
UCRL-CONF-202451–REV–1

REVERSIBLE N–BIT TO
N–BIT INTEGER
HAAR–LIKE TRANSFORMS

Joshua G. Senecal
Mark A. Duchaineau
Kenneth I. Joy

This paper was accepted for publication and presentation
at the 7th IASTED International Conference on Computer
Graphics and Imaging, to be held August 16–18, 2004, in
Kauai, Hawaii

August 4, 2004

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work
sponsored by an agency of the United States Govern-
ment. Neither the United States Government nor the
University of California nor any of their employees,
makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, ap-
paratus, product, or process disclosed, or represents
that its use would not infringe privately owned rights.
Reference herein to any specific commercial product,
process, or service by trade name, trademark, manu-
facturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favor-
ing by the United States Government or the University
of California. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those
of the United States Government or the University of
California, and shall not be used for advertising or
product endorsement purposes.

This is a preprint of a paper intended for publi-
cation in a journal or proceedings. Since changes may
be made before publication, this preprint is made avail-
able with the understanding that it will not be cited or
reproduced without the permission of the author.

This research was supported under the auspices
of the U.S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory
under contract No. W-7405-Eng-48.

Approved for public release; further dissemination
unlimited

REVERSIBLE N–BIT TO N–BIT INTEGER HAAR–LIKE
TRANSFORMS

Joshua G. Senecal∗‡ Mark A. Duchaineau† Kenneth I. Joy‡
∗Institute for Scientific Computing Research ‡Institute for Data Analysis and Visualization

†Center for Applied Scientific Computing Computer Science Department
Lawrence Livermore National Laboratory University of California, Davis

{senecal1,duchaine}@llnl.gov kijoy@ucdavis.edu

ABSTRACT
We introduce TLHaar, an n–bit to n–bit reversible trans-
form similar to the S–transform. TLHaar uses lookup ta-
bles that approximate the S–transform, but reorder the co-
efficients so they fit into n bits. TLHaar is suited for loss-
less compression in fixed–width channels, such as digital
video channels and graphics hardware frame buffers. Tests
indicate that when the incoming image data has lines or
hard edges TLHaar coefficients compress better than S–
transform coefficients. For other types of image data TL-
Haar coefficients compress up to 2.5% worse than those of
the S–transform, depending on the data and the compres-
sion method used.

KEY WORDS
Image Processing, Fixed–Width Transforms, Wavelets, Im-
age Compression

1 Introduction

Integer wavelet transforms have what is termed dynamic
range expansion. Simply put, dynamic range expansion
means that the range over which wavelet coefficients can
take their values is larger than that of the input domain.
This usually requires that the number of bits required to
hold the wavelet coefficients is greater than the number of
bits required to hold the input data (for a discussion of dy-
namic range expansion and its effects see [1]). A common
integer wavelet transform is the S–transform [2], which is
an integer version of the Haar wavelet transform[3]§. The
Haar transform is defined by:

H̃ =
B − A√

2
(1)

L̃ =
A + B√

2
(2)

∗L–419, PO Box 808, Livermore, CA 94551, U.S.A., Tel: 925–422–
3764, Fax: 925–422–7819

†L–561, PO Box 808, Livermore, CA 94551, U.S.A.
‡One Shields Ave, Davis, CA 95616, U.S.A.
§Throughout this paper H̃ and L̃ denote coefficients produced by Haar,

Ĥ and L̂ denote those produced by the S–transform, and H and L denote
those produced by our method, TLHaar.

and the S–transform by:

Ĥ = B − A (3)

L̂ =
⌊

A + B

2

⌋
. (4)

where A and B are two adjacent values to be transformed.
In the S–transform dynamic range expansion is due to

the subtraction that occurs in the transform procedure—it
is necessary to store a sign bit for all nonzero high–pass
coefficients. These sign bits present some problems. First,
there is raw data inflation: the number of bits required to
store the transformed data is greater than that required to
store the original data. Second, since modern computers
store data in 8-bit chunks, an actual implementation that
takes (for example) 8–bit inputs must store each 9–bit co-
efficient in a data type 16 bits wide, thus consuming twice
the memory bandwidth. If this transform is being done in
a fixed–width hardware environment and 16–bit values are
unavailable, some data loss will result.

