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Abstract

A simple analytic  model allows prediction of rate constants and size effect behavior before a hydrocode 
run. It is applied to near-ideal PBX 9404, in-between ANFO and most non-ideal AN. The power of the 
pressure declines from 2.3, 1.5 to 0.8 across this set. The power of the burn fraction, F, is 0.8, 0 and 0, so 
that an F-term is important only for the ideal explosives.  The (1-F) term has a power of 1.5, 1 and 1. The 
size effect shapes change from concave-down to nearly straight to concave-up. Failure occurs for ideal 
explosives when the calculated detonation velocity turns in a  double-valued way. The effect of the power 
of the pressure may be simulated by including a pressure cutoff in the detonation rate.
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1 Introduction

Reactive Flow is the class of explosive models where the chemistry of detonation is simulated by an 

overall reaction rate and where the rate constant is assumed to be truly constant. The first test of this model 

is to calculate the size (diameter) effect, which is a plot of detonation velocity versus inverse radius of a 

cylindrical explosive part. 

A wide spectrum of explosives may be indicated by considering three general classes, which must all 

fitted.  1)  The nearly straight line in the size effect plot is shown by ammonium nitrate emulsion k1a and 

ANFO prill which fail with a radius of 6-10 mm and a detonation velocity ratio Us/D of about 0.6. [1-3]   2)  

The more nearly ideal PBX 9404 and Comp B  have a shape that is strongly concave down in inverse 

radius space. The explosives fail at 0.6 – 2 mm, which amounts to a ratio, Us/D,  of about 0.83-0.85. [4,5]

These explosives do not decrease much in detonation velocity before they fail.  3) The more non-ideal 

ammonium nitrate at 1.0 g/cm3 and Australian heavy ammonium nitrate emulsion. HANFO, are concave-

up in shape, fail at 25-70 mm with a Us/D of 0.25-0.31. [6,7]

In the simple reactive flow code JWL++, these three have usually had detonation rates with powers of 

the pressure equal to 1, 2-3, and 1, respectively. [8]

To model size effect behavior, Leiper, Kirby and Cooper suggested a Gaussian function that modulates 

the energy delivery over the range of the burn fraction, F. [9-11]  In their 1-D, three-rate model, they 

reproduced the concave-up size effect shape of AN slurry and nitrogylcerine powder using a Gaussian 



function peaked at the early burn fraction of 0.15.  They also reproduced the concave-down shape of Comp 

B with a late energy delivery peak at a burn fraction of  0.7. Their Gaussian functions did not run 

continuously from 0 < F < 1 but turned on at some initial value of F. The rate was proportional to pressure 

to the first power. This approach states that  energy delivery early or late in the reaction zone can affect the 

size effect curve. This leads to the idea used here that the burn fraction may be linked to detonation velocity 

in a continuous way for all radii of a given explosive. 

2  Necessary Input Relations

We here suggest a simple 1-D model that can be run prior to hydrocodes to estimate possible reactive 

flow behavior.  We need a set of approximate relations, starting with the Eyring equation [12]

U s = D 1− < xe >
σRo





 (1)

where Us and D are the detonation velocities at radius Ro and infinite radius, <xe> is the average reaction 

zone length derived from edge lag measurements by using σ which is given by [13]

σ = 0.4 1− (U s / D )2





−0.8

. (2)

Also, the time to cross the reaction zone, te, is given by

te = < xe >
U s

. (3)

The most important relation is

Fe ≈ U s / D( )2 ≈ Pm / Pm
o . (4)

where Fe is the burn fraction and Pm and Pm
o are the maximum pressures at radius Ro and infinite radius. 

The maximum pressure is the spike at about 1.5 times the C-J pressure.  Eq. (4) is so important its 

derivation is given in detail in the Appendix. It is approximate but very useful.



3 The Simple Model

The rate equation for a one rate model is

dF

dt
= G1P

bF a(1−F )c (5)

where G1 is the rate constant. We collect F on the left and integrate to Fe to get the result 

I = dF

F a(1−F )c
0

Fe∫ ≈G1 Pm
oFe







b
te . (6)

In the reaction zone, the pressure declines from Pm to C-J, but we shall use a constant pressure for 

simplicity. We substitute Eqs. (1) –(4) to get    

I = Ro
G1

D
Pm

o





b





σ Fe

b−1 / 2(1−Fe
1 / 2 )



. 

