows a fragment
of the probing template for the nucleotide BLAST service
class description.

Probing and Matching. Once the queries have been gen-
erated, the service analyzer proceeds by selecting a query,
sending it to the target source, and checking the response
against the result type specified in the service class descrip-
tion. This process is repeated until a successful match is
made or the set of query probes is exhausted. On a match,
the service analyzer produces a source capability profile of
the target source, including the steps needed to produce a
successful query.

Figure 6 shows the probing results from two different ser-
vices analyzed with the same nucleotide BLAST service class
description. Source (a) is a member of the nucleotide BLAST
service class while source (b) is a member of the protein
BLAST service class, a related type of service that uses a
similar interface to nucleotide BLAST but performs a dif-
ferent function. Using the type definitions from the service
class description, the service analyzer is able to determine
that (a) is an appropriate response for a member of the
nucleotide BLAST service class while (b), although struc-
turally similar, is not an appropriate response. This infor-
mation allows the service analyzer to correctly classify these
two sources despite the similarity of their responses: source
(a) is declared a match while source (b) is not.

Algorithm 2 presents a sketch of the query probing and
matching process. Our prototype implementation includes
invalid query filtering and some heuristic optimizations that



are omitted from the algorithm presented here for clarity’s
sake. These optimizations utilize the hints specified in the
probing template section of the service class description to
match probing arguments with the most likely candidate
form parameter. For instance, the nucleotide BLAST ser-
vice class description specifies that form parameters that
accept text input and are named “sequence” are very likely
to be the appropriate parameter for the DNASequence probe
argument. These hints are static and must be selected by
the service class description author; our ongoing research in-
cludes a study of the effectiveness of learning techniques for
matching template arguments to the correct form parame-
ters. We expect that the system should be able to deduce a
set of analysis hints from successfully matched sources which
can then be used to enhance the query selection process.

Algorithm 2 Query Probing

Let S ← source with forms f ∈ F, f = (P, B)
Let D ← the service class description with examples e ∈ E

for all f ∈ F do
Let Q ← E × P
for all q ∈ Q do

Let r ← executeQuery(q)
if responseMatches(r, D) then

processMatch(r, q, D)

4. EXPERIMENTAL RESULTS
We have developed a set of experiments based on the Dyna-

Bot prototype service discovery system to test the validity
of our approach. The experiments were designed to test the
accuracy and efficiency of DynaBot and the service prob-
ing and matching techniques. We have divided our tests into
three experiments. The first experiment is designed to test
only the probing and matching components of the crawler
without the confounding influence of an actual Web crawl.
Experiment 2 tests the performance of the entire Dyna-

Bot system by performing a Web crawl and analyzing the
potential sources it encounters. Experiment 3 shows the ef-
fectiveness of pruning the search space of possible sources
by comparing an undirected crawler with one using a more
focused methodology.

The DynaBot prototype is implemented in Java and can
examine a set of supplied URLs or crawl the Web looking
for sources matching a supplied service class description. All
experiments were executed on a Sun Enterprise 420R server
with four 450 MHz UltraSPARC-II processors and 4 GB
memory. The server runs SunOS 5.8 and the Solaris Java
virtual machine version 1.4.1.

Crawler Configuration. The DynaBot configuration for
these experiments utilized several modular components to
vary the conditions for each test. All of the configurations
used the same network interaction subsystem, in which do-
main name resolution, document retrieval, and form sub-
mission are handled by the HttpUnit user agent library [8].
The experiments utilized the service analyzer document pro-
cessing module for service probing and matching. Service
analysis employed the same static service class description
in all the tests, fragments of which have been shown in Fig-
ures 1 and 3. All of the configurations also included the

trace generator module which records statistics about the
crawl, including URL retrieval order, server response codes,
document download time, and content length. 32 crawling
threads were used in each run.

We utilized two configuration variations in these experi-
ments: the trace configuration and the random walk con-
figuration. The trace configuration is designed to follow a
predetermined path across the Web and utilizes the trace
URL frontier implementation to achieve this goal. This fron-
tier accepts a seed list in which any URLs found are crawled
in the order that they appear in the list. These seed lists
can be either hand generated or generated from previous
crawls using the trace generator. In the trace configuration,
no URLs can be added to the frontier and no attempt is
made to prevent the crawler from retrieving the same URL
multiple times.

The random walk configuration mimics more traditional Web
crawlers but attempts to minimize the load directed at any
one server. In this configuration, the link extractor mod-
ule was employed to extract hyperlinks from retrieved doc-
uments and insert them into the URL frontier. The random
walk frontier implementation uses an in-memory data struc-
ture to hold the list of URLs that have yet to be crawled,
from which it selects one at random when a new URL is re-
quested. This configuration also includes a visited list, which
stores hash codes of URLs that have been visited which the
crawler can check to avoid reacquiring documents that have
already been seen.

