
Data Structures and
Algorithms for Graph Based
Remote Sensed Image
Content Storage and Retieval

C. W. Grant

IEEE International Geoscience and Remote Sensing
Symposium, Anchorage, Alaska, September 20-24, 2004

June 25, 2004

UCRL-PROC-204929

labass1
Text Box
UCRL-PROC-204929

This document was prepared as an account of work
sponsored by an agency of the United States
Government. Neither the United States Government nor
the University of California nor any of their employees,
makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights.
Reference herein to any specific commercial product,
process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or
favoring by the United States Government or the
University of California. The views and opinions of
authors expressed herein do not necessarily state or
reflect those of the United States Government or the
University of California, and shall not be used for
advertising or product endorsement purposes.

 Data Structures and Algorithms for Graph Based Remote
Sensed Image Content Storage and Retrieval

Charles W. Grant
Lawrence Livermore National Laboratory

7000 East Ave.
Livermore, CA 94551

Abstract- The Image Content Engine (ICE) project at
Lawrence Livermore National Laboratory (LLNL) extracts,
stores and allows queries of image content on multiple levels.
ICE is designed for multiple application domains. The
domain explored in this work is aerial and satellite
surveillance imagery. The highest level of semantic
information used in ICE is graph based. After objects are
detected and classified, they are grouped based in their
interrelations. The graph representing a locally related set of
objects is called a "graphlet". Graphlets are interconnected
into a larger graph which covers an entire set of images.
Queries based on graph properties are notoriously difficult
due the inherent complexity of the graph isomorphism and
sub-graph isomorphism problems. ICE exploits limitations in
graph and query structure and uses a set of auxiliary data
structures to quickly process a useful set of graph based
queries. These queries could not be processed using
semantically lower level (tile and object based) queries.

I. INTRODUCTION

The Image Content Engine (ICE) is an ongoing project at
Lawrence Livermore National Laboratory (LLNL) to
produce systems for extracting domain specific semantic
information (at multiple levels of abstraction) from large
volumes of imagery and evaluating queries using this
semantic information. The initial application domain is
aerial and satellite surveillance imagery of broad areas.
The system will be able to combine imagery information
from various observation modes, including optical, hyper-
spectral, and synthetic aperture radar.

ICE extracts image information at multiple semantic
levels. At the lowest level, tile-based, information is
mainly spectral, statistics about pixels in local rectangular
regions [1,2]. The next highest level, the region level,
involves segmenting the image into sets of contiguous
pixels with similar properties [3]. The third level of
information is the object level. It is at the object level
where tile and region features are used to detect domain
specific entities or the image can be directly matched
against models of known objects. It is here at the object
level where most low level semantic information is
introduced. For example a rectangular region classified as
a "building" or a “railcar.”

The ICE system is structured as a configurable
processing pipeline [4]. Tiles, regions and objects are input
to the "semantic representation" stage or since our
semantic representation scheme is graph based, it is also
called the "graph building" stage.

Figure 1, The ICE Pipeline Architecture.

II. SEMANTIC GRAPH REPRESENTATION OF CONTENT

It was decided early in the project to use a graph based
representation to hold the semantic information, a
"semantic graph." A graph is simply a data structure
consisting of “nodes” and “arcs” or “links” which connect
the nodes. In our representation, all objects or collections
of objects are represented by nodes. Relations between
nodes are represented by links between the corresponding
nodes. Most links are directed.

Nodes contain unique identifiers. Nodes are typed, i.e.
classified as one of a small number of possibilities such as
“building” or “storage tank.” Nodes contain multiple
values and the collection of values is called a feature
vector. This can be the same as the feature vector
generated by the feature extraction and object detection
pipelines [4]. Nodes contain spatial information about the
object, spectral information and possibly some other
known or derived information. Having the nodes be rich in
common descriptive information improves the
performance of many graph algorithms.

In the current implementation, links are typed and have
unique identifiers, but do not carry values. Although one
can imagine cases where link values might be useful, this
functionality can be simulated by replacing the link with
two links and an intermediate node. The intermediate node
can be used to hold the “link value”. If the use of this
construct is widespread then, for efficiency, the link data

structure can and should be redesigned to incorporate the
link values directly into the link data structure.

