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Abstract

We introduce the Piecewise–Linear Haar (PLHaar)
transform, a reversible n–bit to n–bit transform that is
based on the Haar wavelet transform. PLHaar is continu-
ous, while all current n–bit to n–bit methods are not, and is
therefore uniquely usable with both lossy and lossless meth-
ods (e.g. image compression). PLHaar has both integer and
continuous (i.e. non-discrete) forms. By keeping the co-
efficients to n bits PLHaar is particularly suited for use
in hardware environments where channel width is lim-
ited, such as digital video channels and graphics hard-
ware.

1. Introduction

Integer wavelet transforms have what is termed dynamic
range expansion. Simply put, the number of possible out-
put coefficient values is greater than the number of possible
input values, therefore the number of bits required to repre-
sent a coefficient is greater than the number of bits required
to represent an input (for a discussion of dynamic range ex-
pansion and its effects see [5]). Using the S–Transform [2]
(to be reviewed later) as an example, n–bit inputs to the
transform can have 2n possible values. The resulting out-
put coefficients can have 2n+1 − 1 possible values, which
requires n + 1 bits to represent.

Dynamic range expansion presents some problems. If the
transform is being performed in hardware (such as a video
frame buffer) that has a channel width limited to n bits,
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some data loss will result due to forced truncation of the co-
efficients. If custom hardware implementing the transform
is to be designed and built, circuitry for handling the extra
bit adds complexity and cost to the design. Because mod-
ern computer architectures allocate storage in 8–bit incre-
ments, an implementation of the transform on a computer
will require 16 bits to store each 9–bit coefficient.

To our knowledge there are only two published meth-
ods for completely eliminating dynamic range expansion
in a transform. These are the TLHaar method [8] and the
method of Chao, Fisher, and Hua [3] (here referred to as the
CFH method), both of which will be reviewed later. CFH
and TLHaar are discontinuous transforms, and only suitable
for use when the the transform coefficients are manipulated
in a lossless manner.

Given a transform that takes a pair of function values
(A,B), where A and B are each n–bits wide and can have
any one of 2n possible values, the domain of the transform
is the set of all possible input pairs (A,B). The range of the
transform is the set of all possible output coefficient pairs
(L,H), given the domain. Without loss of generality, unless
stated otherwise we will assume that the domain is square
and centered on (0,0).

The Piecewise–Linear Haar transform is nonlinear, but
it transforms the domain on a piecewise basis, the transfor-
mation of each piece being linear. PLHaar is an improve-
ment over CFH and TLHaar because PLHaar is continuous,
and is therefore suitable for both lossy and lossless meth-
ods. Our tests indicate that PLHaar is usable in a compres-
sion system, and its compression ratios should be competi-
tive with those obtained using the other n–bit to n–bit trans-
forms. For images that have areas of high contrast PLHaar
delivers a superior lossy reconstruction. In addition, images
transformed by PLHaar and reconstructed lossily have in-
creased contrast, which helps preserve lines and edges in
the image.



2. The Haar Wavelet Transform

We begin by examining the Haar Wavelet Transform [7].
This transform takes a pair of function values (A,B) and
performs a 45–degree (or one–eighth) rotation of that point
about the origin in Euclidean (or L2) space. In this space,
points in the domain that are equidistant from the origin lie
on a circle.

Given two input values A and B the corresponding high–
pass value H and low–pass value L can be computed by
equations 1 and 2.

H =
B − A√

2
(1)

L =
A + B√

2
(2)

Or in matrix form:

[
L
H

]
=

1√
2

[
1 1

−1 1

] [
A
B

]
. (3)
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Figure 1. The non–normalized Haar trans-
form, showing dynamic range expansion.

2.1. The S–Transform

If the normalization (division) by
√

2 is removed from
the Haar equations, the range of the transform is equiva-
lent to the domain, expanded by a factor of

√
2 and rotated

45 degrees about the origin. The range of possible high–
and low–pass values, as measured along the axis, is now
twice that of the domain (see figure 1). If the domain is
integer–valued, it should be obvious that the range of the
non–normalized Haar transform is also integer–valued, and
that the number of positions occupied in the range is equal
to the number of positions in the domain. If the domain is
[0, N ]2 then in the range L will be drawn from [0, 2N ] and
H from [−N,+N ], arranged in a lattice as in the left side
of figure 2.

The S–Transform [2], defined by equations 4 and 5, is an
integer version of the Haar Transform.

