
LAWRENCE

N AT I O N A L

LABORATORY

LIVERMORE

Integrated Design and
Production Reference
Integration with
ArchGenXML
V1.00
R. H. Barter

July 29, 2004

UCRL-TR-205417

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University of
California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy
by University of California, Lawrence Livermore National Laboratory under
Contract W-7405-Eng-48.

Integrated Design and Production Reference

Integration with
ArchGenXML

Ri

sk
M

an
ag

em
en

t Project

M
anagem

ent

Configuration
Management

Requirements
Management

In
teg

ra
tio

n

M
an

ag
em

en
t Engineering

M
anagem

ent

Integrated Design
and

Production Reference

Ri
sk

M
an

ag
em

en
t Project

M
anagem

ent

Configuration
Management

Requirements
Management

In
teg

ra
tio

n

M
an

ag
em

en
t Engineering

M
anagem

ent

Integrated Design
and

Production Reference

Version 1.00

R. H. Barter

July 29, 2004

Table of Contents

Overview... 1
Configuration Requirements... 1

Cosmetic ... 1
Structural... 1
Presentation... 2
Behavioral ... 3

Design Approach .. 4
argoUML... 5
Poseidon.. 6
Plone Products Folder ... 10

 Page i

 IDPR ArchGenXML Integration

Overview
ArchGenXML is a tool that allows easy creation of Zope products through the use of
Archetypes. The Integrated Design and Production Reference (IDPR) should be highly
configurable in order to meet the needs of a diverse engineering community. Ease of
configuration is key to the success of IDPR.
The purpose of this paper is to describe a method of using a UML diagram editor to
configure IDPR through ArchGenXML and Archetypes.

Configuration Requirements
The production version of the IDPR has a requirement that a person in the role of
“Configurator” be able to configure IDPR to match a particular engineering process.
Configuration has four major aspects:

1. Configuring the look-and-feel (Cosmetic),
2. Configuring the data structures (Structural),
3. Configuring how information will be presented (Presentation), and
4. Configuring how information will be controlled (Behavioral).

The software requirements for “configuration”1 are listed below for each of the four
aspects.

Cosmetic
The following requirements can be implemented with dedicated configuration pages or as
attributes in a UML diagram.

• The splash page shall include a link called “Recent Changes” in the Utilities
section that will go to a page displaying the most recent N changes made to the
system, where N is a number configurable by the Configurator.

• Document Storage Areas shall have a configurable title in the upper left corner.
• Document Storage Areas shall have a configurable classification level in the

upper right corner

Structural
The structural configuration requirements are best implemented through the use of a
UML editor.

• IDPR shall have the ability to be configured with one or more hierarchies.
UML classes can be used to define the IDPR hierarchies

1 Software Requirements Specification for the Integrated Design and Production Reference, UCRL-MI-
204395, May 28, 2004, R. H. Barter, E. A. Quinnan, A. Vinzant

 Page 1

 IDPR ArchGenXML Integration

• The properties of each hierarchical element shall be configurable through the
Zope Management Interface (ZMI).
UML class attributes can be used to define the properties.

• IDPR shall have the ability to be configured for one or more information
hierarchy templates.
The need for hierarchy templates goes away if UML classes define the
information structure

• The number of document storage areas shall be configurable
If the document storage area is defined as a UML class, then the Plone interface
can be used to instantiate each document storage area.

• The title of each document storage area shall be configurable.
The title is an attribute defined in the UML class

• The Configurator shall be able to define specific child objects that can be added
by the user
The child objects can be defined as UML classes and class attributes can be used
to control whether or not a child can be added in a particular situation.

• The Configurator shall choose which child object is available for a user to add to
any given Information Category Object.
See comment above

Presentation
• Three independently scrollable panels shall be simultaneously displayed

As shown below; it should be possible to define a set of abstract Display classes.
A configurable UML class would then inherit from one of the abstract Display
classes to implement a specific presentation.

• The first panel shall include physical hierarchy, functional hierarchy, and zero or
more user-defined hierarchies
See abstract Display class above

• A configurable title shall be shown at top left corner
The abstract Master class will define the title attribute/property. The abstract
Display class will control the display of the title. The title value will be defined
for each instance.

• A configurable classification field shall be in the upper right corner
See above

• Shall have a configurable title for first panel
See above

• The Configurator shall be able to define property fields for files that will appear
beneath the title line in the Add File window
Property fields map directly onto UML class attributes. It is proposed below that
there be a fixed set of attributes/properties that are inherited from an abstract
class and a set of configurable attributes/properties defined for each UML class.

 Page 2

 IDPR ArchGenXML Integration

IDPR can use the fixed properties directly and interpret the configurable fields at
run time.