4.1 Experiment 1: BLAST Classification
The first experiment tested the service analyzer processing
module only and demonstrates its effectiveness quantita-
tively, providing a benchmark for analyzing the result of
our subsequent experiments. In order to test the service an-
alyzer, the crawler was configured to utilize the trace frontier
with a hand-selected seed.

The data for this experiments consists of a list of 74 URLs
that provide a nucleotide BLAST gene database search in-
terface; this collection of URLs was gathered from the re-
sults of several manual Web searches. The sites vary widely
in complexity: some have forms with fewer than 5 input
parameters, while others have many form parameters that
allow minute control over many of the options of the BLAST
algorithm. Some of the sources include an intermediate step,
called an indirection, in the query submission process. A sig-
nificant minority of the sources use JavaScript to validate
user input or modify parameters based on other choices in
the form. Despite the wide variety of styles found in these
sources, the DynaBot service analyzer is able to recognize a
large number of the sites using a nucleotide BLAST service
class description of approximately 150 lines.

Table 1 shows the results of Experiment 1. Sites listed as
successes are those that can be correctly queried by the ana-
lyzer to produce an appropriate result, either a set of align-
ments or an empty BLAST result. An empty result indicates
that the site was queried correctly but did not contain any
results for the input query used. Since all of the URLs in this
experiment were manually verified to be operational mem-
bers of the service class, a perfect classifier would achieved



Crawl Statistics
Number of matching sources 74
Total number of forms 79
Total number of form parameters 913
Total of forms submitted 1456
Maximum submissions per form 60
Average submissions per form 18.43
Number of matched sources 53
Success rate 72.97%

Aggregate Probe Times
Minimum probe time 3 ms
Minimum fail time (post FormFilter) 189 s
Maximum fail time (post FormFilter) 11823 s
Average fail time (post FormFilter) 2807 s
Minimum match time (post FormFilter) 2.3 s
Maximum match time (post FormFilter) 2713 s
Average match time (post FormFilter) 284 s

Number of probes Frequency
0 12
1–10 46
11–20 1
21–30 2
31–40 2
41–50 1
51–60 10

Probe time (sec.) Frequency
<0.5 3
0.5–1 1
1–5 11
5–10 5
10–50 10
50–100 2
100–500 31
>500 11

Table 1: Sites classified using the nucleotide BLAST service class description.

a success rate of 100%; the left half of Table 1 demonstrates
that the DynaBot service analyzer achieves an overall suc-
cess rate of 73%.

There are several other interesting data characteristics and
experimental results presented in Table 1. The relatively
low number of forms per source—79 forms for 74 sources—
indicates that most of these sources use single-form entry
pages. However, the average number of parameters per form
is over 11 (913 parameters / 79 forms = 11.56), indicating
that these forms are fairly complex. We are currently explor-
ing form complexity analysis and comparison to determine
the extent to which the structure of a source’s forms can be
used to estimate the likelihood that the source matches a
service class description.

Source form complexity directly impacts the query prob-
ing component of the service analyzer, including the time
and number of queries needed to recognize a source. To
grasp the scaling problem with respect to the number of
form parameters and the complexity of the service class de-
scription, consider a Web source with a single form f con-
taining 20 parameters, that is |P | = 20. Further suppose
that the service class description being used to analyze the
source contains a single probing template with two argu-
ments, |A| = 2, and that all of the arguments are required.
The number of combinations of arguments with parameters
is then

(

|P |
|A|

)

=
(

20

2

)

= 190, a large but perhaps manage-

able number of queries to send to a source. The number of
combinations quickly spirals out of control as more example
arguments are added, however: with a three-argument ex-
ample the number of combinations is 1140, four arguments
yields 4845, and testing a five argument example would re-
quire 15,504 potential combinations to be examined!

Despite the scalability concerns, Table 1 demonstrates the
effectiveness of the SCD-directed probing strategy: most of
the sources were classified with less than 10 probes (58) in
less than 500 seconds (63). These results indicate the effec-
tiveness of the static optimizations employed by the service
analyzer such as the probing template hints. Our ongoing

research includes an investigation of the use of learning tech-
niques and more sophisticated query scoring and ranking to
reduce these requirements further and improve the efficiency
of the service analyzer.