H = B − A (4)

L =
⌊

A + B

2

⌋
(5)

It eliminates dynamic range expansion in the low–pass co-
efficients by “squashing” the low–pass range so that it is
equal to the domain, as shown on the right of figure 2. For
any pair of inputs to the non–normalized Haar transform, H
and L have the same least–significant bit (LSB). Because of
this the low–pass values can be squashed without loss of in-
formation (the LSB needed to completely reconstruct L can
be taken from H). However, the range of high–pass coeffi-
cients is still twice the domain.

Non−normalized Haar Range

L

H

S−Transform Range

H

L

Figure 2. Eliminating low–pass dynamic
range expansion by “squashing”.

2.2. TLHaar

Because the number of occupied positions in the domain
and range are equal it is possible to eliminate dynamic range
expansion in the low– and high–pass coefficients by mak-
ing a transform that is a permutation of the domain: intelli-
gently remap each position in the domain such that the re-
sulting transform de–correlates the input data.

TLHaar [8] is an integer–to–integer transform that, given
a bit width n, uses a pair of square two–dimensional lookup
tables (each with an edge dimension of 2n). One table is a
mapping (A,B) → (L,H) for the forward transform, and
the table for the inverse is a mapping (L,H) → (A,B).
Each table is initialized with an identity transform, and then
the rows and columns of the inverse transform table are
sorted so that for any given two pairs of inputs their high–
and low–pass values will have the same magnitude rela-
tionships as those in Haar. When a swap occurs in the in-



verse transform table, the corresponding entries in the for-
ward transform table are also swapped. Because the tables
are initialized with an identity transform no table entry will
have a value outside the transform domain. Thus dynamic
range expansion cannot occur.

Given two pairs of inputs (Ai, Bi), (Aj , Bj), the sort of
the inverse transform table obtains the following two prop-
erties:

∀L̃ : |Hi| ≤ |Hj | ⇐⇒ H̃i ≤ H̃j (6)

∀H̃ : Li ≤ Lj ⇐⇒ L̃i ≤ L̃j (7)

where H indicates a Haar high–pass coefficient, and H̃ in-
dicates a TLHaar coefficient.

Although TLHaar produces transform tables that decor-
relate input data, this method has two shortcomings. The
first is that the transform is not continuous and is therefore
generally suitable only for use with lossless methods. Sec-
ond, for n–bit inputs each table contains 22n entries of 2n
bits per entry. This quickly becomes unwieldy at larger val-
ues of n.

2.3. The CFH Method

The CFH method [3] is also an integer–to–integer trans-
form, and takes advantage of modulo arithmetic to eliminate
dynamic range expansion. Given a bit width n, the range of
representable signed values is [−2n−1, 2n−1−1]. Given in-
puts A and B the CFH transform is computed as in equa-
tions 8 and 9:

H = (B − A) mod 2n (8)

L =
(⌊

H

2

⌋
+ A

)
mod 2n (9)

where we use the standard convention that −x mod 2n =
2n − x for 0 < x < 2n.

The CFH method has an aliasing problem that causes un-
desirable behavior when the difference between A and B
overflows and wraps around, causing H to have a sign op-
posite the expected. CFH is unable to distinguish large pos-
itive numbers from small negative ones (and vice–versa)
because they have the same binary representation. For ex-
ample, if n = 8, the range is [-128,127]. If A = −1 and
B = 127, the CFH method computes H = −128, which is
nowhere near the difference between A and B. The L value
is generally considered to be an “average” of A and B, but
because of H being far from the expected value, L is com-
puted as −65, which is also far from its expected value.
If the wavelet coefficients are kept lossless then this alias-
ing does not cause any problems and the original image can
be reconstructed. However, if a lossy method is used to en-
code the coefficients then severe artifacts may appear in the

reconstruction. Many continuous–tone images do not have
adjacent pixel pairs with differences wide enough to cause
this behavior, so in practice CFH works well for a wide
range of images, reconstructed both lossily and losslessly.
However, this aliasing problem is a fundamental weakness
in the method, and means that the CFH transform is not
continuous. The PLHaar transform, unlike the CFH and TL-
Haar transforms, eliminates dynamic range expansion while
completely preserving continuity.
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Figure 3. The PLHaar transform’s rotation in
L∞ space. Numbered octants are shown.

3. The PLHaar Transform

The Haar transform is defined as a 45–degree rotation in
Euclidean L2 space. The PLHaar transform is a similar ro-
tation in L∞ space. In this space, points that are “equidis-
tant” from the origin lie on the perimeter of a square. A one–
eighth rotation (analogous to the 45–degree rotation of the
Haar transform) about the origin in this space amounts to
moving a point one–eighth of the distance along the perime-
ter of its square. If we divide the domain and range into oc-
tants, then as shown in figure 3 a one–eighth rotation moves
all points from their positions in a given octant into the next
lower octant (with wraparound). The transform as a whole
is nonlinear, but when taken on a piecewise (octant–by–
octant) basis, the transform from octant to octant is linear.
It is from this property that we derive the name “Piecewise–
Linear Haar”, or “PLHaar”. The PLHaar transform maps in-
tegers to integers, and is an autohomeomorphism (meaning
it maps the domain onto itself, is one–to–one, and is contin-
uous).