• The property fields that the Configurator has defined for files in the specified
Document Storage Area shall show up as default property fields for the user to
enter values, on the Batch Upload page
Same comment as for “Add File” above

Behavioral
• The Configurator shall have the ability to select one of three collaboration

strategies: permissive, informative, or restrictive.
The collaboration attribute would be defined in the top level UML class. The
value would be defined at instantiation time. The behavior would, most likely, be
hard coded into IDPR.

• Configurators shall have the ability to enable or disable any of the workflows.
Best accomplished with a dedicated configuration page

• Configurators shall have the ability to assign roles to users for the workflows.
Best accomplished with a dedicated configuration page

• On the bottom of the first and second panels, there shall be a configurable filter
that can be turned on or off (by selecting or de-selecting it), that will determine (to
an extent) what information is displayed in that panel, based on the properties of
the objects being displayed
The behavior will be associated with the abstract Display class. (Does it make
sense to define abstract Behavior classes – along the lines of
Model/View/Controller – and then think about adaptors between an inherited
display class and an inherited behavior class?)

• Information Category Objects (elements in the second panel) shall have a title,
description, type, a list of acceptable child Information Category Objects, a field
to indicate whether the user can do cut/copy/paste/delete (all set up by the
Configurator, and not viewable to a Contributor or Reader), a field to indicate
whether or not there is an associated extension to the object (set up by the
Configurator), and a field indicating display order
All of this can be defined in the UML class if not inherited from the abstract
Master class. Display of Master class attributes can be “hard coded” in the
abstract Display class. Other class attributes can be displayed by an interpreter
program based on the attribute/property type.

• Each Information Category Object shall be configurable as to whether the user
can add sub-objects, and the type of sub-objects that can be added (restrictions set
up by Configurator). If a user can add a sub-object, then the ability to do so shall
be reflected in the pop-up “modify” menu in the third column.
Default behavior based on UML class attributes in the inherited master class

• Setting Priorities: the first element/option shall be “none,” and then the rest shall
be configurable as to title and icon – by the Configurator, and holding application-

 Page 3

 IDPR ArchGenXML Integration

wide (no icon shall be displayed next to title for a priority setting of “none”)
Default behavior based on UML class attributes in the inherited master class

• Each information object in panel three shall be able to be configured for a set of
user actions, which shall appear in the Modify popup menu (configuration defined
in the Default Hierarchy prototype
Default behavior based on UML class attributes in the inherited master class

• Availability of the specific extensions to any particular Information Category
Object shall be set up by the Configurator
Defined by the UML classes

• The Risk Matrix shall have a configurable number of rows and columns, with
each cell of the matrix assigned a level represented by a color
Best handled with attributes I the UML class

• The Configurator shall be able to configure the number of rows and columns, the
labels for same, and the color and priority of each cell in the matrix
Best handled with attributes I the UML class

• The “Properties” Information Category Object Extension shall display property
names and editable property value fields for any configurable Information
Category Object property
Defined as attributes in the UML class and interpreted for display at run time as
part of the default behavior

• “Add Document” shall be an available user action in the pop-up “modify” menu
for any Information Category Object in the third panel for which an associated
Document Storage Area has been set up by the Configurator.
Defined as an attribute of the UML class

Design Approach
IDPR will have a set of data structures, display screens and behaviors that are beyond the
view of the Configurator. Other items will be visible to, and used by, the Configurator,
but will not be modifiable by the Configurator. Visible items include Master properties
and selectable Display options. Other items will me modifiable by the Configurator.
Modifiable items include hierarchies and data objects.
There are several UML editors supported by ArchGenXML. From the ArchGenXML
web page2:

2 http://plone.org/documentation/archetypes/archgenxml-manual

 Page 4

 IDPR ArchGenXML Integration

ArchGenXML is tested with the XMI output from the following tools:

ObjectDomain3 commercial, free demo
for <= 30 classes

provides the possibility to export the
model to XMI

Powerdesigner4 commercial, demo
download

supports model export as XMI (XMI
version 1.1)

ArgoUML5 free stores the model native as xmi +
diagram information in .zargo files (zip
files) (xmi version 1.0)

Poseidon6 commercial, based on
ArgoUML

stores the model native as xmi +
diagram information in .zuml files (zip
files) (xmi version 1.2)

KDE's Umbrello7 free, Linux/KDE umbrello saves the models native in
XMI (not fully standard compliant)

argoUML
Start with a set of predefined abstract classes in a supported UML editor such as
argoUML

3 http://www.objectdomain.com/_odR30/odR3download.html
4 http://www.sybase.com/
5 http://argouml.tigris.org/
6 http://www.gentleware.com/
7 http://www.umbrello.org/

 Page 5

http://www.objectdomain.com/_odR30/odR3download.html
http://www.sybase.com/
http://argouml.tigris.org/
http://www.gentleware.com/
http://www.kde.org/
http://www.umbrello.org/

 IDPR ArchGenXML Integration

Poseidon
Poseidon has a similar interface

The abstract Master class
will define all the
attributes common across
IDPR objects (such as id,
title, description,
display_priority,). Each
configurable class (such
as a Function Element)
will inherit from the
master abstract class.