(7)

We define a dimensionless radius

RD = D

G1
o(Pm

o )b
(8)

where the rate constant is now made a true constant G1
o derived from size effect data as described below. 

We rearrange to get

RD

Ro
= σ

I
Fe

b−1/ 2(1−Fe
1 / 2 )



  . (9)

Eq. (9) will be solved for RD/Ro, which we plot versus Us/D in a generalized size effect plot.



4  Estimating  G1
o

How do we estimate the constant G1
o from real data?  The average detonation rate is inversely 

proportional to the slope of the size effect curve. [8] This effect is easily seen in the codes by changing rates 

and watching the curves rotate about the infinite-radius detonation velocity, D. We take Eq. (5) and convert 

it to average values

dF

dt
≈ −DU s

∂U s / ∂(1 / Ro )
≈G1 Pm

o < Fe >




b

< F >a< 1−F >c .

(10)

where <dF/dt> in µs-1 is independent  of models. The average value <F> is set to be 1/2.  We next move to 

infinite radius, where Fe = 1, so that term disappears. The measured rate <dF/dt>o  is obtained by 

extrapolating the detonation rate versus inverse radius to infinite radius, which is the same procedure used 

to get D.  Then, G1 becomes G1
o, which is expected to be constant for all radii.  We have a problem with 

the averages of F. First, we are not sure what value to use if evaluated at infinite radius. Second, they are a 

function of a and c, which is  extremely inconvenient in repetitive calculating and plotting. We shall try an 

intermediate position, where use the a = 0, c = 1 value of 1/2 everywhere.    We then get at infinite radius 

G1
o ≈ 2

Pm
o




b

dF

dt
o

= cons tan t .  (11)

We see that G1
o(Pm

o )b  and RD are indeed constant with respect to b, which is an important relation. This 

produces the effect where if b increases, so does G1
o.  We get the generalized radius

RD ≈ D

2 < dF / dt >o
(12)

which is what we shall use to plot the data.

5  Results

The straight-line type of explosives are shown in Figure 1: AN emulsion k1a and ANFO prill. These 

are easily fit with a = 0, c = 1 and b = 1.5.



The near-ideal, concave-down explosive PBX 9404 is shown in Figure 2. The bend is so great that the 

entire curve lies in a small RD/Ro range. To get this effect, we need a large value of  a = 0.67 and of b = 2.3, 

and this is shown by the heavy line.  

Figure 3 goes to other extreme at large RD/Ro values with the ultra-slow, super non-ideal explosives 

1.0 g/cc AN, potassium chlorate 80/sugar [14] and HANFO (Australian heavy AN emulsion).  We use a = 

0, c = 1, b = 0.8 to get a concave-up shape.  

We have fit all three kinds of explosives by increasing b1 going from non-ideal to ideal and by 

inserting an Fa term for ideal explosives only.

6. Pressure Cutoff

Leiper, et. al. made an analytical  1-D model that used b = 1 with a pressure cutoff Po to create the 

concave-down shape as well as failure. [9-11] For P < Po, G1 = 0. This can be added to give

RD = D

G1
o(Pm

o −Po )b
(13)

with everything else the same. The result is shown by the fine line in Figure 2, where the concave-down 

shape is given with b = 1 combined with Po/Pm
o = 0.3.  A large value of a is still needed.

The effect of a large b or pressure cutoff is to create a double valued curve, where the turn (with zero 

rate from Eq. (10)) may be taken as failure of the detonation. This applies only in the region of small 

RD/Ro. At large RD/Ro, failure occurs by the merging of the detonation with the undetonated explosive at 

low Us/D values. In between, we have no mechanism for failure.