Failed sites are all false negatives that fall into two cate-
gories: indirection sources and processing failures. An indi-
rection source is one that interposes some form of intermedi-
ate step between entering the query and receiving the result
summary. For example, NCBI’s BLAST server contains a
formatting page after the query entry page that allows a user
to tune the results of their query. Simpler indirection mech-
anisms include intermediate pages that contain hyperlinks
to the results. We do not consider server-side or client-side
redirection to fall into this category as these mechanisms
are standardized and are handled automatically by Web
user agents. Recognizing and moving past indirection pages
presents several interesting challenges because of their free-
form nature. Incorporating a general solution to complex,
multi-step Web sources is part of our ongoing work [15].

Processing errors indicate problems emulating the behavior
of standard Web browsers. For example, some Web design
idioms, such as providing results in a new window or multi-
frame interfaces, are not yet handled by the prototype. Sup-
port for sources that employ JavaScript is also incomplete.
We are working to make our implementation more compliant
with standard Web browser behavior. The main challenge
in dealing with processing failures is accounting for them
in a way that is generic and does not unnecessarily tie site
analysis to the implementation details of particular sources.

4.2 Experiment 2: BLAST Crawl
Our second experiment tested the performance characteris-
tics of the entire DynaBot crawling, probing, and matching
system. The main purpose of this experiment is to demon-
strate the need for a directed approach to service discovery.
Intuitively, the problem stems from the characteristics of the
service Web environment: instances of a particular service
class, such as nucleotide BLAST, will make up a small frac-
tion of the sites related to the relevant domain, e.g. bioin-



Crawl Statistics
Number of URLs crawled 1349
Number of sites with forms 467
Total number of forms 686
Total number of form parameters 2837
Total of forms submitted 4032
Maximum submissions per form 10
Average submissions per form 5.88
Number of matched sources 2

Response Code Frequency
200 1212
30x 114
404 18
50x 6

Content Type Frequency
text/html 1238
application/pdf 36
text/plain 23
other 52

Table 2: Results from 06022004 crawl, Google 100 BLAST seed, random walk URL frontier.

formatics. Likewise, the sites belonging to any particular
domain will constitute a small portion of the complete Web.
Experiment 2 provides evidence to support this conjecture
and demonstrates the need for intelligent service discovery
and resource allocation. An effective service discovery mech-
anism must use its resources wisely by spending available
processing power on sources that are more likely to belong
to the target set.

The results of this experiment are presented in Table 2. For
this test, the crawler was configured utilizing the random
walk URL frontier with link extraction and service analysis.
The initial seed for the frontier was the URLs contained in
the first 100 results returned by Google for the search “bioin-
formatics BLAST.” URLs were returned from the frontier
at random and all retrieved pages had their links inserted
into the frontier before the next document was retrieved.
These results are not representative of the Web as a whole,
but rather provide insight into the characteristics of the en-
vironment encountered by the DynaBot crawler during a
domain-focused crawl. The most important feature of these
results is the relatively small number of matched sources:
despite the high relevance of the seed and subsequently dis-
covered URLs to the search domain, only a small fraction of
the services encountered matched the service class descrip-
tion. The results from Experiment 1 demonstrate that the
success rate of the service analyzer is very high, leading us
to believe that the nucleotide BLAST services make up only
a small percentage of the bioinformatics sites on the Web.
This discovery does not run counter to our intuition; rather,
it suggests that successful and efficient discovery of domain-
related services hinges on the ability of the discovery agent
to reduce the search space by pruning out candidates that
are unlikely to match the service class description.

4.3 Experiment 3: Directed Discovery
Given the small number of relevant Web services related to
our service class description, Experiment 3 further demon-
strates the effectiveness of pruning the discovery search space
in order to find high quality candidates for probing and
matching. One important mechanism for document prun-
ing is the ability to recognize documents and links that are
relevant or point to relevant sources before invoking the ex-
pensive probing and matching algorithms. Using the ran-
dom walk crawler configuration as a control, this experi-
ment tests the effectiveness of using link hints to guide the
crawler toward more relevant sources. The link hint fron-
tier is a priority-based depth-first exploration mechanism in

which hyperlinks that match the frontier’s hint list are ex-
plored before nonmatching URLs. For this experiment, we
employed a static hint list using a simple string containment
test for the keyword “blast” in the URL.

Table 3 presents the results. The seed lists for the URL fron-
tiers in this experiment were similar to those used in Experi-
ment 2 except that 500 Google results were retrieved and all
the Google cache links were removed. The link hint focused
crawler discovered and matched 15 Web sources with a fewer
number of trials per form then its random walk counterpart.
Although the number of URLs crawled in the both tests was
roughly equivalent, the link hint crawler found sources of
much higher complexity as indicated by the total number of
form parameters found: 1038 for the link hint crawler versus
348 for the random walk crawler.

