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INTRODUCTION 

 
In the discrete ordinates, or SN, numerical solution of the transport equation, both the 

spatial ( r) and angular ( Ω ) dependences on the angular flux ),( Ωrψ are modeled discretely.  
Significant effort has been devoted toward improving the spatial discretization of the angular 

flux [1, 2].  In this work, we focus on improving the angular discretization of ),( Ωrψ .  In the 
conventional SN method, the angular dependence is modeled with a quadrature of discrete 
angles.  Instead, we employ a Petrov-Galerkin quadratic finite element approximation for the 
differencing of the angular variable ( µ ) in developing the one-dimensional (1D) spherical 
geometry SN equations.  We develop an algorithm that shows faster convergence with angular 
resolution than conventional SN algorithms.  

 
SPHERICAL TRANSPORT EQUATION 

 
This 1D spherical transport equation in conservative form is given by 
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We discretize the angular variable with a set of N angular bins, with 

boundaries 121 +
<<<<<

N
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n
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, and 11 −=� .  11 −=� is the starting direction and is 

treated separately from the other directions. [3, 4] The angular flux for the direction nµ is 

nnr ψµψ =),( . (The spatial dependence is omitted.)   
 
Conventional Methods 

 
The standard formulation of the SN equations involves the diamond-difference (DD) 

relationship between the angular fluxes for angle n and “half-angles” 2/1−n  and 2/1+n : 
 

.2 2/12/1 −+ −= nnn ψψψ                                   (2) 



 

To preserve the solution of a uniform isotropic flux in an infinite medium ( Σ= Sr ),( µψ ) for 

any quadrature set, differencing coefficients 2/1+nα are used in the angular derivative term to 

force the two streaming terms to vanish. [3, 4] Upon spatial differencing, we obtain the 
conventional SN equations.  In addition, Morel and Montry have developed a “weighted 
diamond-difference” algorithm that is more accurate than standard DD. [5] 
 
DESCRIPTION OF THE ACTUAL WORK 

 

Our new method employs Petrov-Galerkin finite elements for ),( µψ r  in Eq. (1).  
Specifically, we approximate the angular dependence as a combination of a continuous 
piecewise bilinear function and a continuous quadratic function of µ : 
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where 1+≤≤ nn µµµ and .1 nnn µµµ −+=∆   (Eq. (3) is valid in the first angular bin 21 µµ ≤<− .)  To 

obtain the discrete equations, Eq. (3) is substituted for ),( µψ r  in Eq. (1), and then we operate 

on Eq. (1) by 
+ ⋅1

)(
n

n

d
µ

µ
µ in each angular bin; that is, Nn ≤≤1 .  The result is the following: 
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where ,2)( 1 nnA µµµ += + ,2)( 1 nnB µµµ += +  and nnC µµµ += +1)( .  This equation has one 

known angular flux ( nψ ) and two unknown angular fluxes ( 1+nψ and nψ~ ).  Thus, we need 

another equation.  That equation is obtained by substituting Eq. (3) for ),( µψ r  in Eq. (1), and 

then operating on Eq. (1) by µµ
µ

µ
d

n

n


+ ⋅1

)( .  The result is  
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where 2
1

2
1 32)( nnnnD µµµµµ ++= ++ , 2

1
2

1 23)( nnnnE µµµµµ ++= ++ , and 2
1

2
1 343)( nnnnF µµµµµ ++= ++ .   

 
      Upon spatial differencing Eqs. (4) and (5), we have the discretized equations for our 
quadratic finite element method.  These equations are solved similarly to the conventional SN 
equations by marching through the grid in the direction of particle motion.  To obtain the 
starting value at 1−=µ , we do a separate calculation for the first angular bin boundary 

at 1−=µ , similarly to what is done in conventional SN methods. [3, 4]  This gives us the values 

for 1ψ  in each radial zone.  This equation resembles a planar geometry transport equation.  
Next, using Eqs. (4) and (5), we determine the fluxes in every radial zone for the remaining 

angular bin boundaries starting with 2µ and ending with 1+Nµ .  For the incoming 

directions, 0<
n

µ , we march inward from the outer boundary to the center of the sphere.  Then, 

for the outgoing directions, 0>
n

µ , we march outward from the center to the sphere boundary.  

However, in this new method, two unknown fluxes exist ( 1+nψ and nψ~ ); thus, we must solve a 

system of equations given by Eqs. (4) and (5) for each radial zone.   
 

RESULTS 
 
To demonstrate the strength of the QFE method, we consider several test problems.  The 

first problem, proposed by Lathrop [4], is a simple two region sphere.  The inner region 
contains a uniformly distributed isotropic source with a small total cross section.  The outer 
region material has a total cross section that is five times larger without any source.  The 
media in both regions are pure absorbers, so this problem neglects scattering.  Also, this 
problem does not contain energy dependence. 

 
For several different quadrature sets, we determine the absorption and leakage rates for 

both the weighted DD and our new quadratic finite element (QFE) schemes.  The results 
indicate the QFE method converges much faster than the weighted DD scheme with finer 
angular resolution. For example, the leakage rate from the QFE scheme is within 0.3% of the 
exact solution when using four angles.  However, the leakage rate from the weighted DD 
scheme is an enormous 49% below the analytical solution when using four angles.  Even for 
32 angles, the leakage rate from weighted DD remains 1.7% below the exact solution.  For 
QFE, the leakage rate is highly converged with just eight angles. 

 
       Because the number of unknowns for QFE is twice the number of unknowns for weighted 
DD, the cost of QFE is double the cost of weighted DD for a given number of angles.  Thus, to 
be equitable, QFE with N angles should be compared to weighted DD with 2N angles.  For 
example, the leakage rate from QFE is within 0.03% of the exact solution for eight angles, 
while weighted DD is within 6% of the exact solution for 16 angles.  Overall, the results indicate 
that QFE with N angles is more closely converged to the exact solution than weighted DD with 
2N angles.   



      The second problem is a modification of the Planet Critical Sphere (Pu-Met-Fast-018).  
This problem contains an inner sphere of plutonium surrounded by a layer of beryllium.  To 
study supercritical systems, we increase the beryllium thickness.  To model this, energy 
dependence, fission sources, and anisotropic scattering (P2) are included.  Using both DD and 
QFE, we determine the �  eigenvalue for several different quadrature sets.  In DD, the �  
converges to within 0.1 µsec-1 after increasing the number of angles beyond 32.  For QFE, the 

�  converges to within 0.1 µsec-1 after the number of angles exceeds 8.  Thus, for DD to 
achieve the same level of accuracy as QFE, DD requires four times as many angles as QFE. 
 
      We plan to present results from at least two additional problems.  
  
      In summary, we have developed a new higher-order SN algorithm for the solution of the 1D 
spherical transport equation using quadratic finite elements.  This method shows excellent 
convergence with relatively coarse angular resolution.  This convergence rate has been shown 
to be superior to conventional SN techniques for 1D spherical geometry.  In the future, we plan 
to study and compare the QFE algorithm with Lathrop’s new Quadratic Continuous method [4].  
The goal will be to understand why the QFE method shows better convergence rates.  Also, 
we hope to extend the ideas of QFE to higher dimensions and to different geometries. (U) 
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