Appendix   

A1 Energy-Detonation Velocity Relation



In one slice of ideal detonating explosive, let a fraction 2α of the detonation energy Eo be released to 

move forward to be the energy of compression, Ec,  for the next slice so that 

Ec = αEo
Es = (1+α )Eo

. (A-1)

There, the energy PdV is deposited. Half of it compresses the explosive and half goes to accelerate the 

mass and the other half goes into internal energy. The energy of compression is

Ec = 1

2
P(1− v ) = 1

2
ρou p

2 . (A-2)

We move to the internal energy side. The sound speed is given by

c2 = − v2

ρo

∂P

∂v
. (A-3)

We take the pressure from a crude JWL equation-of-state as being

P = A exp(−Rv ) (A-4)

and we can relate the derivitive of P and the integral, Es, of PdV by

∂P

∂v
= −R2Es . (A-5)

The detonation velocity is the sum of the mass velocity and sound speed

U s
2 = ( up + c )2 = 1

ρo
2Ec( )1 / 2

+ vREs
1 / 2




2

 . (A-6)

We subtitute Eq. (A-1) into Eq. (A-6) and divide by the infinite radius detonation velocity, D, to get  



U s
D

= Eo

Eo
o












1 / 2

( 2α )1 / 2 + vR(1+α )1 / 2

( 2α )1 / 2 + voR(1+α )1 / 2











 ≈ Fe

1 / 2. (A-7)

A2  Pressure-Detonation  Velocity Relation

We substitute the approximate relation

up ≈ U s
4

(A-8)

into

P ≈ ρoUsu p (A-9)

to get

U s ≈ 4P

ρo






1 / 2

. (A-10)

A combination of Eqs. (A-7) and (A-10) lead to the relation 

Pm

Pm
o
≈ Fe. (A-11)

A3   Relations in the Model

We want to make an analytical model that simulates a reactive flow computer model and allows us to 

estimate the settings ahead of time. To start this, we need some relations for the same explosive at different 

radii, using <Eo> and <Pm> as averages across the entire detonation front.  Because we have no real data to 

show the above relations, we turn to the reactive flow model JWL++ running in a 2-dimensional arbitrary 

Lagrangian-Eulerian (ALE) hydrocode with CALE-like properties. We shall run different radii of the same 

material. The sonic plane is found using the function

( upx
2 + upy

2 )i
1 / 2 + Ci −U s = 0 . (A-12)



where Us is the detonation velocity in the ratestick found in the first code run and C is the speed of sound as 

determined by the equation-of-state.  The particle velocities and sound speeds are in the ith zone on every 

cycle, so that their sum forms an instantaneous detonation velocity. When Eq. (A-12) equals zero, we are 

on the sonic plane, where no energy can move forward to the front.  In a given zone, we plot the burn 

fraction versus the sonic function to get the burn fraction on the sonic plane.  The maximum pressures are 

also obtained wherever they appear inside the reaction zone. The averages for the overall burn fraction and 

maximum pressure are given by 

Fe = λ iFei
i
∑

Pm = λ iPmi
i
∑ (A-13)

. 

where λi is the fraction of radial area. We need to use explosives that have large reaction zones and react at 

small burn fractions in order to get the resolution possible in mapping code output. The zoning is set so that 

we have a 35-50 zones radially and that the reaction zone contains 8 –12 zones.  At least 12 slices and 

sometimes over 20 slices radially are taken in the analysis. For ratesticks 10 times longer than the radius, 

the results are constant at each radius and represent steady state conditions.  The values of D and Pm come 

from extrapolation of the code results with the running of a large radius sample being essential to obtaining 

a good value.

The results are plotted in Figure A-1, The linear relations agree with the derivations we carried out.

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by the University of 

California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

References

1.    U. Nyberg, J. Deng and L. Chen, Matning av Detonationshastighet och Krokningsfront i Samband med 
Brinnmodellutveckling for Emulsionssprangamne K1, Swedish Rock Engineering Research, 
Stockholm, SveBeFo Report 6, 1995.  

2.    J. Deng, S. Nie and L. Chen, Determination of Burning Rate Parameters for an Emulsion 
Explosive, Swedish Rock Engineering Research, Stockholm, SveBeFo Report 17, 1995. Finn 
Ouchterlony kindly sent the Swedish Rock reports.



3.    Richard Catanach, Los Alamos National Laboratory, Los Alamos, NM, private communications, 2002-
2003.

4.     LASL Explosive Property Data, T. R. Gibbs and A. Popolato, ed., University of California Press, 
Berkeley, 1980.

5.    M. E. Malin, A. W. Campbell and G. W. Mautz, “Particle Size Effects  in One- and Two-Component
Explosives,” Second ONR Symposium on Detonation, White Oak, MD, February 11, 1955,  pp. 478-
493.