The transform of a point at coordinates (A,B) is given
by

[
L
H

]
= R

[
A
B

]
(10)



where R is one of four matrices, as given in equation 11, de-
pending on the octant (Oct.) where the point (A,B) is lo-
cated.

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1

−1
0
1

]
if 0 ≤ +B ≤ +A
or 0 ≤ −B ≤ −A

Oct. 1
Oct. 5

[
0

−1
1
1

]
if 0 ≤ +A ≤ +B
or 0 ≤ −A ≤ −B

Oct. 2
Oct. 6

[
1
0

1
1

]
if 0 ≤ −A ≤ +B
or 0 ≤ +A ≤ −B

Oct. 3
Oct. 7

[
1

−1
1
0

]
if 0 ≤ +B ≤ −A
or 0 ≤ −B ≤ +A

Oct. 4
Oct. 8

(11)

Note that R is the non–normalized Haar matrix, but with
one of the four elements zeroed out. Two characteristics of
the PLHaar transform are that R(x, x) = (x, 0), decorrelat-
ing adjacent identical values, just as in the Haar transform.
Also, when A and B are close in value, the low–pass fil-
ter satisfies |L| = max{|A|, |B|}. This has the effect of in-
creasing contrast in the low–pass data.

PLHaar’s continuity gives it an advantage over other
n–bit to n–bit transforms, as this continuity makes PL-
Haar uniquely suitable for lossy compression. Given a
pair of inputs (A,B) and their outputs (L,H), if the out-
puts are modified—via quantization or some other lossy
procedure—to nearby values (L′,H ′), the reconstructed
values (A′, B′) will be close to the original input pair.
The TLHaar and CFH transforms do not have this prop-
erty.

Figure 4 shows images of the four transforms, inter-
preted as lookup tables (LUTs). The origin of each table
(except the TLHaar table) is its center, with the horizon-
tal axis corresponding to A and the vertical to B. Red cor-
responds to L, and green to H , biased by 128. For the TL-
Haar table the origin is the lower–left corner, and there is no
bias on H . The discontinuities in the CFH transform are ob-
vious. The discontinuities in the TLHaar table are less obvi-
ous, but they are present and obvious on closer inspection.
The S–Transform table has no discontinuities, but many of
its high–pass entries (as indicated by the blue–tinted area)
contain values that are outside of the domain. Only the PL-
Haar table has no discontinuities and no out–of–range val-
ues.

3.1. Efficiency Considerations

In the definitions of the Haar and PLHaar transforms, the
choice of using H = A−B or H = B−A is arbitrary; the
choices presented thus far make Haar and PLHaar proper
rotations. If the opposite choice is made, the result is a ro-
toinversion R′—a rotation followed by a reflection—with

Figure 4. The transform LUTs for (clockwise
from the upper–left) S–Transform, CFH, PL-
Haar, and TLHaar. Here we use A − B (and
not B − A) when computing H. The PLHaar
table is the only one that does not have dis-
continuities or out–of–range values.

rotate flip

rotateflip

Figure 5. How PLHaar is an involution. Note
that both rotations are in the same direction.

the property that R′(R′(A,B)) = (A,B), i.e. R′ = R′−1

is an involution.

Having PLHaar be an involution is a desirable property
because it reduces the number of procedures required to



compute the forward and inverse transforms—the same pro-
cedure is able to compute both. To make PLHaar an involu-
tion we negate the second row of each R matrix, previously
defined in equation 11. This has no effect on the transform’s
continuity.

Conceptually, in order to make the transform an involu-
tion an additional step is added to the transform, where after
rotation H is negated. This causes a vertical flip in the do-
main. If these coefficients are also rotated and flipped, they
return to their original positions. This is illustrated for the
discrete case in figure 5.

3.2. Implementation

Source code for the continuous PLHaar transform is
given in figure 6, and for the discrete transform in figure
7. Note that both of these procedures implement the modi-
fied transform (the involution) described above.

