

UCRL-TR-206044

Design Documentation for

JaWE2Openflow Project

(Version 1.3)

August 17, 2004

N. Mehta

R. H. Barter

Developed by:

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or the University of California, and shall not be used for advertising or product endorsement purposes.

Neither CIGNEX Technologies Inc., nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

Page 2 of 93

labass1
Text Box
This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Software and documentation developed for LLNL by:

http://www.cignex.com

Contact information for LLNL and CIGNEX is provided below:

S/N Company Name
Role/Dept

Phone Email

1 LLNL Bob Barter
Project Manager

925-422-5150 barter1@llnl.gov

4 CIGNEX Munwar Shariff
CTO

408-718-1886 munwar@cignex.com

5 CIGNEX Nisha Mehta
Consultant and Project
Leader

408-501-0455
x306

nisha@cignex.com

Document Revision History
Name Date Reason For Changes Version
Nisha Mehta 6/11/2004 First Release 1.0 Draft
Nisha Mehta 7/2/2004 In this release,

� Changed document according to Bob
Barter’s comments

� Added section for How to maintain
the product

1.0

Stacy Peterson 7/29/2004 Formatted document for LLNL use. Edited
text.

1.1

Bob Barter 7/29/2004 Minor changes 1.2
Bob Barter 8/17/04 Corrected contact information and added

Cignex disclaimer
1.3

Page 3 of 93

http://www.cignex.com/
mailto:barter1@llnl.gov
mailto:munwar@cignex.com
mailto:nisha@cignex.com

Table of Contents

1 INTRODUCTION ..6
1.1 PURPOSE ..6
1.2 SCOPE ..6
1.3 OBJECTIVES OF THE DOCUMENT ...6
1.4 ACRONYMS AND KEY TERMS..6

2 OVERVIEW..7
2.1 OVERVIEW ...7
2.2 PURPOSE ..7

3 ZOPE OPENFLOW ...8
3.1 INTRODUCTION ..8

3.1.1 Activity-Based Workflow..8
3.1.2 Entity-Based Workflow...9

3.2 REASONS TO USE OPENFLOW ...9
3.3 THE PROCESS DEFINITION ...10

3.3.1 Activities (What)...10
3.3.2 Transitions (When)...12
3.3.3 Applications (How) ..12
3.3.4 Users and Roles (Who)...13

3.4 THE PROCESS INSTANCE..13
3.4.1 Workitems...13
3.4.2 Worklist and Assigning Work...14
3.4.3 Exception Handling..14
3.4.4 Dynamic Redesign..14

4 JAWE...15
4.1 OVERVIEW ...15
4.2 PACKAGE ...16
4.3 PROCESS ..19
4.4 APPLICATIONS ...21
4.5 DATA FIELDS (WORKFLOW RELEVANT DATA)...24
4.6 PARTICIPANTS..27
4.7 ACTIVITIES ..29
4.8 TRANSITIONS ...33
4.9 COMPLETE JAWE PROCESS...35

Page 4 of 93

5 JAWE2OPENFLOW PRODUCT...42
5.1 PREREQUISITES..42
5.2 HOW TO INSTALL...42
5.3 HOW TO GET HELP...42
5.4 HOW TO USE ..42

5.4.1 Login to ZMI ..42
5.4.2 Create an Instance of the Product..43
5.4.3 Upload an XPDL file..43

5.5 CHECK OUTPUT LOG FILE ...43
5.6 HOW TO MAINTAIN THE PRODUCT..44

5.6.1 JaWE2Openflow Product-Related Files ..44
6 JAWE TO OPENFLOW CONVERSION..45

6.1 PROCESS ..45
6.2 APPLICATIONS ...47
6.3 WORKFLOW RELEVANT DATA ..49
6.4 PARTICIPANTS..51
6.5 ACTIVITIES ..53
6.6 TRANSITIONS ...60

7 SAMPLE CONVERSION PROCESS ..64
7.1 SCENARIO ..64
7.2 JAWE SCREEN FOR WORKFLOW.XPDL..64
7.3 WORKFLOW.XPDL (XML DUMP) ..65
7.4 UPLOAD WORKFLOW.XPDL FILE ...68
7.5 CUSTOMIZATION..80

8 SUMMARY...93
8.1 CONCLUSION ...93
8.2 ASSUMPTIONS..93
8.3 LIMITATIONS ...93

Page 5 of 93

1 Introduction

1.1 Purpose

Lawrence Livermore National Laboratory (LLNL) has chosen CIGNEX Technologies, Inc. (CIGNEX) to
design and develop the JaWE2Openflow conversion software. This document was created by CIGNEX as a
project deliverable.

1.2 Scope

The scope of the project was to create a Zope Product, which reads the XPDL file (JaWE workflow process
definition stored in the form of an XML file) and create an equivalent OpenFlow object in Zope.

1.3 Objectives of the Document

This document is intended to give the reader an overview of the JaWE2Openflow product and its
components. Using the information in this document, a user will be able to create a workflow in JaWE, export
it to XPDL and import it into OpenFlow.

1.4 Acronyms and Key Terms

Following are some of the acronyms used in the document.

Acronym/Term Description

CIGNEX CIGNEX Technologies, Inc.
CMF Content Management Framework, Product by Zope
JaWE Enhydra JaWE (Java Workflow Editor) is the first open source graphical Java

workflow process editor fully according to WfMC specifications supporting
XPDL as its native file format and LDAP connections. This is Object Web’s
Open Source middleware project. More information can be found at
http://jawe.objectweb.org/

JaWE2Openflow Name of the project
LLNL Lawrence Livermore National Laboratory
OpenFlow OpenFlow is an extremely flexible workflow engine, enabling to rapidly

develop web based, and “workflow-oriented" applications on Zope.
OS Operating System
Plone Content Management System built on Top of Zope and CMF
ZODB Zope Object Database
ZOPE Zope is web server, web application server, database, search engine and

content management framework, all in one available for free.

Page 6 of 93

http://jawe.objectweb.org/

2 Overview

2.1 Overview

OpenFlow is an activity-based workflow management system. Activity-based means that the processes
(workflows) are comprised of activities to be completed in order to get something done.

The main issue for a workflow management system is answering the question "who must do what, when, and
how?" Activity-based workflow management systems like OpenFlow are designed to answer this question.

The process that defines the sequence of activities to be completed dictates what tasks should be done and
when using the configured activity and transition definitions. An activity (the “what” part of the question)
represents something to be done (i.e., giving authorization, updating a database, sending an e-mail, loading a
truck, filling out a form, printing a document). Transitions define the appropriate sequence of activities for a
process (the “when” part of the question).

Each activity will have an associated application designed to carry out the task (the “how” part of the
question).

The answer to the “who” part of the question is determined by the user assigned to complete the activity. The
assigned user is usually a person, but in some cases, activities are assigned to an automated system.

JaWE is a visual tool for creating, managing, and reviewing process definitions. In a straightforward and
simple way, JaWE lets users quickly create workflow process definitions, check them, and store them for
future use. Once a process definition is proven valid, it can be imported into new definitions, thus shortening
the time and effort needed to define a workflow process.

JaWE2Openflow is a tool designed to convert JaWE workflows into Zope OpenFlow.

2.2 Purpose

The JaWE2Openflow product creates OpenFlow processes using an XPDL file. It defines applications,
processes, activities, transitions between those activities, and participants for the workflow process. A page
template named “index_html” is created for the datafields as defined in the XPDL file.

Page 7 of 93

3 Zope OpenFlow

3.1 Introduction

Workflows can be divided into two basic categories: entity-based and activity-based. Activity-based
workflow systems have workflow processes comprised of activities to be completed in order to accomplish a
goal. In entity-based workflows, the focus is set on a document and the stages it must go through in order to
be completed. OpenFlow is an activity-based workflow management system.