The graph representation provides an extreme amount of
expressive power in describing collections of objects and
relations between them. Ignoring performance issues,
storing all the information in one graph, formulating
queries as graphs, and evaluating the queries by
determining all the sub-graphs which are isomorphic to the
query is nearly ideal. Unfortunately, the sub-graph
isomorphism problem is NP-complete [5]. This means that
for some sets of graphs and queries, the sub-graph
isomorphism problem can not be solved any faster than
exponential time (the time required is an exponential
function of the size of the query). So in the general case of
arbitrary graphs and arbitrary queries, only trivially small
queries can be guaranteed to be executable in reasonable
times.

III. PERFORMANCE REQUIREMENTS

The restrictions for using very large graphs are severe.
Preprocessing the graph is essential but, since the graphs
for some applications are going to very large, say millions
of nodes and larger, it is clear that there is not much time
available to preprocess each element in the graph. We also
need to be able to add more nodes and links to the graph at
a later time without redoing the preprocessing for the
original nodes and links. We also may delete some parts of
the graph without having to redo the preprocessing of the
remaining parts of the graph. Clearly a preprocessing
scheme of quadratic time complexity or worse is not be
possible. Something like O(n log n), where n is the size of
the graph, is probably about the slowest algorithm that
could be used for preprocessing the entire graph. But a
linear time algorithm would be preferable.

Executing a query also has very strict performance
requirements. Examining every node in the graph, even
once, is too slow. All query algorithms must be sub-linear
with respect to graph size (this would not be possible
without preprocessing). Time complexity for queries
should be about O(log n) with respect to graph size or
faster and time complexity should be nearly linear, or
faster, with respect to query size and the number of
matches. So the overall time complexity for queries should
be something like O(qr(log q)(log r)(log g)) or faster for
reasonably acceptable performance on very large graphs,
where q is the query size, r is the number of results and g
is the size of the graph. But low degree polynomials in r
and q might be acceptable (especially for small r and q).

IV. GRAPH RESTRICTIONS

Because of the performance requirement of very large
graphs, it is natural to look for ways to restrict sets of
graphs and queries in some way so that reasonable
performance can be guaranteed but so the graph and query
still have a sufficient amount of expressive power to
describe the semantics required for the problem domain.

Some aspects of the surveillance problem domain, and
probably imagery in general, are very useful in restricting
the types of graph structures to those that are more easily
queried. Objects in the images tend to be related only to

objects which are spatially very local. This limits the
degrees of the nodes in the graph. Groups of objects also
tend to be separated from other groups in easily detectable
ways, and low level objects of interest are mostly parts of
higher level objects which are structured hierarchically.
Thus we can expect the graphs to be fairly isolated sub-
graphs and the sub-graphs will have mostly planar
interrelations which correspond to nearby spatial relations.
We call these isolated sub-graphs "graphlets".

Both the graph isomorphism problem and the sub-graph
isomorphism problem are much easier if nodes and links
are very distinctive [6,7]. The worst case performance
occurs when all nodes and links “look alike” so they must
be repeatedly examined in all combinations. The design
decision to use information rich nodes with lots of values
distinguishing information values within each node is a
significant performance help by both distinguishing nodes
and by reducing the total number of nodes and links in the
graph. An alternative representation is to use, for each
value in each node, a separate link (“has area of” for
example) and a separate node to hold the value. This
alternative “information poor” representation scheme is
simple, but wasteful of space and much more difficult to
search.

V. GRAPHLETS

Within each graphlet we have a hierarchical structure
with the lowest level of objects (those detected in previous
pipeline stages) at the bottom of the hierarchy. These low
level objects will be connected to other low level objects
(at the same level in the hierarchy) based on their spatial
relations or other known relations. This level can be quite
complex.