Referring to the Haar equations 1 and 2, if we remove
the normalization by

√
2 we have the non–normalized Haar

transform Ḣ = B − A and L̇ = A + B (note that Ĥ =
Ḣ). We see from figure 1 that the non–normalized Haar
transform expands the domain by

√
2 and rotates it by 45

degrees. This gives new high– and low–pass values a range
twice that of the original domain, as measured along the
axes. It should be obvious that if the inputs to the non–
normalized Haar transform are limited to an integer domain
then the range will also contain only integers. Furthermore,
the number of positions occupied in the range will be equal
to the number occupied in the domain, with the range being
organized in a lattice.

The S–transform takes advantage of the space in be-
tween entries in the range lattice, and “squashes” the non–
normalized Haar range so that its low–pass values fall into
the original domain. This squashing L̇ → L̂ is done by
right–shifting L̇ one bit, thus eliminating the LSB. Be-
cause the LSB of Ḣ and L̇ are identical, no information
is lost during the squashing process—the LSB needed to
reconstruct L̇ can be taken from Ĥ—and the transform is
completely reversible. While this effectively eliminates dy-

namic range expansion from the low–pass coefficients, the
range of high–pass coefficients is still expanded.

Domain

Non−normalized Haar Range

A

B

L

H

S−transform Range
H

L

Non−normalized

Haar

"Squash"

Figure 1. Domain and range of the non–normalized Haar
and S transforms.

HL

A
B H L

Image

AB2HL

A

B

H

L

Figure 2. TLHaar transform process.

In [4] a wavelet transform for binary images (bilevel,
1 bit per pixel) that overcomes these problems is described.
We present one solution to these problems in the more
general greylevel case: the Table–Lookup Haar (TLHaar)
method, a reversible n–bit to n–bit transform. Because it
is a fixed–width transform TLHaar is particularly suited for
lossless compression and use in environments with fixed–
width channels, such as digital video and graphics hard-
ware frame buffers. TLHaar uses two lookup tables (LUTs)
called AB2HL and HL2AB, each of size 22n. These ta-
bles make the transform’s range equal to that of the domain
while preserving the coefficient magnitude ordering rela-
tionships of the Haar transform.

To evaluate TLHaar we assembled a suite of 8–bit im-
age sets, with each set containing images of a particular
type (bilevel, shaded line art, photographs, etc.). We then
implemented and optimized TLHaar and the S–transform.
We recorded their execution times and compressed the co-
efficients they produced with several coders. Our tests indi-
cate that TLHaar is up to 44% faster than the S–transform,
particularly when transforming data in large chunks. For
data that have sharp edges, such as bilevel, line art, and
computer generated images, coefficients generated by TL-
Haar compress better than S–transform. For other types of

H

L

(2, 0) (2, 1) (3, 2) (4, 3) (5, 4) (6, 5) (5, 7) (7, 6)

(7, 2)

(2, 6)

(3, 7)

(6, 4)

(4, 6)

(5, 7)

(5, 6)

(6, 6)

Figure 3. The HL2AB LUT for n = 3, showing a column
and row breakout. Entries are (A,B).

data the compression ratio is up to 2.5% worse, depend-
ing on the data and compression method used. Since TL-
Haar was developed to first address the problem of dynamic
range expansion, we feel these compression ratios are ac-
ceptable.

2 Table–Lookup Haar

Table–Lookup Haar (TLHaar) performs a Haar–like trans-
form, replacing the averaging and differencing steps with a
single table lookup. TLHaar uses a set of two 2D lookup
tables, called AB2HL and HL2AB. Each table contains 22n

entries, with each entry being 2n bits wide, the upper and
lower n bits each containing a value. AB2HL is used when
performing a forward transform. It takes two n–bit data
values A and B as indices and produces a 2n bit value,
where the upper n bits are the high–pass value H and the
lower n bits are the low–pass value L. HL2AB is used
when reversing a transform, similarly converting (H,L) to
(A,B). The transform process is illustrated in figure 2.