3.1.1 Activity-Based Workflow
The process describing research in a library can be viewed as an activity-based process.

An individual must complete the following steps:

1. Go to the library.

2. Locate relevant books using either the computer catalogs or the librarian's help.

3. Identify the most useful books on the topic.

4. Check the books out using the proper procedures for the library.

This list of activities must be carried out in order to obtain research books from a library. There is no main
document in this process.

The fund request submission process might represent another example of an activity-based process. A funding
request must go through the following steps:

1. The requestor will fill out a form specifying the intended purchase and how much it will cost.

2. The requestor will submit the completed form to the appropriate administrative organization.

3. The administrative organization will log and review the form.

4. The administrative organization will route the form to a financial/budgeting department to see if
appropriate funds are available.

5. The financial/budgeting department will check the status of funds.

6. The financial/budgeting department will return the form and fund status information to the
administrative organization.

7. The administrative organization will either approve or deny the request based on the information
provided.

8. Upon approval, the administrative organization notifies the requestor, files the request and authorizes
the release of funds.

Page 8 of 93

9. The financial/budgeting department releases the requested funds and completes the necessary
accounting tasks.

10. The requestor may purchase the approved item.

This process has a main document (the request form) but it has many side actions to be completed as well
(i.e., signed authorization, routing to departments, filing, notifications). The best way to describe this is
through an activity-based workflow, where the process is comprised of activities to be completed.

3.1.2 Entity-Based Workflow
Simpler processes often do not require the complex structure of an activity-based workflow management
system and a simple entity-based workflow would suffice. For example, the publication of documents on a
web site can be simply modeled by the document going through the states of new, submitted, and then
approved or rejected. In entity-based workflows, the document is the main issue and its available actions are
defined by its current status.

3.2 Reasons to Use OpenFlow

The process defining the sequence of activities to be carried out says what should be done and when by the
definition of activities and transitions. An activity is the task (the what) that should be done (i.e., giving
authorization, updating a database, sending an e-mail, loading a truck, filling out a form, printing a
document). Transitions define the appropriate sequence of activities for a process and determine when
activities will be done.

Diagram of workflow management system. Courtesy of OpenFlow (http://www.openflow.it).

Each activity has an associated application that defines how the activity will be carried out.

Page 9 of 93

http://www.openflow.it/

The user assigned to carry out the activity defines the who part of the equation. Usually a person will use
activity applications, but sometimes the activity will completed be an automated system.

Using a workflow management system has many advantages for an organization:

• Improves the efficiency and performance of processes. Many activities can be completed by an
automated system. Updating databases, sending e-mail, compiling research, and archiving documents
are examples of activities that a computer can complete without human intervention. This allows the
activity to be completed faster while freeing a person’s time for higher-level tasks.

• Increases organizational efficiency (always knowing the answer to “who must do what when and
how?”) Formalizing processes means not wasting time deciding what to do, having the right person
doing each task, and ensuring each task will be completed appropriately.

• Enables managers to monitor the progress of the activities. For a given item, a project manager can
know how far along the activities are in the process, what kind of transitions took place, and who
completed each task.

3.3 The Process Definition

The goal of a process definition is to answer the question “who must do what, when and how?” Activities and
transitions describe the what and when part of the process. The graphic below displays them using the
"bubbles and arrows" model of what has to be done and when.

Applications describe the how part of the process and they are associated to activities. Users and roles
describe the who part of the process.

3.3.1 Activities (What)
Each activity can be defined as one of three different types: application, sub-process, or routing. Usually each
activity of the process definition describes something that has do be done, some kind of work. This work can
either be carried out by an application or by a sub-process definition that more clearly defines the job to be
done. Sometimes an activity’s job will be handling the routing of work through the process. In this case, the
activity is just a dummy activity that determines what should be done next.

Page 10 of 93

Each activity has one incoming guard for collecting incoming transitions. The activity incoming guard can
be set to either “and” or “xor” for two different behaviors:

• A setting of “and” means that all the activities that lead to this activity must be completed in order to
enable this activity to work.

• A setting of “xor” means that just one of the activities that lead to this activity must be completed in
order to enable this activity to work.

Each activity also has one outgoing guard for collecting outgoing transitions. Like the incoming guard, the
outgoing guard can be either set to “and” or “xor” for two different behaviors:

• A setting of “and” means that this activity will trigger the work of all connected activities, thus
splitting the process flow into parallel (concurrent) flows.

• A setting of “xor” means that this activity will trigger the work of just one of the connected activities
based on the evaluation of the condition (see Transitions).

Work performed by an activity will be triggered in different ways depending on the start mode setting of the
activity itself. It can be set to one of two settings:

• Automatic start mode means that the activity will run its application as soon as an instance workitem
arrives. There will be no worklist for users. OpenFlow itself will take care of starting the activity
application on the workitem.

• Manual start mode means that OpenFlow will wait for user intervention to start the activity
application. Usually, this is done through the call to the "callApplication" API of the workflow. This
API should be called by the user’s worklist. The default worklist in OpenFlow does this.

Activity finish mode determines the way an activity transitions to the next activity (based on the transition
condition). It can be set to one of two settings:

• Automatic finish mode means that as soon as a "completeWorkitem" API is called (usually by the
activity application upon ending its work), the instance will be automatically forwarded to the next
activity.

Page 11 of 93

• Manual finish mode means that the user (or the activity application upon user input) must call the
"forwardWorkitem" API. This enables the user to choose a transition. This mode is mainly reserved
for manually steering the instance in alternate paths of the process. (An instance can be automatically
steered by giving conditions to transitions.)

An activity also has application parameters (see Applications).

3.3.2 Transitions (When)
Transitions connect activities to each other. When connecting activity A with activity B, a transition states
that as soon as A is finished B must be started.

Transitions can be guarded by conditions. A transition condition will be evaluated if the "from" activity has
chosen one and only one path to be followed (i.e., the activity has an “xor” outgoing guard).

3.3.3 Applications (How)
An application is assigned to each activity in order to carry out the assigned activity. Applications can be
anything triggered by a Uniform Resource Locator (URL) call. This includes Python scripts, DTML forms,
SQL queries, Zope applications, or even external applications like Microsoft Word or other custom and
dedicated applications.

The application is required to invoke the appropriate API for interacting with OpenFlow. For example the
application will need to invoke the OpenFlow completeWorkitem API to signal OpenFlow that its job is
finished and a new activity can be started.

A user can supply parameters to be passed to the application. These parameters can come from two sources:

• Activity parameters are passed to the application by its activity definition.

• Application parameters are specified in the application definition and will be used unless redefined
by the activity parameters (therefore acting as defaults).

Page 12 of 93

Some standard parameters passed to the application are:

• openflow_id—the identifier of the OpenFlow object.

• process_id—the identifier of the process definition.

• activity_id—the identifier of the activity that invoked the application.

• instance_id—the identifier of the process instance that triggered the activity.

• workitem_id—the identifier of the specific workitem that tracks the triggered activity work.

3.3.4 Users and Roles (Who)
Users are assigned to applications through roles. One user can be listed in one or more roles. Roles can list
one or more activities. Each user will be able to work on all of the activities that are listed in the assigned
roles.

Each role maintains three different lists:

• Users identifies users that are assigned to the role.

• Enabled activities identifies the process activities that users in this role can work on.

• Assignable activities identifies the process activities that users listed in this role can assign to other
users that are enabled to work on them.

3.4 The Process Instance

A process definition gives the instructions for completing work, while a process instance is the execution of a
process definition. For example, if the process definition describes how to submit a fund request, a process
instance of that process definition is an actual submission for funding.