The results of Experiment 3 suggest a simple mechanism for
selecting links from the URL frontier to move the crawler
toward high quality candidate sources quickly: given a hint
word, say “blast,” first evaluate all URLs that contain the
hint word, proceeding to evaluate URLs that do not contain
the hint word only after the others have been exhausted.
This scheme can be quite easily implemented using a pri-
ority queue. However, the hint list is static and must be
selected manually. We are investigating the effectiveness of
learning algorithms and URL ranking algorithms for URL
selection. This URL selection system would utilize a feed-
back loop in which the “words” contained in URLs would
be used to prioritize the extraction of URLs from the fron-
tier. Words contained in URLs that produced service class
matches would increase the priority of any URLs in the fron-
tier that contained those words, while words that appeared
in nonmatching URLs would likewise decrease their priority.
In order to be effective, this learning mechanism would also
need a word discrimination component, such as term fre-
quency inverse document frequency (TFIDF) measure, so
that common words like “http” would have little effect on
the URL scoring.

4.4 Discussion
The results of our experiments demonstrate the effectiveness
of the service class model and the DynaBot discovery and
matching agent. The results also suggest areas for further
exploration to optimize the search and analysis process.

We are exploring the potential of dynamic learning tech-
niques for reducing the resource consumption of the service



Crawl Statistics
Number of URLs crawled 174
Number of sites with forms 74
Total number of forms 108
Total number of form parameters 348
Total of forms submitted 2996
Maximum submissions per form 60
Average submissions per form 27.74
Number of matched sources 0

(a) Random walk URL frontier.

Crawl Statistics
Number of URLs crawled 182
Number of sites with forms 71
Total number of forms 137
Total number of form parameters 1038
Total of forms submitted 3340
Maximum submissions per form 60
Average submissions per form 24.38
Number of matched sources 15

(b) LinkHint “blast” frontier.

Table 3: Results from 06022004 crawl, Google 500 BLAST seed.

analyzer by limiting the amount of effort it expends analyz-
ing unlikely services. These techniques would perform one
or more of the following functions: service filtering, max-
imum probe count adjustment, and query probe reorder-
ing. In service filtering, the analyzer would evaluate the
service based on its forms and eliminate it from considera-
tion or reprioritize it if the service is unlikely to be a ser-
vice class match. Maximum probe count adjustment would
allow the service analyzer to dynamically adjust the num-
ber of queries attempted on a per-source basis using a com-
parison with previously encountered services. Query probe
reordering would allow the service analyzer to dynamically
reorder query probes like the static reordering described pre-
viously but using information gathered dynamically during
the crawl.

The current DynaBot prototype includes one service fil-
tering optimization, form filter, which eliminates any pages
from consideration that either contain no form elements or
whose form elements do not match the domain as defined by
the service class description. For instance, a page contain-
ing a form with only list boxes and radio buttons would be
eliminated from consideration if the service class description
specified a free text input. This facility could be expanded
to utilize information gathered from previous probing and
matching operations. Using form similarity comparison, the
service analyzer could measure the forms in a candidate ser-
vice against previously matched sources and, based on this
comparison, eliminate the service from consideration or ad-
just the probe count and order.

Another optimization that can be used to guide the analysis
process is document text analysis. Many services contain
technical jargon or other specialized vocabularies that dis-
tinguish these documents from those in other domains. Us-
ing techniques like the Levenshtein string edit distance [13]
and term frequency analysis could help direct the crawler
toward relevant hubs but might also be useful when per-
formed on the start pages of services themselves. Much like
form similarity comparison, these techniques could be used
to adjust the service analysis properties based on the result
of the comparison: services that are likely to match would
be allocated more resources than those that are not.

5. RELATED WORK
Web crawlers have been searching and indexing the static
Web since nearly the time of its creation. Starting from a
set of seed pages, a crawler traverses the Web and processes
the sites it encounters while extracting new hyperlinks to

crawl from the encountered sites. Crawlers have generated
commercial and research interest due to their popularity [16]
and the technical challenges involved with scaling a crawler
to handle the entire Web [2, 14, 10, 3]. There is active re-
search into topic driven or focused crawlers [4] which crawl
the Web looking for sites relevant to a particular topic; Srini-
vasan et al. [18] present such a crawler for biomedical sources
that includes a treatment of related systems.