2.1 Transform LUTs

The HL2AB table used in TLHaar is designed to mimic
the true Haar transform by satisfying equivalent ordering
relationships on the magnitude of the high–pass values and
low–pass values within each respective row and column of
the table.

∀L : |H̃i| ≤ |H̃j | ⇐⇒ Hi ≤ Hj (5)

∀H : L̃i ≤ L̃j ⇐⇒ Li ≤ Lj (6)

For the transform table to be reversible there must be a 1:1
mapping between entries in the two tables. We therefore

HA A

B B

H

L L

Figure 4. From left to right, the (A,B) → H , (A,B) → L, (H,L) → A, and (H,L) → B transforms, as taken from the
AB2HL and HL2AB tables. Black = 0, White = 255, (0,0) is the lower–left corner of each table.

initialize each with an identity transform: AB2HL[i, j] =
(i, j), HL2AB[i, j] = (i, j). Note that because no entry has
a value larger than 2n dynamic range expansion cannot oc-
cur. We then rearrange the entries in HL2AB and AB2HL
so properties 5 and 6 hold. We accomplish this via a sort of
the LUTs according to the following pseudocode:

do {
For each L Column in HL2AB

Sort based on |(B − A)|
For each H Row in HL2AB

Sort based on (A + B)
} while (there was a swap)

During the sort process whenever a swap occurs in
HL2AB the corresponding entries in AB2HL are also
swapped. Figure 3 shows the HL2AB LUT for n = 3,
with a column and row breakout for a particular table en-
try. Note how all column entries satisfy property 5 and all
row entries satisfy property 6.

It was not clear beforehand that this sort would con-
verge. At this time we do not have a general proof that the
sort will always converge, however we tested this process
of creating tables for values 2 ≤ n ≤ 12, and our tests in-
dicate that in all cases the sort converges. We are unable to
test further since when n > 12 the tables become so large
they are impractical. For n = 13 a single LUT will contain
over 67 million entries and be 256 megabytes in size.

Figure 4 shows the (A,B) → (H,L) and (H,L) →
(A,B) transforms from the AB2HL and HL2AB LUTs af-
ter sorting, when n = 8. From these we see that TLHaar
performs the desired transform: for example, A and B that
are close in value have an H close to zero as shown by
the dark band on the diagonal of (A,B) → H . Figure 5
gives the histogram of the “Lena” image before and after a
TLHaar transform.

2.2 Sorted LUTs Are Not Unique

In section 2.1 we demonstrated the method used for cre-
ating the TLHaar LUTs, using a sort on an identity trans-

-225 -150 -75 0 75 150 225
Coefficient Value

0

5000

10000

15000

20000

25000

30000

C
ou

nt

Original Image
TLHaar
S-Transform

Image and Transform Histogram
"Lena"

Figure 5. The histogram of the original pixels and the trans-
form coefficients of the “Lena” image.

form. If the LUTs are initialized with a 1:1 mapping dif-
ferent from our original method, will the sort still result in
the same transform LUTs? The answer to this question is
no, implying that LUTs satisfying relationships 5 and 6 are
not unique. As a test we permuted one of the initialized
LUTs before sorting, by randomly swapping entries. The
corresponding entries in the other LUT were also swapped,
maintaining a 1:1 mapping. We then performed our sort on
the permuted tables. The resulting transform tables were
different from those of our original method. By varying the
number of swaps and the seed to the pseudorandom num-
ber generator we produced tables that were similar to each
other, but not identical.

3 TLHaar Implementation Optimizations

Because TLHaar operates on and produces n–bit data,
when n is both a power of 2 and an integer size common
in modern computer architectures (8–bit byte, 16–bit short
integer, etc.) it is possible to store the low–pass and high–

pass values in arrays of that integer type. This allows us to
implement and take better advantage of some special op-
timizations. Here we describe optimizations made for an
implementation that operates on 8–bit images.