3.4.1 Workitems
Workitem is the execution of a single activity of the process definition. Workitems are created every time an
activity is triggered and are never destroyed. When an activity completes its job, the workitem created to
represent the execution of that activity is assigned a “complete” status. A process instance is a collection of
workitems: one per activity executed (or in execution).

One of the most important tasks of a workitem is to keep track of events during the execution of its activity.
Since the process instance keeps track of all its workitems, and each workitem keeps track of all the events
that happen during the execution of the activity, the complete history of everything that has happened is
recorded in each process instance.

This is often useful because an event log of every single instance begun in the process is available and an
analysis of these logs can help improve process design (i.e., manage load balancing, monitor completion
times).

Page 13 of 93

3.4.2 Worklist and Assigning Work
Each user is associated with a worklist, a list of pending workitems for activities. The worklist is not set to a
given size, but grows when activities require some work to be done and shrinks when the work on activities is
completed.

Users are presented their worklists to let them know what is to be done. In OpenFlow, three policies exist for
work assignments:

• The pull policy means that users will choose what to do, as if the work to be done was gathered in a
common pool where users choose tasks.

• The manual push policy means the user is assigned work by another user.

• The automatic push policy means the user is automatically assigned work by the workflow engine.

Whether workitems are self-assigned or assigned by someone else, once a user is assigned a task, the user will
be the only one enabled to carry it out. Other users will not be able to see the assigned task in their worklist.

3.4.3 Exception Handling
In existing workflow management systems, flexibility is a major issue because business processes are often
revised and streamlined. The system must be able to handle changes to process definitions, even while they
are running. It must also be able to handle exceptions when a user must handle an issue that was not foreseen
in the process definition.

Instead of a normal handling of a workitem, the user can make it "fall out" of the normal process flow. The
exception task will then be available to any user who is designated to handle exceptions. As soon as the
workitem is fixed, it can be put back into any activity of the process to resume the process flow. In this way,
an appropriately authorized user can change the workitem data to adjust to the situation.

3.4.4 Dynamic Redesign
A process definition can be changed while in execution (i.e., new activities can be added, old ones deleted,
transitions created or modified). As soon as the process is changed all current process instances will read the
new process definition and begin using it. Any invalidating situation will cause the appropriate workitem to
be tagged as an exception and be routed to designated users.

Dynamic redesign and exception handling are closely related. Exception handling allows for dealing with
unforeseen events and suggests changes in the process definition to handle that situation in the future. On the
other hand, dynamic redesign may cause many process instances to register an invalid status and exception
handling should be used to recover from these situations.

Page 14 of 93

4 JaWE

4.1 Overview

The description of how JaWE works corresponds to Workflow Management Coalition (WfMC) specifications
(www.wfmc.org). WfMC provides an interface for defining workflow processes that uses a common meta-
model for describing the process definition and XML schema for the interchange of process definitions called
XML Process Definition Language (XPDL). This tutorial is focused on the XPDL Interface and how JaWE
implemented it. Some parts of this document are taken from the original XPDL specification (WFMC-TC-
1025).

JaWE is a tool for process definition modelling. The final output of this process modelling is a XPDL file,
which can be interpreted at runtime by workflow engine. JaWE accomplishes three main goals:

• Graphical representation of process definitions.

• Export of process definitions to XPDL.

• Import of any valid XPDL and its graphical representation.

The workflow process definition interface defines a common interchange format, which supports the transfer
of workflow process definitions between different products. A workflow process definition generated by
JaWE can be interpreted by different workflow run-time products. The principles of process definition
interchange are based on meta-model framework. This meta-data model identifies commonly used entities
within a process definition, their relationships and attributes. A variety of attributes describe the
characteristics of this limited set of entities. Using this meta-model, JaWE can transfer models using XPDL as
a common exchange format. JaWE is also used for internal representation of process definitions.

Page 15 of 93

http://www.wfmc.org/

A mandatory minimum set of objects must be supported within XPDL. This "minimum meta-data model"
identifies those commonly used entities within a process definition and describes their usage semantics.
Extensibility is provided by the facility to encompass additional object attributes ("extended attributes")
which can be included as extensions to the basic meta-model to meet the specific needs of an individual
product or workflow system.

4.2 Package

Several processes that may share the same tools (applications) and participants can be defined within one
package. The package acts as a container for grouping together a number of individual process definitions and
associated entity data, which is applicable to all the contained process definitions.

A JaWE XPDL to Zope OpenFlow sample conversion example is explained in Section 7.

To Create a Package:

1. Open JaWE editor and select File – New. An information box displays stating the need for a unique
package ID. Click on the OK button.

Page 16 of 93

2. A package properties window is displayed. Enter a value for the ID field (required field) and name
and click the OK button.

3. A package with the given ‘ID’ is created.

Page 17 of 93

4. The following XPDL code is produced.

Page 18 of 93

4.3 Process

The workflow process defines the elements that make a workflow. It contains definitions or declarations,
respectively, for activity and, optionally, for transition, application, and process-relevant data entities.

A workflow process may run as an implementation of an activity of type subflow; in this case Process
Toolbar provides all settings for Processes attributes in JaWE

To Create a Process:

1. Click on the Toolbox tab and drag and drop the Insert Process icon onto the graph container. A
process is created.

Page 19 of 93

2. Double click on the process (or right click and select properties) to complete the ID and Name fields.
Click the OK button. A process with the given name is created.

Return to this screen (right click the process and select Edit) to add participants, activities and
transitions to the process (using the appropriate tabs).

3. The following XPDL code will be produced.

Page 20 of 93

4.4 Applications

A workflow application declaration is a list of all applications or tools required and invoked by the workflow
processes. Some tools are generic named tools (i.e., send_mail or scan_document). The real definition of the
tools is not necessary because of the way they must be handled in multi-platform environments where a
different program (or function) must be invoked for each platform.

To Create an Application:

1. Click on the Applications icon at the process level. A Process – Applications window displays. Click
on the New button and add an application.

Page 21 of 93

2. Complete the ID, Name and Description fields as appropriate for the application. Click the OK
button.

3. An application is added.

Page 22 of 93

4. The following XPDL code will be produced.

Page 23 of 93

4.5 Data Fields (Workflow Relevant Data)

Workflow relevant data (known in XPDL as data fields) represent the variables of a process definition or
package definition. They are typically used to maintain decision data (used in conditions) or reference data
values (parameters) that are passed between activities or sub-processes. The workflow relevant data list
defines all data objects that can be used within the workflow process. The attribute “type” explicitly specifies
all information needed for a workflow management system to define an appropriate data object for storing
data that is to be handled by an active instance of the workflow process.

Workflow relevant data can be defined in a workflow process (the workflow process relevant data) and in a
package (the package relevant data). Workfow relevant data is used to create a workflow application home
page (“index_html”). All fields defined using workflow relevant data in JaWE will be used to create an
HTML form in the index_html page. After converting JaWE XPDL to Zope OpenFlow using this product, the
user can click on the Submit button on the index_html page to create a workflow instance. The scopes differ
in that the former may only be accessed by entities defined inside that process, while the latter may be
accessed by entities inside any process defined within that model.

Workflow relevant data has a scope that is defined by the directly surrounding meta-model entity and is not
nested. The visibility of its identifier is also defined by that entity.

To Create Data Fields:

1. Click on the Workflow relevant data icon. A Workflow relevant data – Defining window appears.
Click on the New button.

Page 24 of 93

2. Enter the appropriate information in the ID, Name, Is Array, Type, and Sub-Type fields and click the
OK button.

3. The workflow relevant data is created.

Page 25 of 93

4. The following XPDL code will be produced.

Page 26 of 93

4.6 Participants

The WfMC meta-model specification defines a simple in-built (minimal) organizational model or permits
access to an externally-defined organizational model. Participants in JaWE are part of a minimal
organizational model. The connection with the organizational model is used to define activities (identifying an
individual to complete an activity) and processes (identify an individual responsible for a process).