Define a set of abstract Display
classes. One Display abstract
class will display a simple
hierarchy for a defined
class/product. Another Display
abstract class will display a
series of panels (perhaps
implemented as <IFRAMES/>
), one panel per contained
folderish class/product. Each
configurable class (again, such
as a Function Element) will
inherit from one of a pallet of
abstract Display classes.

 Page 6

 IDPR ArchGenXML Integration

Now define a Project
class that inherits from
the Master class and the
Simple_Properties class

Now we can export the definition as an xmi file.

It is best to create a batch file for running ArchGenXML. A command such as the
following will produce an Archetype product.

python ..\..\ArchGenXML\ArchGenXML\ArchGenXML.py -a yes -o "IDPR
ArchGenXML Integration" "IDPR ArchGenXML Integration.xmi"

 Page 7

 IDPR ArchGenXML Integration

The directory structure looks like:

Project.py contains the schema:
 schema=BaseSchema + Master.schema + Simple_Properties.schema + Schema((

 StringField('project_owner',

 widget=StringWidget(description='Enter a value for project_owner.',

 description_msgid='IDPR ArchGenXML Integration_help_project_owner',

 i18n_domain='IDPR ArchGenXML Integration',

 label='Project_owner',

 label_msgid='IDPR ArchGenXML Integration_label_project_owner',

),

),

),

)

Note that the schema pulls in the Master.schema and the Simple_Properties.schema.
The Simple_Properties.schems is empty because we did not define any attributes in
UML:
 schema=BaseSchema + Schema((

),

)

 Page 8

 IDPR ArchGenXML Integration

The Master.schema contains:
 schema=BaseSchema + Schema((

 StringField('id',

 widget=StringWidget(description='Enter a value for id.',

 description_msgid='IDPR ArchGenXML Integration_help_id',

 i18n_domain='IDPR ArchGenXML Integration',

 label='Id',

 label_msgid='IDPR ArchGenXML Integration_label_id',

),

),

 StringField('title',

 widget=StringWidget(description='Enter a value for title.',

 description_msgid='IDPR ArchGenXML Integration_help_title',

 i18n_domain='IDPR ArchGenXML Integration',

 label='Title',

 label_msgid='IDPR ArchGenXML Integration_label_title',

),

),

 StringField('description',

 widget=StringWidget(description='Enter a value for description.',

 description_msgid='IDPR ArchGenXML Integration_help_description',

 i18n_domain='IDPR ArchGenXML Integration',

 label='Description',

 label_msgid='IDPR ArchGenXML Integration_label_description',

),

),

 IntegerField('display_priority',

 widget=IntegerWidget(description='Enter a value for display_priority.',

 description_msgid='IDPR ArchGenXML Integration_help_display_priority',

 i18n_domain='IDPR ArchGenXML Integration',

 label='Display_priority',

 label_msgid='IDPR ArchGenXML Integration_label_display_priority',

),

),

),

)

 Page 9

 IDPR ArchGenXML Integration

Plone Products Folder
We can now copy the IDPR ArchGenXML Integration folder to the Plone products
directory and restart Zope to see the IDPR_ArchGenXML_Integration product in the
Products directory:

If we go to the Plone setup.Add/remove Products page, we see our new product.

 Page 10

 IDPR ArchGenXML Integration

Installing the product results in the following install log transcript:

We can add a new Project:

 Page 11

 IDPR ArchGenXML Integration

When we add a new instance of the Project product we get the following input screen:

The new Project object has the following default view:

 Page 12

 IDPR ArchGenXML Integration

Here is a slightly more interesting example:

In this example, the Configurator has
defined a Project class (Product in Zope
terms) that inherits from the Master
abstract class and the Simple_Properties
abstract class. Each Project instance can
contain one or more Project_Details
hierarchies.

The intent is to have IDPR display a
Project instance as a set of multiple trees,
one for each Project_Details tree instance
contained within the Project instance.

 Page 13

 IDPR ArchGenXML Integration

Now we can add a Project using the new structure and go to the Contents Tab in Plone
and see that we can add a Project Detail

Create a new Project

View Project
information

 Page 14

 IDPR ArchGenXML Integration

Contents view of
Project

Add Project_Details

 Page 15

 IDPR ArchGenXML Integration

View Project_Detail
information

There may be other abstract classes having to do with email notification, data access, or
workflow.

 Page 16

	July 29, 2004
	Table of Contents

	Overview
	Configuration Requirements
	Cosmetic
	Structural
	Presentation
	Behavioral

	Design Approach
	argoUML
	Poseidon
	Plone Products Folder