6.    M. A. Cook, E. B. Mayfield and W. S. Partridge,  Reaction Rates of Ammonium Nitrate in 
Detonation,  J. Phys. Chem. 1955 59, 675-680.

7.    David Kennedy, ICI Australia Operations, Kurri Kurri, New South Wales, Australia, private 
communications, 1995, 1997.

8.    P. Clark Souers, Steve Anderson, Estella McGuire, Michael J. Murphy, and Peter  Vitello, Reactive  
Flow and  the  Size Effect,  Propellants, Explosives, Pyrotechnics 2001, 26, 26-32. 

9.   I. J. Kirby and G. A. Leiper, A Small Divergent Detonation Theory for Intermolecular Explosives, 
Proceedings Eighth Symposium (International)  on Detonation, Albuquerque, NM, July 15-19, 1985, 
pp. 176-186.

10.  G. A. Leiper and J. Cooper, Reaction Rates and the Charge Diameter Effect in Heterogeneous 
Explosives, Proceedings Ninth Symposium (International) on Detonation, Portland, OR, August 
28- September 1, 1989, pp. 197-207.

11.  G. A. Leiper, Aberdeen, U. K., private communications, 2002-2003.

12.    H. Eyring, R. M. Powell, G. E. Duffey and R. B. Parlin, “The Stability of Detonation,” Chem  Rev 
1949, 45, 144-146.

13.    P. Clark Souers and Raul Garza,  “Kinetic Information from Detonation Front Curvature.” 
Proceedings Eleventh International Detonation Symposium, Snowmass Village , CO,  August 30-
September 4, 1998, pp. 459-465.

14.   Raul Garza and P. Clark Souers, Lawrence Livermore National Laboratory, private 
communication, 2003. 

Symbols and Abbreviations

A JWL coefficient (GPa) 
a Pressure exponent for F (dimensionless)
b Pressure exponent for pressure (dimensionless)
C Speed of sound (mm/µs)
c Pressure exponent for (1- F) (dimensionless)
D Detonation velocity at infinite radius (mm/µs)
Ec Compression energy (kJ/cm3)
Eo Detonation energy at radius Ro (kJ/cm3)
Eo

o Detonation energy at infinite radius (kJ/cm3)
Es Internal energy (kJ/cm3)
F Burn fraction (dimensionless)



<F> Average burn fraction (dimensionless)
<dF/dt> Average detonation rate (µs-1)
<dF/dt>o Average detonation rate at infinite radius (µs-1)
Fe Burn fraction at the back of the reaction zone (dimensionless)
<Fe> Average burn fraction at the back of the reaction zone (dimensionless)
G1 Rate constant (µs.GPab1)-1 

G1
o Rate constant at infinite radius (µs.GPab1)-1 

I Integral of all F-terms (dimensionless)
i Sub indicating ith zone (dimensionless)
P Pressure (GPa)
Pm Maximum pressure at radius Ro (GPa)
 <Pm> Average maximum pressure at radius Ro (GPa)
Pm

o Maximum pressure at infinite radius (GPa)
Q Artificial viscosity (GPa)
R Equation of state exponential coefficient (dimensionless)
RD Generalized radius (dimensionless)
Ro Initial explosive radius (mm)
t Time (µs)
te Time at end of reaction zone (µs)
up Particle velocity (mm/µs)
upx X-direction particle velocity (mm/µs)
upy Y-direction particle velocity (mm/µs)
Us Detonation velocity at radius Ro (mm/µs)
v Relative volume of compression at radius Ro (dimensionless)
<xe> Average reaction zone length (mm)
α Coefficient linking compression and detonation energies (dimensionless)
λ    (dimensionless)
ρo Initial explosive density  (g/cm3)
σ Ratio skin layer thickness to reaction zone length
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Figure 1.  Near-straight line AN emulsion k1a (squares) and ANFO prill (circles) with b = 1.5 and a = 
0, c = 1
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Figure 2.  Extreme concave-down curve for PBX 9404. Usually, this takes a large a and b. Using a 
pressure cutoff reduces b but not a.
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Figure 3. Concave-up shapes for AN (squares), potassium chlorate/sugar (diamonds) and HANFO (circles) 
with a = 0, c = 1 and b = 0.8.
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Figure A-1.  Code plot of dimensionless detonation velocity-squared and pressure as a function of the burn 
fraction. The results are close to linear for both functions.