Workflow participants have a scope and visibility equivalent to their extended attributes. All referenced
workflow participants must be defined in the scope where they are used, at least in the same package.

The workflow participant is defined by a type and related information that is a set of type-specific attributes.
This definition contains a basic set of six workflow participant types: resource set, resource, organizational
unit, role, human, or system. A role and a resource are used in the sense of abstract actors. This definition is
an abstraction level between the real performer and the activity that has to be performed. During run time
these abstract definitions are evaluated and assigned to concrete human(s) and/or program(s). To create roles
in Zope, a user’s participant type must be set to “Role”.

To Create Participants:

1. Click on the Participants icon at the process level. Drag and drop it on the graph editor. A new
participant window will display. Complete the ID and Name fields. Select a role and enter the
required properties. Click the OK button.

Page 27 of 93

2. The participant is created. After participants are created, activities and transitions can be added.

3. The following XPDL code will be produced.

Page 28 of 93

4.7 Activities

Generally, processes are comprised of a number of steps that lead towards an overall goal. Workflow
processes consist of a number of workflow activities. Each workflow activity is a task that will be done by a
combination of resources and computer applications.

Activities are associated with their performers (workflow participants) and application assignments. Optional
information about an activity may be associated with the starting and stopping manner, usage of specific
workflow relevant data, preconditions for starting, and postconditions for finishing the activity.

Most activities are atomic (generic activity), the smallest units of work, although even atomic
activity may produce more than one work item for a performer, or may invoke more than one
application.

Subflow is another activity type that implements a whole new workflow process. Process
definitions within the subflow are entirely independent of the first one (where the subflow
activity resides). Each subflow has its own set of activities, internal transitions, participants,
application definitions, and other workflow relevant data. Participants, application definitions,
and other workflow relevant data may be inherited from the model that is common for both
workflow process definitions.

An activity may be a block activity that executes an activity set or a map of activities and
transitions. Zope OpenFlow supports only independent activities and not block activities. The
work-around is to create a separate process with a set of activities.

A dummy (route) activity does nothing on its own. This type of activity is used for
synchronization and constructing complex and sophisticated transitional conditions (i.e.,
activity pre- and post- conditions).

Page 29 of 93

To Create an Activity:

1. Click on the activity icon. Drag and drop it on the graph editor.

2. Double click on the activity (or right click and select Properties). The Activities Property window
appears.

Page 30 of 93

3. Select the General tab and enter the ID, Name, Start mode, and Finish mode.

Page 31 of 93

4. Select the Tools tab, click on the New button and add the Applications.

5. Add the application that you want to perform in the activity. In the Type field, select “Procedure” to
create a “Push Application” in the Zope OpenFlow activity. If the Type field is set to “Application”, it
will be considered as “Application Name” in the Zope OpenFlow activity.

6. Click on the Pre-condition tab and select the Join type (and/xor). Click on the Post-condition tab and
select Split type. Click the OK button.

7. The following XPDL code will be produced.

Page 32 of 93

4.8 Transitions

Links between two activities are established by transitions. Transitions also describe possible links between
activities and the conditions that enable or disable them during workflow execution. JaWE has two
(graphical) types of transitions: simple and self-routed. Simple transitions are links between two activities
with one straight line. Self-routed transitions are links between two activities that are split into three parts.
Icons for creating a transition are: and .

To Create a Transition:

1. Click on the Transitions icon. Highlight the activity by placing the cursor on it. Drag and drop it on
the other activity.

Page 33 of 93

2. Double click on the transition and the Transitions Properties window appears. Complete the ID and
Name fields and click OK. The transition is created.

3. The following XPDL code is produced.

Page 34 of 93

4.9 Complete JaWE Process

Below is an example workflow for leave/vacation requests.

An employee requests a leave of absence for vacation by filling out a form. The request goes to the
department administrator who confirms the available vacation balance and forwards the request to a
supervisor for approval. If not approved, it is returned to the employee for modification or
cancellation. If approved, the request is sent to the administrator to update the HR system and notify
the employee that the leave is approved.

Below is the JaWE screen for this workflow.

Page 35 of 93

Below is the XPDL code output for this workflow:

<?xml version="1.0" encoding="UTF-8"?>
<Package Id="Leave_Demo" xmlns="http://www.wfmc.org/2002/XPDL1.0"
xmlns:xpdl="http://www.wfmc.org/2002/XPDL1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.wfmc.org/2002/XPDL1.0 http://wfmc.org/standards/docs/TC-
1025_schema_10_xpdl.xsd">
 <PackageHeader>
 <XPDLVersion>1.0</XPDLVersion>
 <Vendor>Together</Vendor>
 <Created>2004-05-19 11:40:44</Created>
 </PackageHeader>
 <RedefinableHeader PublicationStatus="UNDER_TEST"/>
 <ConformanceClass GraphConformance="NON_BLOCKED"/>
 <WorkflowProcesses>
 <WorkflowProcess AccessLevel="PUBLIC" Id="leaverequest" Name="leaverequest">
 <ProcessHeader DurationUnit="D">
 <Created>2004-05-19 11:42:32</Created>
 <Priority>0</Priority>
 </ProcessHeader>
 <RedefinableHeader PublicationStatus="UNDER_TEST"/>
 <DataFields>
 <DataField Id="requested" IsArray="FALSE" Name="requested">
 <DataType>
 <BasicType Type="STRING"/>
 </DataType>
 <InitialValue>ok</InitialValue>
 <Description>Is leave requested?</Description>
 </DataField>
 <DataField Id="approved" IsArray="FALSE" Name="approved">
 <DataType>
 <BasicType Type="STRING"/>
 </DataType>
 <InitialValue>ok</InitialValue>
 <Description>Is leave approved?</Description>
 </DataField>
 <DataField Id="formalia" IsArray="FALSE" Name="formalia">
 <DataType>
 <BasicType Type="STRING"/>
 </DataType>
 <InitialValue>ok</InitialValue>
 <Description>Check that the dates are meaningful
Calculate the number of days this will take from annual leave
Check that the requester has the necessary amount of days in SIC</Description>
 </DataField>
 </DataFields>
 <Participants>
 <Participant Id="Secretary">
 <ParticipantType Type="ROLE"/>
 </Participant>
 <Participant Id="Supervisor">
 <ParticipantType Type="ROLE"/>
 </Participant>
 <Participant Id="Employee">
 <ParticipantType Type="ROLE"/>
 </Participant>

Page 36 of 93

 </Participants>
 <Applications>
 <Application Id="leave_refine"/>
 <Application Id="leave_checkstatus"/>
 <Application Id="leave_approvalform"/>
 <Application Id="route_to_secretary"/>
 <Application Id="route_to_customer"/>
 <Application Id="leave_hrform"/>
 <Application Id="leave_finalinfo"/>
 <Application Id="route_to_supervisor"/>
 </Applications>
 <Activities>
 <Activity Id="Approval" Name="Approval">
 <Implementation>
 <Tool Id="leave_approvalform" Type="APPLICATION">
 <Description>This is leave approval form</Description>
 </Tool>
 <Tool Id="route_to_supervisor" Type="PROCEDURE"/>
 </Implementation>
 <Performer>Secretary</Performer>
 <StartMode>
 <Manual/>
 </StartMode>
 <FinishMode>
 <Automatic/>
 </FinishMode>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Split Type="XOR">
 <TransitionRefs>
 <TransitionRef Id="request_approved"/>
 <TransitionRef Id="not_approved"/>
 </TransitionRefs>
 </Split>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes>
 <ExtendedAttribute Name="ParticipantID" Value="Secretary"/>
 <ExtendedAttribute Name="XOffset" Value="440"/>
 <ExtendedAttribute Name="YOffset" Value="60"/>
 </ExtendedAttributes>
 </Activity>
 <Activity Id="UpdateHR" Name="Update HR">
 <Implementation>
 <Tool Id="leave_hrform" Type="APPLICATION"/>
 <Tool Id="route_to_secretary" Type="PROCEDURE"/>
 </Implementation>
 <Performer>Supervisor</Performer>
 <StartMode>
 <Manual/>
 </StartMode>
 <FinishMode>
 <Automatic/>
 </FinishMode>
 <ExtendedAttributes>
 <ExtendedAttribute Name="ParticipantID" Value="Supervisor"/>