The next level up in the hierarchy, the "group" level,
groups the lower level objects into overlapping sets which
share some mutual relation, for example, a set of mutually
parallel objects, or a set of connected (touching) objects.
The graph node representing the set of mutually related
objects contains summary information about the set which
is used to satisfy queries without examining the lower
level nodes whenever possible. This summary information
includes the number of objects interrelated, the total area
of the interrelated objects, the area of the largest
interrelated object, the maximum length of any of the
interrelated objects, etc.

The next highest level node is the graphlet node. The
graphlet node contains summary information about the
group nodes (number of parallel groups, total number of
parallel objects, maximum number of objects in a parallel
group, etc.) as well as combined summary information
about all the low level object nodes. If the number of types
of groups is small and the number of types of low level
objects is small, then summary information about each
type of group and each type of object can be stored with
the graphlet node. Initially we will use the group types
connected, near, sequential, linear, parallel and unrelated
and the object types: building (rectangle), storage tank
(ellipse) and road.

As the object detection pipeline stage generates objects
they are input to the graph building pipeline stage (Fig. 1).
Objects are first sorted spatially and nearby pairs of

objects are examined for known spatial relations. There are
straightforward geometric tests for connectedness,
closeness, parallelism, co-linearity, containment, and
sequential placement on a mildly curving path, but all
require that one or more adjustable tolerance parameters
be reasonably set.

Sets of mutually similarly related objects are linked to
group nodes (mutually parallel objects, for example).
Objects are considered “mutually related” if a path exists
between the objects consisting of only links of the same
type. A direct link between each pair of objects in the set is
not required. Objects can belong to multiple groups by
way of different types of relations (near some objects and
parallel to a subset of them, for example). Objects which
do not belong to any other groups, but which are still close
enough spatially to be considered part of the graphlet, are
placed in a default “unrelated” group.

The group nodes are then linked to a single graphlet node
and the summary information in each group node is
merged into the graphlet node. Any links between objects
in different graphlets (because of non-spatial relations) are
“promoted” up to the graphlet level by creating
corresponding links between the corresponding graphlet
nodes.

Figure 2. A Simple Graphlet.

The overall structure of a simplified graphlet is shown in
figure 2. Graphlet nodes are linked into a global structure
at the top level. The graphlet nodes, group nodes and
object nodes and links between graphlet nodes and group
nodes and between group nodes and object nodes form the
directed acyclic graph, DAG, part of the graphlet. At the
lowest level in the graphlet the object nodes and their basic
interrelations are represented in a nearly planar and usually
small sub-graph.

The key to preprocessing for sub-linear performance is
then to index the graphlet nodes, based on the graphlet
summary information, using conventional database
indexing techniques [8]. This allows us to cull most
graphlets without examining any of their nodes. In
addition the summary information available at each group
node is saved and is used to further cull searches within
the graphlet. Ideally one would like to have an index pre-
calculated for every combination of feature values that
could appear in a query, but this is not practical. The
graphlets can be indexed using a single multi-dimensional
data structure, such as a k-d tree or BSP tree [9]. The
advantage of these data structures is that they are flexible

enough to allow queries using any features, but they are
usually not as efficient as having an index pre-calculated
for the specific set of features used in the query. A high
performance system would likely include several indices
pre-calculated for what are anticipated to be the most
likely combinations of features in queries and a general
multi-dimensional index to handle everything else.

VI. QUERYING THE GRAPH

A graph query is essentially a sub-graph isomorphism
problem. The “query template” represents the sub-graph.
The matching process is more complex than a pure sub-
graph isomorphism search because the query template can
describe a more complex node matching than a simple
type or value match. Matching nodes with a range values
is a simple example of more complex search. The query
template can also contain items which are not allowed to
be present in graphlets that match. For example, more
complex query might be a storage tank which is not near
any building with an area greater than some specified
value. The search could be more properly described as a
generalized sub-graph isomorphism algorithm.

Each query template will contain at least one graphlet
node template that specifies what ranges of summary
values constitute a potential match. The query process will
first retrieve all graphlets which match the graphlet
template's specified ranges. This uses a pre-computed
index of the graphlet nodes and involves only accessing a
very small fraction of the total number of graphlets.