We first altered how we perform table lookups in a
row transform. Since input values A and B are adja-
cent in memory, instead of reading A and B separately
and indexing the AB2HL LUT with both (i.e. HL =
AB2HL[A][B]) we cast the input array of bytes into an ar-
ray of 16–bit short integers, and read A and B together as a
single short AB. This allows us to perform a complete ta-
ble lookup using fewer operations: HL = AB2HL[AB].

We would like to use the above optimization when
performing a transform in the column direction. The stan-
dard row transform operates on an image one row at a time,
writing out the resulting low–pass values such that they are
contiguous in the row direction. Thus a given image col-
umn is not contiguous in memory. To solve this when per-
forming a row transform we transform two rows at a time.
Given the k-th pair of pixels from rows i and i+1 we trans-
form AiBi and Ai+1Bi+1, and place Li and Li+1 adjacent
to each other in preparation for the column transform. The
column transform can then proceed down columns in im-
age space, but along adjacent memory locations. The idea
behind the optimization is shown in figure 6. The right side
shows the low–pass values ordered in memory.

AB2HL

AB2HL

i

i+1

AB2HL

AB2HL
i

i+1

Ai Bi

Ai+1 Bi+1 Ai+1 Bi+1

Ai Bi

Li Li+1

Ai Bi Ai Bi

Ai+1 Bi+1 Ai+1 Bi+1

Li Li+1

Li Li+1Li Li+1

Figure 6. The TLHaar row transform data reordering opti-
mization. The top shows the normal transform procedure,
and the bottom the reordering procedure.

4 Results

To obtain the results in this paper we assembled a suite of
8–bit images. The images fall into the following categories:

• BW Lines. A collection of 106 bilevel
(black–and–white) line figures. Each figure is small,
an example size being 108 by 110 pixels [5].

• LineArt. A set of 18 line art images. Each image has
shading, gradient fills, and the like.

• ObjectBank. A set of 122 computer–rendered images
of everyday objects [5].

• MRI. A set of 185 MRI scans. Each image is 256 by
256 pixels [6].

• ccitt. Eight of the standard bilevel (black–and–white)
ccitt FAX test images [7]. Each is 1728 by 2376
pixels.

• DB1 B. A set of 80 fingerprint scans[8]. Each is 300
by 300 pixels.

• DB2 B. A set of 80 fingerprint scans. These are the
same fingerprints as in DB1 B, but each image is 256
by 364 pixels, and the images have been processed to
bring out details.

• Photos. A set of 29 photographic images [9, 10].
These include standard test images (such as “Lena”)
and personal photographs from the lead author.

• r2 slices. A set of 221 randomly selected images
extracted from the data produced by a
Richtmeyer–Meshkov mixing simulation, described
in [11].

• Power2. This is a selection of images from Photos,
where each image is square and has an edge length
that is a power of 2. These are used to evaluate the
reordering method described in section 3.

In each table of results the column heading “% Gain” in-
dicates gains obtained using TLHaar over the S–transform
(positive percentage meaning TLHaar is better).

4.1 Execution Time

To compare execution times we implemented procedures to
perform the S–transform and TLHaar transforms on 8–bit
grayscale images, and optimized each separately. We also
implemented versions of TLHaar and the S–transform that
perform data reordering and operate on square images with
edge lengths that are a power of 2. Timings were taken on
a 550 MHz PowerBook G4 running MacOS 10.1.5. The
time given is an average over 10 transform runs, where a
run transforms all images in a particular category, and in-
cludes only the time taken to transform the image. Execu-
tion times are given in table 1.

4.2 Compressibility of Coefficients

As our main interest in developing TLHaar was to create a
fixed–width transform we are not greatly concerned about
how efficiently TLHaar’s coefficients compress compared
to the S–transform. If the resulting compression ratio of
TLHaar coefficients is within a percent or two of the rate
obtained by the S–transform, we are content. To get a
feel for how coefficients generated by TLHaar compress
compared to those produced by the S–transform we trans-
formed the test images and then compressed the results
using three freely available compression programs: gzip1,