Page 37 of 93

 <ExtendedAttribute Name="XOffset" Value="441"/>
 <ExtendedAttribute Name="YOffset" Value="70"/>
 </ExtendedAttributes>
 </Activity>
 <Activity Id="Refinement" Name="Refinement">
 <Implementation>
 <Tool Id="leave_refine" Type="APPLICATION"/>
 <Tool Id="route_to_customer" Type="PROCEDURE"/>
 </Implementation>
 <Performer>Secretary</Performer>
 <StartMode>
 <Manual/>
 </StartMode>
 <FinishMode>
 <Automatic/>
 </FinishMode>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Join Type="XOR"/>
 <Split Type="XOR">
 <TransitionRefs>
 <TransitionRef Id="cancel_request"/>
 <TransitionRef Id="refinement_begin"/>
 </TransitionRefs>
 </Split>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes>
 <ExtendedAttribute Name="ParticipantID" Value="Secretary"/>
 <ExtendedAttribute Name="XOffset" Value="640"/>
 <ExtendedAttribute Name="YOffset" Value="60"/>
 </ExtendedAttributes>
 </Activity>
 <Activity Id="Leave_Apply" Name="Leave Apply">
 <Implementation>
 <Tool Id="route_to_secretary" Type="PROCEDURE"/>
 <Tool Id="leave_checkstatus" Type="APPLICATION"/>
 </Implementation>
 <Performer>Employee</Performer>
 <StartMode>
 <Manual/>
 </StartMode>
 <FinishMode>
 <Automatic/>
 </FinishMode>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Split Type="XOR">
 <TransitionRefs>
 <TransitionRef Id="send_to_approval"/>
 <TransitionRef Id="send_to_refinement"/>
 </TransitionRefs>
 </Split>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes>

Page 38 of 93

 <ExtendedAttribute Name="ParticipantID" Value="Employee"/>
 <ExtendedAttribute Name="XOffset" Value="440"/>
 <ExtendedAttribute Name="YOffset" Value="40"/>
 </ExtendedAttributes>
 </Activity>
 <Activity Id="Begin" Name="Begin">
 <Implementation>
 <No/>
 </Implementation>
 <Performer>Employee</Performer>
 <StartMode>
 <Manual/>
 </StartMode>
 <FinishMode>
 <Automatic/>
 </FinishMode>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Join Type="XOR"/>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes>
 <ExtendedAttribute Name="ParticipantID" Value="Employee"/>
 <ExtendedAttribute Name="XOffset" Value="291"/>
 <ExtendedAttribute Name="YOffset" Value="40"/>
 </ExtendedAttributes>
 </Activity>
 <Activity Id="End" Name="End">
 <Implementation>
 <Tool Id="leave_finalinfo" Type="APPLICATION"/>
 <Tool Id="route_to_customer" Type="PROCEDURE"/>
 </Implementation>
 <Performer>Employee</Performer>
 <StartMode>
 <Manual/>
 </StartMode>
 <FinishMode>
 <Manual/>
 </FinishMode>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Join Type="XOR"/>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes>
 <ExtendedAttribute Name="ParticipantID" Value="Employee"/>
 <ExtendedAttribute Name="XOffset" Value="640"/>
 <ExtendedAttribute Name="YOffset" Value="40"/>
 </ExtendedAttributes>
 </Activity>
 <Activity Id="leaverequest_Act1" Name="Route">
 <Route/>
 <StartMode>
 <Automatic/>
 </StartMode>
 <FinishMode>

Page 39 of 93

 <Automatic/>
 </FinishMode>
 <ExtendedAttributes>
 <ExtendedAttribute Name="ParticipantID" Value="Employee"/>
 <ExtendedAttribute Name="XOffset" Value="170"/>
 <ExtendedAttribute Name="YOffset" Value="40"/>
 </ExtendedAttributes>
 </Activity>
 </Activities>
 <Transitions>
 <Transition From="Approval" Id="request_approved" Name="request_approved" To="UpdateHR">
 <Condition Type="CONDITION">python:instance.approved == 'ok'</Condition>
 <ExtendedAttributes>
 <ExtendedAttribute Name="RoutingType" Value="NOROUTING"/>
 </ExtendedAttributes>
 </Transition>
 <Transition From="Approval" Id="not_approved" Name="not_approved" To="Refinement">
 <Condition Type="CONDITION">python:instance.approved != 'ok'</Condition>
 <ExtendedAttributes>
 <ExtendedAttribute Name="RoutingType" Value="NOROUTING"/>
 </ExtendedAttributes>
 </Transition>
 <Transition From="Leave_Apply" Id="send_to_refinement" Name="Transition" To="Refinement">
 <Condition Type="CONDITION">python:instance.formalia != 'ok'</Condition>
 <ExtendedAttributes>
 <ExtendedAttribute Name="RoutingType" Value="NOROUTING"/>
 </ExtendedAttributes>
 </Transition>
 <Transition From="Leave_Apply" Id="send_to_approval" Name="Transition" To="Approval">
 <Condition Type="CONDITION">python:instance.formalia == 'ok'</Condition>
 <ExtendedAttributes>
 <ExtendedAttribute Name="RoutingType" Value="NOROUTING"/>
 </ExtendedAttributes>
 </Transition>
 <Transition From="Begin" Id="begin_to_apply" Name="Transition" To="Leave_Apply">
 <ExtendedAttributes>
 <ExtendedAttribute Name="RoutingType" Value="NOROUTING"/>
 </ExtendedAttributes>
 </Transition>
 <Transition From="Refinement" Id="cancel_request" Name="Transition" To="End">
 <Condition Type="CONDITION">python:instance.requested != 'ok'</Condition>
 <ExtendedAttributes>
 <ExtendedAttribute Name="RoutingType" Value="NOROUTING"/>
 </ExtendedAttributes>
 </Transition>
 <Transition From="Refinement" Id="refinement_begin" Name="Transition" To="Begin">
 <Condition Type="CONDITION">python:instance.requested == 'ok'</Condition>
 <ExtendedAttributes>
 <ExtendedAttribute Name="RoutingType" Value="NOROUTING"/>
 </ExtendedAttributes>
 </Transition>
 <Transition From="UpdateHR" Id="tell_employee" Name="Transition" To="End">
 <ExtendedAttributes>
 <ExtendedAttribute Name="RoutingType" Value="NOROUTING"/>
 </ExtendedAttributes>
 </Transition>

Page 40 of 93

 <Transition From="leaverequest_Act1" Id="leaverequest_Tra10" Name="Transition" To="Begin">
 <ExtendedAttributes>
 <ExtendedAttribute Name="RoutingType" Value="NOROUTING"/>
 </ExtendedAttributes>
 </Transition>
 </Transitions>
 <ExtendedAttributes>
 <ExtendedAttribute Name="StartOfWorkflow"
Value="Employee;leaverequest_Act1;100;40;NOROUTING"/>
 <ExtendedAttribute Name="EndOfWorkflow" Value="Employee;End;790;40;NOROUTING"/>
 <ExtendedAttribute Name="ParticipantVisualOrder" Value="Employee;Secretary;Supervisor;"/>
 </ExtendedAttributes>
 </WorkflowProcess>
 </WorkflowProcesses>
 <ExtendedAttributes>
 <ExtendedAttribute Name="MadeBy" Value="JaWE"/>
 <ExtendedAttribute Name="Version" Value="1.2"/>
 </ExtendedAttributes>
</Package>

Page 41 of 93

5 JaWE2Openflow Product

5.1 Prerequisites

The JaWE2Openflow product has following prerequisites:

• Zope 2.6.0 or higher.