Our research seeks to unify complex Web data sources using
automatic discovery and capability detection; the BLAST
family of data sources have provided a test case for our
approach [17, 15]. The ShopBot agent [5] uses a similar
approach and is designed to assist users in the task of on-
line shopping. ShopBot uses a domain description that lists
useful attributes about the services in question. The au-
thors addressed the problems of learning unknown vendor
sites and integrating a set of learned sources into a single
interface. Our present work addresses the related problem
of automatically classifying services from an arbitrary set
of sites. The service class description format we describe
provides greater descriptive power than ShopBot’s domain
descriptions and can specify complex data types and source
control flow information.

Researchers have also examined heterogeneous data integra-
tion in the domain of biological data. DiscoveryLink [9]
provides access to wrapped data sources and includes query
planning and optimization capabilities. Eckman et al. [6]
present a similar system with a comparison to many exist-
ing related efforts.

6. CONCLUSION
We have presented DynaBot, a crawler designed to dis-
cover and analyze dynamic Web data sources relevant to
a domain of interest. DynaBot’s use of the service class
model of the Web, through the construction of service class
descriptions, allows an abstract rendition of the target do-
main to guide the crawler toward relevant sources and probe
them for their capabilities. DynaBot employs a modular,
self-tuning crawling architecture and algorithms for efficient
probing of the Deep Web. Our experimental results demon-
strate the effectiveness of the service class discovery mecha-
nism which achieves recognition rates of up to 73%. These
results offer effective techniques for efficiently managing ser-
vice discovery in the face of the immense scale of the Deep
Web.



(a) (b)

Figure 6: Example matching (a) and nonmatching (b) search results

7. REFERENCES
[1] M. K. Bergman. The Deep Web: Surfacing Hidden

Value.
http://www.completeplanet.com/Tutorials/DeepWeb/,
2003.

[2] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1–7):107–117, 1998.

[3] A. Broder, M. Najork, and J. Weiner. efficient url
caching for worldwide web crawling. In Proceedings of
the International World Wide Web Conference, 2003.

[4] S. Chakrabari, M. van den Berg, and B. Dom.
Focused crawling: A new approach to topic-specific
web resource discovery. In Proceedings of the Eighth
International World Wide Web Conference, 1999.

[5] R. B. Doorenbos, O. Etzioni, and D. S. Weld. A
scalable comparison-shopping agent for the world-wide
web. In W. L. Johnson and B. Hayes-Roth, editors,
Proceedings of the First International Conference on
Autonomous Agents (Agents’97), pages 39–48, Marina
del Rey, CA, USA, 1997. ACM Press.

[6] B. Eckman, Z. Lacroix, and L. Raschid. Optimized
seamless integration of biomolecular data. In IEEE
International Conference on Bioinformatics and
Biomedical Egineering, pages 23–32, 2001.

[7] D. C. Fallside. XML Schema Part 0: Primer.
Technical report, World Wide Web Consortium,
http://www.w3.org/TR/xmlschema-0/, 2001.

[8] R. Gold. HttpUnit. http://httpunit.sourceforge.net,
2003.

[9] L. Haas, P. Schwarz, P. Kodali, E. Kotlar, J. Rice, and
W. Swope. Discoverylink: A system for integrating life
sciences data. IBM Systems Journal, 40(2), 2001.

[10] A. Heydon and M. Najork. Mercator: A scalable,
extensible web crawler. World Wide Web,
2(4):219–229, 1999.

[11] S. Lawrence and C. L. Giles. Searching the world wide
web. Science, 280(5360):98, 1998.

[12] S. Lawrence and C. L. Giles. Accessibility of
information on the web. Nature, 400:107–109, 1999.

[13] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions and reversals. Soviet Physics
Doklady, 10:707–710, 1966.

[14] R. Miller and K. Bharat. SPHINX: A framework for
creating personal, site-specific web crawlers. In
Proceedings of the Seventh International World Wide
Web Conference, 1998.

[15] A. H. H. Ngu, D. Rocco, T. Critchlow, and D. Buttler.
Automatic discovery and inferencing of complex
bioinformatics web interfaces. Technical Report
UCRL-JRNL-201611, Lawrence Livermore National
Laboratory, 2003.

[16] Pew Internet and American Life Project Sur-
vey. Search engines: a Pew Internet project data memo.
http://www.pewinternet.org/reports/toc.asp?Report=64,
July 2002.

[17] D. Rocco and T. Critchlow. Automatic Discovery and
Classification of Bioinformatics Web Sources.
Bioinformatics, 19(15):1927–1933, 2003.

[18] P. Srinivasan, J. Mitchell, O. Bodenreider, G. Pant,
and F. Menczer. Web crawling agents for retrieving
biomedical information. In Proceedings of the
International Workshop on Agents in Bioinformatics
(NETTAB-02), 2002.


	DISCLAIMER