1http://www.gzip.org

Transform Time (sec)
Category TLHaar S–transform % Gain

BW Lines 0.06368 0.06540 2.63
LineArt 0.15289 0.27621 44.65

ObjectBank 0.90947 1.08220 15.96
MRI 0.45442 0.55188 17.66

MRI (reord) 0.38121 0.51650 26.19
ccitt 1.31669 1.96779 33.09

DB1 B 0.25860 0.36670 29.48
DB2 B 0.31501 0.35577 11.46
Photos 1.02017 1.34319 24.05

r2 slices 0.31479 0.39773 20.85
Power2 0.23322 0.31506 25.98

Power2 (reord) 0.20557 0.29665 30.70

Table 1. Our test image categories and their transform
times. (reord) indicates execution time using the reorder-
ing method of section 3.

bzip2, and an arithmetic coder available from Alistair Mof-
fat3. We used binary and byte arithmetic encoding.

To gauge the effect of sign bits on the compress-
ibility of S–transform coefficients we compressed them in
two ways. In the first method the coefficient magnitudes
were written as a stream of bytes and compressed, and the
sign bit for each nonzero magnitude was appended uncom-
pressed. In the second method coefficient magnitudes were
written as a stream of bytes, and then a binary stream con-
sisting of the sign bits of all nonzero magnitudes was ap-
pended. The combined stream was then compressed.

Due to lack of space we present in table 2 results only
for the former method, as it presents the S–transform more
favorably and the comparison to TLHaar is more fair. Gen-
erally when the latter method is used, the S–transform co-
efficients do not compress nearly as much as the TLHaar
coefficients. With byte arithmetic coding the TLHaar coef-
ficients always compress to a smaller size. Some example
results in this case are TLHaar being 4.45% better in the
Photos category and 7.23% better in the MRI category.

Results for TLHaar in table 2 are when using unper-
muted tables, as described in section 2.1. We do not include
the size of the transform LUTs in the TLHaar coefficient
sizes. The tables are a static part of the transform process
and are therefore known ahead of time, so in a coding ap-
plication the tables do not need to be sent as part of the
encoded data.

5 Conclusions and Future Research

The suitableness of TLHaar depends primarily on the need
for protecting data against loss. If data needs to be pro-
cessed losslessly in a fixed–width environment, TLHaar—
by virtue of its fixed–width nature alone—is superior to the
S–transform.

2http://sources.redhat.com/bzip2/
3http://www.cs.mu.oz.au/˜alistair/arith_coder/

From our timing tests it appears that TLHaar is faster
than the S–transform, particularly when data reordering is
implemented. The only case in which TLHaar’s speed is
close to that of the S–transform is when the images are
rather small, as is the case with the BW Lines image set.
Although the best case 44% speed increase in our tests
may not appear to be a large gain, we point out that this
speed gain is being taken against a wavelet transform that
is already very fast. These speed results are promising, but
further tests on different hardware platforms are needed to
obtain a better indication of TLHaar’s execution time.

From our simple compression tests TLHaar coef-
ficients appear to compress significantly more than S–
transform coefficients when the data being processed is
bilevel, or contains lines or hard edges (as are in the
BW Lines, LineArt, ObjectBank, ccitt, and DB2 B sets).
For other classes of images the results are mixed, and
vary depending on the coding method used. For exam-
ple, when using gzip as the compressor, the TLHaar coef-
ficients produced for the Photos category compress 0.78%
worse than the S–transform coefficients. The gap widens to
2.43% worse when binary arithmetic coding is used. Con-
versely for the MRI data set gzip compresses TLHaar co-
efficients 1.78% worse than S–transform coefficients, but
using byte arithmetic encoding this gap narrows to only
0.013% worse. Given that TLHaar was designed to operate
in a fixed–width environment and the S–transform was not,
we feel these compression rates are acceptable.

We do not expect our current implementation of TL-
Haar to be very useful for lossy compression. Future re-
search will focus on developing variations of TLHaar that
are more suitable for lossy techniques.

Other research will center around studying the LUTs
in more detail. During the transform process each image
type only touches a small percentage of the total entries
in the LUT. These entries are often in clusters. It may
therefore be possible to create LUTs for specific data types
by optimizing only those parts of the LUT that the image
touches.