• OpenFlow 1.2.0 product.

• Python XML library – PyXML-0.8.3.tgz.

This product can be installed in Plone 2.0 or Zope 2.6.0 or higher/CMF 1.4 websites.

5.2 How to Install

Installing JaWE2Openflow is just like installing any other Zope product:

To Install JaWE2Openflow:

1. Install Zope 2.6.0 or higher (see http://www.zope.org for download and instructions).

2. Install OpenFlow 1.2.0 product in the <zope_installation_dir>/lib/python/Products folder or in the
<zope_instance>/Products folder for Zope 2.7.0 (see http://www.openflow.it/Download/index_html
for download and instructions).

3. Install Python XML Library - PyXML 0.8.3.tgz. This should be installed in site-packages folder. For
example <Zope or Plone installation dir>/lib/python/site-packages. (Note: Search for site-packages on
the system.)

4. Unpack the JaWE2Openflow.tgz in the <zope_installation_dir>/lib/python/Products folder or in the
<zope_instance>/Products folder for Zope 2.7.0. The object will be present in select type to add list of
Zope objects.

5. Restart Zope.

If Zope has already been installed, start from step number 2.

5.3 How to get Help

Click on the Help link in the top right corner in the ZMI to get the help on the JaWE2Openflow product. A
new help window appears on the screen.

5.4 How to Use

5.4.1 Login to ZMI
Login to ZMI and go to the folder where the OpenFlow application should be created.

Page 42 of 93

5.4.2 Create an Instance of the Product
Select JaWE2Openflow from the list of select types to add to ZMI and click on Add button. A screen with
two input fields displays: the ID field has a default value “jawe_of”’ and the Title field defaults to “JaWE to
OpenFlow Converter”. These default values can be used or changed as appropriate. Click the Add
JaWE2Openflow button. An instance of the product that converts XPDL files to Zope OpenFlow is created.

5.4.3 Upload an XPDL file
Click on the object created in ZMI and select the Upload tab. Enter the appropriate value in the ID field and
click on the Browse button. Select the XPDL file to be uploaded or type the relative path and filename. Click
on the Submit button.

A folder will be created with the folder ID as <given_ID>_folder. An OpenFlow object will be created inside
this folder with the specified ID. The XPDL file will also be uploaded to the folder as a reference and a
message log file will be created in the folder.

A message appears with a link to the message log file. Click on the link to see the sequence of operations
carried out and the warnings and errors that were encountered while converting the XPDL file to an
OpenFlow object.

Select the folder for the JaWE2Openflow object. Click on the folder for the new object to see a list of objects
created along with the OpenFlow object.

An “acl_users” folder is created with the users matched with the participants in the XPDL file. Users will be
added only for Participants of type ‘Role’.

An “index_html” page template is created for the data fields whose data type is “BasicType” and defined at
package level in the JaWE XPDL file. Modify “index_html” according to workflow requirements.

Page Templates are created for all the applications.

Click on the OpenFlow object to see a screen with the Worklist tab highlighted with all of the processes and
activities involved in each process. Click on the Roles tab to see the list of all roles that can be assigned to
users. Click on the Applications tab, to see all the applications listed that are present in the workflow. The
Process Definitions tab shows all processes that are present. Click on a process to view a list of all activities
and transitions that are present in the process. Activities can be added or deleted from this list. Click on the
activity or transition to see the Edit screen where properties of the activity or transition can be edited. The
Contents tab displays the list of contents. The Security tab displays the permissions for each role and allows
users to assign permissions, revoke them and create new roles.

5.5 Check Output Log File

Check the output log file that is created while converting the XPDL file to OpenFlow for any further
information required.

If the log file shows an error, check the XPDL file generated from JaWE. Delete the folder and upload the
modified XPDL file using product instance Upload tab.

On successful conversion of JaWE XPDL to Zope OpenFlow, modify process/activity/forms and add the
necessary forms/scripts to complete and use workflow application.

Page 43 of 93

5.6 How to Maintain the Product

JaWE2Openflow is a Zope based product. The JaWE2Openflow product can be installed on the following
flavors of Zope:

• Zope 2.7 instance

• CMF 1.4 instance

• Plone 2.0 instance

5.6.1 JaWE2Openflow Product-Related Files
Once the product is installed, go through the following files for more details:

DEPENDENCIES.txt This file has list of required software to use JaWE2Openflow product.
Help This is a help folder. In this folder, there is “overview.html” help file, which can be

seen using the Help link in ZMI.
__init__.py Product initialization file
INSTALL.txt Product installation instructions
JaWE2Openflow.py This is actual product file. All functions related to the product are defined in this

class. Details of the functions are given in this class.
README.txt Readme file
RELEASE_NOTES.txt Release note with a list of bugs fixed in the final release.
sampleFiles In this folder, a few sample XPDL files are given for testing purpose only.
VERSION.txt Product version file
www This folder has the product logo.
Zpt This folder has all page templates used by JaWE2Openflow product.

If any changes are made to the product file:

1. Restart the server.

2. Delete the existing product instance (if any) in ZMI, and create a new instance of the product by
selecting “JaWE2Openflow” product from the Select Type to Add product list in ZMI.

Page 44 of 93

6 JaWE to OpenFlow Conversion
This section shows screenshots of the JAWE to OpenFlow conversion.

6.1 Process

A process is added in the JaWE editor.

Page 45 of 93

When converted to OpenFlow, the process displays on the Process definitions tab.

Page 46 of 93

6.2 Applications

Applications are added to the process in the JaWE editor.

Page 47 of 93

When converted to OpenFlow, these applications are listed in the Applications tab.

Page 48 of 93

6.3 Workflow Relevant Data

Workflow relevant data is added to the process in the JaWE editor.

Page 49 of 93

A form is created to edit workflow relevant data in the JaWE2Openflow for the datafields present in the
process.

Page 50 of 93

6.4 Participants

Participants are added to the process in the JaWE editor.

Page 51 of 93

In JaWE2Openflow, for the participants with the type “role” a role is created at the security tab at folder level.

Page 52 of 93

6.5 Activities

Activities are added to the process in the JaWE editor.

Page 53 of 93

The list of activities at the Process-Properties level shown below was created in JaWE2Openflow.

Page 54 of 93

When converted by JaWE2Openflow, the activities will display on the Map tab. The screen shots on the
following pages identify the marked sections of this graphic (A-G).

Page 55 of 93

The fields marked A, F and G in the Activities-Properties-General tab correspond to the elements marked A,
F and G in the JaWE2Openflow activities that are created in the activities screen.

Page 56 of 93

In the Activity-Properties-Tools tab, If the type is set to “Application,” it is considered as an “Application” as
shown in the Activities list marked D in the JaWE2Openflow Activities snapshot and this convention is
adopted by JaWE2Openflow product.

If the type is set to “Procedure” then it is considered a “Push Application” as shown in the Activities list
marked E in the JaWE2Openflow Activities screen and this convention is adopted by the JaWE2Openflow
product.