#define ABS(x) ((x) < 0 ? -(x) : (x))
#define SIGN(x) ((x) < 0 ? -1 : 1)

void
plhaar_float(

FLOAT *l, // low-pass output
FLOAT *h, // high-pass output
FLOAT a, // input #1
FLOAT b // input #2

)
{

if (SIGN(a) == SIGN(b)) {
*l = ABS(a) > ABS(b) ? a : b;
*h = a - b;

} else {
*l = a + b;
*h = ABS(a) > ABS(b) ? a : -b;

}
}

Figure 6. The source code for the continuous
PLHaar transform.

The procedure for the discrete transform uses no extra
intermediate precision, and can take both signed and un-
signed integers. Its use is self–explanatory, with the excep-
tion of the bias parameter, which is used to move the output
range. For example, if the inputs are n–bit values from a do-
main [0, 2n − 1] the bias parameter should be set to 2n−1 to
keep the high– and low–pass coefficient range equal to the
domain. In the source, the lines marked (**) are necessary
only when the domain and range contain an even number of
integers (e.g. [0,255]). In this case there is no unique origin,
so we translate each quadrant so that its origin is at a com-
mon point, perform the transform, then translate the quad-
rant back. If the domain and range contain an odd number

void
plhaar_int(

INT *l, // low-pass output
INT *h, // high-pass output
INT a, // input #1
INT b, // input #2
INT c // bias

)
{

const INT s = (a < c), t = (b < c);

a += s; b += t; // (**) nudge origin
if (s == t) { // A * B > 0?
a -= b - c; // H = A - B
if ((a < c) == s) // |A| > |B|?

b += a - c; // L = A (replaces L = B)
} else { // A * B < 0
b += a - c; // L = A + B
if ((b < c) == t) // |B| > |A|?

a -= b - c; // H = -B (replaces H = A)
}
a -= s; b -= t; // (**) restore origin
*l = b; *h = a; // store result

}

Figure 7. The source code for the discrete PL-
Haar transform.

of integers (e.g. [0,254]) then the lines marked (**) may
be removed and the bias set accordingly (e.g. 127).

These procedures are able to perform both the forward
and inverse transforms. To perform the inverse transform, L
is passed as parameter a, H as b, and A and B are taken
respectively from parameters l and h.

3.3. Benefits of PLHaar

PLHaar has several key benefits over current n-bit to n-
bit transforms:

• PLHaar is continuous. This is PLHaar’s prime advan-
tage. PLHaar is a continuous transform, while TLHaar
and CFH are not. This allows PLHaar to be used with
lossy and lossless methods.

• PLHaar can be performed by direct computation
or table lookup. TLHaar is a LUT method only.

• PLHaar requires less table storage. Because PLHaar
is an involution, when performing PLHaar via lookup
table the same LUT may be used for the forward and
inverse transforms. CFH and TLHaar require separate
tables for each.

4. Evaluating PLHaar

4.1. Entropy

Transforms are used because the transformed data may
be more efficiently manipulated, a common manipulation



being compression. To verify that PLHaar is usable as a
transform for compression we iteratively transformed some
test images, at each iteration applying the transform to the
low–pass coefficients resulting from the previous iteration,
until there was a single low–pass coefficient remaining. We
then took a histogram of the coefficients and measured the
normalized zero–order entropy E [9] according to

E =
∑

i

−pi × log256 pi (12)

where pi is the probability of coefficient value i and the
summation is taken over all nonzero pi. We compared the
entropy resulting from the PLHaar transform to those of the
S, TLHaar, and CFH transforms.

4.2. Quantization and PSNR

To gain a basic understanding of how useful PLHaar will
be when used in lossy compression or a progressive trans-
mission scheme, we performed some quantization tests on
a set of test images. We transformed the images as in sec-
tion 4.1, and then iteratively quantized the coefficients to
shorter bit widths. We treated the S–Transform coefficients
as being 9 bits wide (sign bit plus an 8–bit magnitude).

Quantized coefficients fall into a range of uncertainty.
For example, if the coefficient 42 (00101010) is quantized
to 5 bits of precision, it falls into the range [40,47]. Assum-
ing a uniform distribution, to avoid biasing quantized coef-
ficients towards zero, and to preserve contrast, we place the
quantized coefficients near the center of the range of uncer-
tainty. For a given non–negative uncertainty interval [u, v]
we compute the center as �(u+ v)/2�, and center the quan-
tized coefficients accordingly. After performing this quan-
tization and centering we applied the inverse transform and
computed the peak signal–to–noise ratio (PSNR) of the re-
sult, according to equation 13 (RMSE is the Root Mean–
Squared Error).

PSNR = 20 × log
(

255
RMSE

)
(13)

5. Results and Discussion

5.1. Entropy

Results of the entropy measurements are given in figure
8, where “Image” is the entropy of the untransformed im-
age. A graph of the histograms for the “Lena” image is in
figure 9.