6 Acknowledgements

We are grateful to Henrique Malvar, Aaron Kiely, Matthew
Klimesh, and our reviewers for their helpful comments and
suggestions.

Images in our test suite were provided by a vari-
ety of sources. In particular, the BW Lines and Object-
Bank images were obtained from Michael J. Tarr at Brown
University [5]. The LineArt images are clip art down-
loaded through AppleWorks, from Apple Computer, Inc.
Some images in the Photos category were obtained from
the Signal and Image Processing Institute at the University
of Southern California [9], and others from the Waterloo
BragZone maintained by John Kominek [10]. MRI data
was provided by the Department of Radiology at UCSD
Medical Center, and the Vision List Imagery archive [6].
Fingerprint images were obtained from the web site of

Image TLHaar S–transform % Gain TLHaar S–transform % Gain

gzip bzip
BW Lines 360972 466731 22.66 391737 500173 21.68

LineArt 419235 528964 20.74 445387 515182 13.55
ObjectBank 3131056 3341803 6.31 3115625 3258474 4.38

MRI 5477859 5381934 -1.78 5281869 5190000 -1.77
ccitt 1157989 1557889 25.67 1013614 1454085 30.29

DB1 B 5016509 5086675 1.38 4973728 4853424 -2.48
DB2 B 5820744 6165921 5.60 6175512 6353409 2.80
Photos 15029496 14912472 -0.78 14963474 14651157 -2.13

r2 slices 777975 801756 2.97 785564 783836 -0.22

Binary Arithmetic Byte Arithmetic
BW Lines 391472 494289 20.80 377422 496202 23.94

LineArt 509478 627262 18.78 535573 677915 21.00
ObjectBank 3290576 3474223 5.29 3620160 3771556 4.01

MRI 5691930 5627898 -1.14 5408487 5407783 -0.013
ccitt 1199500 1652339 27.41 1288297 1969556 34.59

DB1 B 5673653 5346789 -6.11 4796648 4703212 -1.99
DB2 B 6415074 6803730 5.71 5679509 5946472 4.49
Photos 15234370 14873308 -2.43 14285797 14090810 -1.38

r2 slices 828160 850696 2.65 823509 834297 1.29

Table 2. Compressed category sizes (in bytes).

the Fingerprint Verification Competition 2000 [8]. We are
grateful to all those who made data available.

This work was performed under the auspices of the
U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48.

Joshua Senecal’s work was supported in part by a
United States Department of Education Government As-
sistance in Areas of National Need (DOE-GAANN) grant
#P200A980307.

References

[1] A. Kiely and M. Klimesh. The ICER progressive
wavelet image compressor. The Interplanetary Net-
work Progress Report 42–155, July–September 2003,
Jet Propulsion Laboratory, pages 1–46, Nov 2003.

[2] A.R. Calderbank, I. Daubechies, W. Sweldens, and
B.L. Yeo. Lossless image compression using integer
to integer wavelet transforms. In Proceedings of the
1997 International Conference on Image Processing
(ICIP ’97), pages 596–599. IEEE Computer Society,
1997.

[3] R. C. Gonzalez and R. E. Woods. Digital Image Pro-
cessing. Addison–Wesley, Boston, MA, 1992.

[4] M. Swanson and A. Tewfik. A binary wavelet de-
composition of binary images. IEEE Transactions on
Information Processing, 3(12):1637–1650, Dec 1996.

[5] http://www.cog.brown.edu/˜tarr/
stimuli.html.

[6] ftp://ftp.vislist.com/IMAGERY/MED_
3D_SLICES.

[7] ftp://ftp.funet.fi/pub/graphics/
misc/test-images/.

[8] http://bias.csr.unibo.it/fvc2000/
download.asp.

[9] http://sipi.usc.edu/services/
database/.

[10] http://links.uwaterloo.ca/bragzone.
base.html.

[11] A. A. Mirin et al. Very high resolution simulation
of compressible turbulence on the IBM–SP system.
Technical Report UCRL–JC–134237, Lawrence Liv-
ermore National Laboratory, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020006100630063006f007200640069006e006700200074006f0020004900450045004500200072006500710075006900720065006d0065006e00740073002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