Page 57 of 93

In the Activity-Properties-Precondition tab, the value of Join type is considered and is listed in the Activities
list under the Join marked B in the JaWE2Openflow activities screen.

Page 58 of 93

In the Activity-Properties-Post condition tab the value of Split type is considered and is listed in the Activities
list under the Split heading marked C in the JaWE2Openflow activities screen.

Page 59 of 93

6.6 Transitions

Arrows that appear between activities in the XPDL graph in the JaWE editor are considered to be transitions.
Transitions are listed below the activities in the JaWE2Openflow screen.

Page 60 of 93

The list of transitions at the Process-Properties level shown below was created in JaWE.

Page 61 of 93

In the Transition Properties screen, all of the fields marked are considered when creating JaWE2Openflow
object.

Page 62 of 93

In JaWE2Openflow, the transitions display below the activities on the Map tab.

Page 63 of 93

7 Sample Conversion Process

7.1 Scenario

This section describes a simple OpenFlow workflow application.

The scenario is a simple workflow process where a submitter submits a document and a checker checks the
document and either approves it or rejects it. Rejected document will be sent back to the submitter. The
submitter can modify the document and upload it again for review. If the document is approved, the
“doc_approved” property will be set to “Yes” for the workflow instance.

Sample files are included with the JaWE2Openflow product and they are in the product’s “sampleFiles”
directory. It has two files:

1. Workflow_folder_customized.zexp is an export file for the above-mentioned application.

2. Workflow.xpdl is a file created in JaWE and needs some customization.

7.2 JaWE Screen for Workflow.xpdl

Page 64 of 93

7.3 Workflow.XPDL (XML Dump)

<?xml version="1.0" encoding="UTF-8"?>
<Package Id="Example" xmlns="http://www.wfmc.org/2002/XPDL1.0"
xmlns:xpdl="http://www.wfmc.org/2002/XPDL1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.wfmc.org/2002/XPDL1.0 http://wfmc.org/standards/docs/TC-
1025_schema_10_xpdl.xsd">
 <PackageHeader>
 <XPDLVersion>1.0</XPDLVersion>
 <Vendor>Together</Vendor>
 <Created>2004-06-09 16:06:59</Created>
 </PackageHeader>
 <RedefinableHeader PublicationStatus="UNDER_TEST"/>
 <ConformanceClass GraphConformance="NON_BLOCKED"/>
 <WorkflowProcesses>
 <WorkflowProcess AccessLevel="PUBLIC" Id="doc_approval" Name="doc_approval">
 <ProcessHeader DurationUnit="D">
 <Created>2004-06-09 16:08:14</Created>
 </ProcessHeader>
 <RedefinableHeader PublicationStatus="UNDER_TEST"/>
 <Participants>
 <Participant Id="Checker">
 <ParticipantType Type="ROLE"/>
 </Participant>
 <Participant Id="Submitter">
 <ParticipantType Type="ROLE"/>
 </Participant>
 </Participants>
 <Applications>
 <Application Id="check_dataForm" Name="check_dataForm">
 <Description>This is check data form</Description>
 </Application>
 <Application Id="data_rejected" Name="data_rejected"/>
 <Application Id="data_approved" Name="data_approved"/>
 <Application Id="doc_edit" Name="doc_edit"/>
 </Applications>
 <Activities>
 <Activity Id="Begin" Name="Begin">
 <Implementation>
 <Tool Id="doc_edit" Type="APPLICATION"/>
 </Implementation>
 <Performer>Submitter</Performer>
 <StartMode>
 <Manual/>
 </StartMode>
 <FinishMode>
 <Automatic/>
 </FinishMode>
 <ExtendedAttributes>
 <ExtendedAttribute Name="ParticipantID" Value="Submitter"/>
 <ExtendedAttribute Name="XOffset" Value="160"/>
 <ExtendedAttribute Name="YOffset" Value="60"/>
 </ExtendedAttributes>
 </Activity>
 <Activity Id="CheckData" Name="CheckData">

Page 65 of 93

 <Implementation>
 <Tool Id="check_dataForm" Type="APPLICATION"/>
 </Implementation>
 <Performer>Checker</Performer>
 <StartMode>
 <Manual/>
 </StartMode>
 <FinishMode>
 <Automatic/>
 </FinishMode>
 <TransitionRestrictions>
 <TransitionRestriction>
 <Split Type="XOR">
 <TransitionRefs>
 <TransitionRef Id="CheckData_End"/>
 <TransitionRef Id="CheckData_AutoSend"/>
 </TransitionRefs>
 </Split>
 </TransitionRestriction>
 </TransitionRestrictions>
 <ExtendedAttributes>
 <ExtendedAttribute Name="ParticipantID" Value="Checker"/>
 <ExtendedAttribute Name="XOffset" Value="260"/>
 <ExtendedAttribute Name="YOffset" Value="60"/>
 </ExtendedAttributes>
 </Activity>
 <Activity Id="End" Name="End">
 <Implementation>
 <Tool Id="data_approved" Type="APPLICATION"/>
 </Implementation>
 <Performer>Submitter</Performer>
 <StartMode>
 <Automatic/>
 </StartMode>
 <FinishMode>
 <Automatic/>
 </FinishMode>
 <ExtendedAttributes>
 <ExtendedAttribute Name="ParticipantID" Value="Submitter"/>
 <ExtendedAttribute Name="XOffset" Value="460"/>
 <ExtendedAttribute Name="YOffset" Value="60"/>
 </ExtendedAttributes>
 </Activity>
 <Activity Id="AutoSend" Name="AutoSend">
 <Implementation>
 <Tool Id="data_rejected" Type="APPLICATION"/>
 </Implementation>
 <Performer>Checker</Performer>
 <StartMode>
 <Automatic/>
 </StartMode>
 <FinishMode>
 <Automatic/>
 </FinishMode>
 <ExtendedAttributes>
 <ExtendedAttribute Name="ParticipantID" Value="Checker"/>

Page 66 of 93

 <ExtendedAttribute Name="XOffset" Value="450"/>
 <ExtendedAttribute Name="YOffset" Value="60"/>
 </ExtendedAttributes>
 </Activity>
 </Activities>
 <Transitions>
 <Transition From="Begin" Id="Begin_CheckData" Name="Begin_CheckData" To="CheckData">
 <ExtendedAttributes>
 <ExtendedAttribute Name="RoutingType" Value="NOROUTING"/>
 </ExtendedAttributes>
 </Transition>
 <Transition From="CheckData" Id="CheckData_AutoSend" Name="CheckData_AutoSend"
To="AutoSend">
 <Condition Type="CONDITION">python:not(instance.getProperty('approved', ''))</Condition>
 <ExtendedAttributes>
 <ExtendedAttribute Name="RoutingType" Value="NOROUTING"/>
 </ExtendedAttributes>
 </Transition>
 <Transition From="CheckData" Id="CheckData_End" Name="CheckData_End" To="End">
 <Condition Type="CONDITION">python:instance.getProperty('approved', '')</Condition>
 <ExtendedAttributes>
 <ExtendedAttribute Name="RoutingType" Value="NOROUTING"/>
 </ExtendedAttributes>
 </Transition>
 <Transition From="AutoSend" Id="AutoSend_Begin" Name="AutoSend_Begin" To="Begin">
 <ExtendedAttributes>
 <ExtendedAttribute Name="RoutingType" Value="NOROUTING"/>
 </ExtendedAttributes>
 </Transition>
 </Transitions>
 <ExtendedAttributes>
 <ExtendedAttribute Name="ParticipantVisualOrder" Value="Submitter;Checker;"/>
 </ExtendedAttributes>
 </WorkflowProcess>
 </WorkflowProcesses>
 <ExtendedAttributes>
 <ExtendedAttribute Name="MadeBy" Value="JaWE"/>
 <ExtendedAttribute Name="Version" Value="1.2"/>
 </ExtendedAttributes>
</Package>

Page 67 of 93

7.4 Upload Workflow.xpdl file

Follow the steps below to upload the workflow.xpdl file.