The data in figure 8 shows that PLHaar is useful for com-
pression. For continuous–tone images (such as Lena and
Bike) PLHaar performs slightly worse than CFH and the
S–Transform, although the difference is such that it is not

Figure 8. The zero–order entropy of the
wavelet coefficients produced by the trans-
forms.
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Figure 9. Histograms of the “Lena” image,
and the S–Transform, PLHaar, TLHaar, and
CFH coefficients.

readily noticeable in the graph. PLHaar does not do as well
for France (which is line art), whereas for MRI and Wash-
Sat PLHaar performs better. From these results it appears
that when using PLHaar in a compression system the com-
pression ratio may not be as good as that obtainable by us-
ing the S–Transform, but the difference is not likely to be
significant.



Figure 10. The Wedding photo, transformed by the S, PLHaar, and CFH transforms, and quantized to
4 bits. Note the artifacts present in the CFH reconstruction.

Figure 11. “Barbara” transformed by CFH
(left) and PLHaar (right), and quantized to 3
bits.

5.2. PSNR

Figure 10 gives an excellent example of the problems in-
herent in the CFH method. It shows a grayscale photo that
has been transformed by the S, PLHaar, and CFH trans-
forms, and quantized to 4 bits before reconstruction. As
expected many artifacts appear in the CFH reconstruction,
particularly in areas of high contrast. PSNR values are re-
spectively 21.88, 25.17, and 11.75.

As mentioned earlier, the low–pass values computed by
PLHaar have a higher contrast than the inputs to the trans-

form. This means that the more PLHaar coefficients are
quantized, the higher the contrast in the reconstructed im-
age. Although this increased contrast can result in a lower
PSNR, it has the benefit, at a low quantization precision, of
helping to bring out edges that are “blurred” away in the
CFH and S–Transforms. Figure 11 shows the reconstructed
“Barbara” image, after transformation by CFH and PLHaar
and quantization to 3 bits. The PSNR of these images is
respectively 19.06 and 16.48. An examination of the im-
ages shows that the image reconstructed from PLHaar co-
efficients is visually more appealing. Ignoring the artifacts
present in the CFH reconstruction, we see that the PLHaar
reconstruction has preserved such things as the lines in her
face (note the eyes), the edges and lines on her pants, and
the table covering.

A graph of the PSNR curves for the “Bike” image is
given in figure 12, and the L∞ error curves are given in fig-
ure 13. From these we see that the PLHaar transform gives a
better reconstruction than all other tested methods. In partic-
ular, due to the aliasing problem discussed earlier, the CFH
transform is unable to give a good reconstruction of the im-
age. Figure 14 shows the Bike image, transformed by CFH
and PLHaar, quantized to 3 bits of precision, and recon-
structed. Underneath each image is a set of four details.

If figure 15 we give images of the reconstructed “Lena”
image, after being transformed by the TLHaar, CFH, PL-
Haar, and S transforms and quantized. In the CFH recon-
struction a few artifacts appear in the 3–bit image (note the
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inner edge of the mirror frame, along the edge of her shoul-
der, and along the brim of her hat). Also, when comparing
the 3–bit CFH and PLHaar reconstructions, we see again
how PLHaar’s increased contrast improves the visual qual-
ity of the reconstructed image. Note for example that in the
PLHaar reconstruction her facial features are more intact.

6. Conclusion

We have demonstrated through basic entropy measure-
ments and Quantization/PSNR computations that PLHaar
is suitable for lossy and lossless image processing and ma-
nipulation. We have shown its superiority over current n–
bit to n–bit transform methods—PLHaar does not have the
aliasing artifacts present in CFH, PLHaar gives a more vi-
sually appealing reconstruction at lower bitrates, and unlike
the TLHaar method PLHaar has both discrete and continu-
ous forms.

When used in a data compression system PLHaar’s cod-
ing rate is likely to be slightly worse than that obtainable
by using the CFH transform. We believe that this is accept-
able since the CFH transform is discontinuous, and when
used in a lossy compression scheme CFH is unable to guar-
antee an acceptable reconstruction due to the artifacts that
appear.

Further testing is warranted to better evaluate PLHaar’s
usefulness in compression. Future work will center on de-
veloping data compression methods for use with PLHaar.
These methods will include embedded coding methods [4,
6, 10], suitable for progressive transmission. We would also
like to compare embedded methods using PLHaar to those
using CFH, to see how the embedded encoding affects the
aliasing problem in CFH. Since PLHaar was developed for
use in a limited–width environment we will also be experi-
menting with its use in hardware and developing prototype
applications that can be run on graphics hardware.
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