Then for each graphlet the other nodes of the graphlet
will be examined to see if they match the remaining part of
the graph template. First the group nodes will be matched
to the range information in the group node templates of the
query template. In this way, most non-matching graphlets
will be filtered out by using the summary information well
before any low level nodes and their potentially complex
interrelations are examined. The group nodes are
examined in a pre-calculated order which is intended to
yield the quickest culling of non-matching nodes. If the
group nodes satisfy the range requirements, then it is very
likely that this is a match. At this point an explicit search is
performed to find a suitable isomorphism.

Depending on the particular query specification, the
search within that graphlet can terminate after finding the
first match, or it can continue and all isomorphisms,
including overlapping ones, will be returned. This is
important because the search within a single graphlet can
take time that is exponential in the size of the query. The
search within a single graphlet can also potentially find an
exponential number of matches if overlapping matches are
allowed. These limitations do not entirely avoid the worst
case exponential behavior of sub-graph isomorphism. It is
still possible to spend an amount of time that is
exponential in the query size while searching in a single
graphlet before finding a match or eventually failing to
find a match.

VII. SCALABILITY

These data structures and algorithms are designed for
very large data sets. It is expected that we will use the

techniques at different scales, from single processors to
large clusters depending on the size of the problems
(mainly number of images). The only significant
bottlenecks identified for parallel implementations are the
same bottlenecks all parallel data base implementations
face. We expect to be able to avoid these scalability
bottlenecks by using an existing parallel data base system,
or using the same techniques used in existing parallel data
base systems in a custom system.

Most of the processing in the graph generation pipeline
stage can be classified as “embarrassingly parallel.”
Individual images can be processed completely
independently, except for indexing and storage of the final
graphlets. We expect very good parallel performance for
graph generation.

Parallel query execution can also be classified as
“embarrassingly parallel.” Since each entire graphlet will
be stored on a single machine, the per-graphlet processing
will be able to proceed completely independently on each
computer.

VIII. STATUS AND CONCLUSIONS

A system for the efficient generation, storage and
querying of graph based image content has been presented.
The system has been implemented to work entirely in-
RAM as a first step. An out-of-RAM implementation is in
progress. As of this writing the system has not been tested
on large numbers of large images. Such testing is
scheduled before the presentation of this paper, so an oral
progress report will be made at that time.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S.
Department of Energy by University of California,
Lawrence Livermore National Laboratory under Contract
W-7405-Eng-48.

REFERENCES

[1] S. Sengupta, A. Lopez, J. Brase, D. Paglieroni, “Tile-
based railroad detection in multi-source images”,
Proceedings of IGARSS 2004, September 2004.

[2] S. Sengupta, A. Lopez, D. Poland, “Class-label
statistics: a basis for fusing information from multi-
spectral imagery with an application to unsupervised
detection of human settlement”, Proceedings of IGARSS
2004, September 2004.

[3] D. Paglieroni, “Convergent coarseness regulation for
segmented images”, Proceedings of IGARSS 2004,
September 2004.

[4] G. Weinert, J. Brase, D. Paglieroni, “Computer-aided
content-based cueing of remotely sensed images with the
image content engine”, Proceedins of IGARSS 2004,
September 2004.

[5] M. R. Garey, D. S. Johnson, Computers and
intractability a guide to the theory of NP-completeness, W.
H. Freeman and Company, 1979, p. 202

[6] B. D. McKay, Practical graph isomorphism, 10th.
Manitoba Conference on Numerical Mathematics and

Computing (Winnipeg, 1980); Congressus Numerantium,
30 (1981) 45-87.

[7] B. D. McKay, nauty User's Guide (version 1.5),
Tech. Rpt. TR-CS-90-02, Dept. Computer Science,
Austral. Nat. Univ. (1990).

[8] C. J. Date, An introduction to database systems, 7th

ed, Addison Wesley Longman, 1999
[9] F. P. Preparata, M. I. Shamos, Computational

geometry: an introduction (texts and monographs in
computer science), Springer Verlag, 1991