To upload the workflow.xpdl file:

1. Copy/Save the workflow.xpdl file from the JaWE2Openflow sampleFiles directory to a local
machine.

2. Install the JaWE2Openflow product (if not already installed).

3. Add an instance of the JaWE2Openflow by selecting it from the select type to add list of Zope objects
and click on the Add button. An instance of the JaWE2Openflow is created with the default name
“jawe_of” that can be given at the time of adding the object.

4. If an instance of the JaWE2Openflow product exists, use the upload tab in the instance to upload an
XPDL file.

Page 68 of 93

5. Click on the JaWE2Openflow instance object, a ZMI screen displays with the description of
JaWE2Openflow.

Page 69 of 93

6. Click on the Upload tab. A ZMI screen with two data fields “Open Flow ID” and “XPDL file”
appears. Enter “Workflow” as the ID for OpenFlow. Click the Browse button, select the
workflow.xpdl file from the local machine, and click the Submit button.

Page 70 of 93

7. A results screen with a message appears with a link to the message log file. Click on the link to view
the details.

Page 71 of 93

8. The sequence of steps while converting the XPDL file to OpenFlow using JaWE2Openflow displays.

Page 72 of 93

9. A folder is created at the JaWE2Openflow instance folder. The name of the folder will match the
name specified as the OpenFlow ID with “_folder” added to the end.

Page 73 of 93

10. Click on the folder created. An OpenFlow object with the given name is created. The acl_users folder
is created with user names matching the participants. Roles are also created in the Security tab that
match the participants. A log file is created where all XPDL file to OpenFlow conversion steps are
logged along with the exceptions raised and the errors that occurred during the conversion. The
uploaded XPDL file is also added.

Page 74 of 93

11. Click on the OpenFlow object in the Worklist tab to view the processes and activities in the process.

Page 75 of 93

12. Click on the Roles tab to view the roles with the participants in the XPDL file.

Page 76 of 93

13. Click on the Applications tab where all of the applications are listed.

Page 77 of 93

14. In the Process Definitions tab, all of the processes are listed with the number of activities and
transitions in each process.

Page 78 of 93

15. Click on a process to see a list of its activities and transitions.

16. This application is ready to be customized as described in the next section (Section 7.5).

Page 79 of 93

7.5 Customization

The sample application considered in the previous section is customized and supplied as .zexp file in the
JaWE2Openflow sampleFiles folder named “Workflow_folder_customized.zexp”.

To customize the application:

1. Copy the file into the <zope_instance>/import folder. Go to ZMI and proceed to the folder where
JaWE2Openflow instance is present.

2. Click on the Import/Export button and type “Workflow_folder_customized.zexp” in the Import file
name field. Click on the Import button.

Page 80 of 93

3. The folder ‘Workflow_folder_customized’ displays where the JaWE2Openflow instance is present.

Page 81 of 93

4. Click on the Workflow_folder_customized folder to see a list of items like python scripts, dtml
methods, page templates, acl_users folder and the OpenFlow object named Workflow.

The following items were added for Workflow:

Scripts Page Templates DTML Methods
Approve check_dataForm login_form
Reject doc_edit logged_out
SendAgain index_html logged_in
SubmitNew submit_doc
data_approved worklist_html
data_rejected standard_template

Page 82 of 93

5. Open a browser and go to the URL where the Workflow_folder_customized.zexp file has been
imported. For example, http://localhost:9000/xpdl2openflow/Test/Workflow_folder_customized. A
screen displays with an Anonymous User configured and a login link.

Page 83 of 93

http://localhost:9000/xpdl2openflow/Test/Workflow_folder_customized

6. Click on the Login link and login using “Submitter” as both the username and password. Click on the
Login button.

Page 84 of 93

7. A screen displays showing the username, a logout link and links to Submit a new document and My
worklist. Click on the Submit new document link.

Page 85 of 93

8. A screen for creating a new process instance displays. Click on the Browse button and select a
document to upload then click on the New button.

Page 86 of 93

9. A screen displays that states that the workflow instance has been created.

Page 87 of 93

10. Open a browser and go to the following URL:
http://localhost:9000/xpdl2openflow/Test/Workflow_folder_customized. Login using “Checker” as
both username and password. A screen showing the user name at the top and a link to My worklist
displays.

Page 88 of 93

http://localhost:9000/xpdl2openflow/Test/Workflow_folder_customized

11. Click on the ‘My worklist’ link. The list of all instances pending approval displays.

Page 89 of 93

12. Click on an instance link, to see a screen stating that the instance needs approval with a link to the
instance. Click on the link and it the uploaded file displays for review. Review it and click on the
Approve button to approve it or reject it by clicking on the Reject button.

Page 90 of 93

13. If approved, the document is removed from the worklist of the checker.

Page 91 of 93

14. If a document is rejected, it is added to the worklist of the Submitter. The submitter can change it and
submit it again.

Page 92 of 93

8 Summary

8.1 Conclusion

JaWE2Openflow is a tool to convert a JaWE XPDL file to a Zope OpenFlow object.

8.2 Assumptions

The following assumptions were made while creating this product:

• Everything is defined in one XPDL file (i.e., applications, processes, participants, activities,
transitions).

• All applications are defined in the <Applications> tag in the XPDL file. If the application type is
“procedure” then it is considered to be a push application. If its type is “Application” it is considered
to be an application.

• All Participants are defined in the <Participants> tag in the XPDL file and their type is “Role”.

• Workflow relevant data is defined at the package level and the data type is “Basic Type” only.

• Multiple processes can be defined in one XPDL file.

8.3 Limitations

The product has the following limitations:

• Currently, the product will not automatically convert the changes made to an XPDL file after the
initial conversion. If changes are made to an XPDL file after it has been converted to an OpenFlow
object, the corresponding changes to OpenFlow must be completed manually.

• Reverse workflow is not possible. If a Zope OpenFlow object is changed, the corresponding JaWE
XPDL file must be changed manually.

• If an XPDL file is open in JaWE when it is uploaded in Zope (for conversion), a blank screen will
display.

Page 93 of 93

	Introduction
	Purpose
	Scope
	Objectives of the Document
	Acronyms and Key Terms

	Overview
	Overview
	Purpose

	Zope OpenFlow
	Introduction
	Activity-Based Workflow
	Entity-Based Workflow

	Reasons to Use OpenFlow
	The Process Definition
	Activities (What)
	Transitions (When)
	Applications (How)
	Users and Roles (Who)

	The Process Instance
	Workitems
	Worklist and Assigning Work
	Exception Handling
	Dynamic Redesign

	JaWE
	Overview
	Package
	Process
	Applications
	Data Fields (Workflow Relevant Data)
	Participants
	Activities
	Transitions
	Complete JaWE Process

	JaWE2Openflow Product
	Prerequisites
	How to Install
	How to get Help
	How to Use
	Login to ZMI
	Create an Instance of the Product
	Upload an XPDL file

	Check Output Log File
	How to Maintain the Product
	JaWE2Openflow Product-Related Files

	JaWE to OpenFlow Conversion
	Process
	Applications
	Workflow Relevant Data
	Participants
	Activities
	Transitions

	Sample Conversion Process
	Scenario
	JaWE Screen for Workflow.xpdl
	Workflow.XPDL (XML Dump)
	Upload Workflow.xpdl file
	Customization

	Summary
	Conclusion
	Assumptions
	Limitations

