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ABSTRACT

Abstract. A new continuum model for directional tensile failure has been developed that can simulate 
weakening and void formation due to directional tensile failure. The model is developed within the context of 
a properly invariant nonlinear thermomechanical theory. A second order damage tensor is introduced which 
allows simulation of weakening to tension applied in one direction, without weakening to subsequent tension 
applied in perpendicular directions. This damage tensor can be advected using standard methods in computer 
codes.  Porosity is used as an isotropic measure of volumetric void strain and its evolution is influenced by 
tensile failure. The rate of dissipation due to directional tensile failure takes a particularly simple form, which 
can be analyzed easily.  Specifically, the model can be combined with general constitutive equations for 
porous compaction and dilation, as well as viscoplasticity. A robust non-iterative numerical scheme for 
integrating these evolution equations is proposed. This constitutive model has been implemented into an 
Eulerian shock wave code with adaptive mesh refinement.  A comparison of experimental results and 
computational simulations of spherical wave propagation in Danby marble was made. The experiment 
consisted of a 2-cm-diameter explosive charge detonated in the center of a cylindrical rock sample. Radial 
particle velocity histories were recorded at several concentric locations in the sample. An extensively 
damaged region near the charge cavity and two networks of cracks were evident in the specimen after the test. 
The first network consists of radial cracks emanating form the cavity and extending about halfway through 
the specimen. The second network consists of circumferential cracks occurring in a relatively narrow band 
that extends from the outer boundary of the radially cracked region toward the free surface. The calculations 
indicated load-induced anisotropy such as was observed in the experiment

1. INTRODUCTION

In this paper a continuum model and numerical method are presented for modeling large-
deformation flows with directional tensile failure.  A number of continuum damage models have 
been developed for Lagrangian codes, but problems frequently involve deformations too severe to 
be handled by the same Lagrangian mesh during entire calculation. The present work uses an 
Eulerian high-order Godunov scheme since it is easy to couple it with adaptive mesh refinement 
algorithms. Unfortunately, it is often difficult or impossible to implement complex constitutive 
models in Eulerian codes. The constitutive model described here is thermodynamically consistent 
[1] and can be implemented  in a straightforward manner. Constitutive models for tensile failure 
and damage typically include a reduced yield strength, a reduced elastic modulus and an evolving 
void strain. The model presented in this paper focuses mainly on the latter. A comprehensive 
model for porous elastic-viscoplastic material with tensile failure that is applicable to shock 
problems had been recorded in [2] and addresses other phenomena. Porosity is used as an isotropic 
measure of volumetric void strain and its evolution is influenced by tensile failure. Furthermore, 
instead of introducing a void strain tensor, the inelastic effects of directional void opening and 
closing are modeled by introducing their effects directly on the rate of evolution of elastic 
deformation.

The main objective of a constitutive model for directional tensile failure, like the one 
developed in this paper, is to model the fact that although a brittle material (like rock) can fail in 



one direction it may retain virgin strength to tensile failure in a perpendicular direction.  From the 
mathematical point of view it is always possible to propose evolution equations for internal state 
variables that ensure maximum dissipation.  However, such constitutive assumptions can be 
difficult to interpret physically.  Therefore, a major challenge in the development of a theory of 
directional tensile failure is to develop a theoretical structure that is amenable to the analysis of 
physically based constitutive assumptions and is amenable to the development of a robust 
integration scheme and an implementation to a general computer code. 

2. CONSTITUTIVE MODEL

In contrast with standard approaches to plasticity which introduce measures of inelastic 
deformation through evolution equations, the approach taken here is to propose evolution 
equations directly for elastic deformation measures [2]. Specifically, within the context of the 
proposed model it is convenient to introduce a measure of elastic deformation as a symmetric, 
invertible, positive definite tensor Be which is determined by integrating the evolution equation

•
Be = LBe + BeLT – Je

2/3A  , (1)

where Je is a pure measure of elastic dilatation Je
2 = det(Be), L denotes the velocity gradient and a 

superposed dot denotes material time differentiation. The tensor A includes the inelastic effects of 
the rate of plastic deformation as well as that due to directional tensile failure. Moreover it is 
possible to define Be'  as a unimodular tensor which is a pure measure of elastic distortional 

deformation

Be'  = Je
–2/3 Be ,   det(Be' ) = 1  . (2)

It can be shown that Je and Be'  are determined by the evolution equations

•
Je/ Je = D • I – 1/2 A • Be'

–1,
•
Be'  = LBe'  + Be' L

T –
2
3  (D • I) Be' – [A –

1
3  (A • Be'

–1) Be' ],

(3a,b)
where D is the symmetric part of the velocity gradient. For porous materials it is common to 
introduce the current value φ of porosity, its reference value Φ, and the reference density ρs0 of 

the solid matrix, such that

Je = [1–φ
1–Φ] J  ,   ρ0 = (1–Φ)ρs0  ,  ρ = (1–φ)Je

–1ρs0 , (4)

The Helmholtz free energy ψ is assumed to be a function of the variables Je, Be' , and 

temperature θ. However, since ψ must remain unaltered under superposed rigid body motions it 
follows that it can be a function of Be'  only through its two independent invariants α1 = Be'  • I , α2
= Be'  • Be' . For simplicity, ψ is taken to be independent of α2 so that it takes the form ψ = 

ψ(Je,α1,θ). 

Constitutive equations are required to satisfy statements of the second law of thermodynamics 
which include the condition that heat flows from hot to cold, and the condition that the material 
dissipation is nonnegative:

ρθξ' = T • D – ρ(
•ψ  + η•θ)  ≥ 0. (5)

For the model under consideration, the Cauchy stress T and the entropy η are given in the 
hyperelastic forms:



T = – p I + T', η = –
∂ψ
∂θ   , p = (1–φ) ps, T' = (1–φ)Ts' , 

ps = – ρs0 
∂ψ
∂Je

  , T s'  = 2Je
–1ρs0

∂ψ
∂α1

Be' ', (6)

where p is the pressure, T' is the deviatoric part of the stress, Be' ' is the deviatoric part of Be'  and ps
and Ts'  are the pressure and deviatoric stress of the solid matrix, respectively.

Next, the inelastic deformation tensor A is separated into a part Ap associated with 

viscoplasticity and a part Av associated with void formation (due to porosity and cracks) due to 

tensile failure

A = Ap + Av  ,   Ap = Γp [Be' – { 3

Be'
–1 • I

}I]  , (7)

where the scalar Γp requires a constitutive equation. In order to propose a constitutive equation for 

Av it is convenient to define pi as the orthonormal right-handed set of eigenvectors of Be' , so that

Be'  = β1 (p1⊗p1) + β2 (p2⊗p2) + β3 (p3⊗p3) , (8)

where βi are the eigenvalues of Be' . Thus, in view of the constitutive equations (6), the stress T can 

be written in its spectral form
T = σ1 (p1⊗p1) + σ2 (p2⊗p2) + σ3 (p3⊗p3) , (9)

where σi are the principal stresses. Next, it is assumed that the rate of void formation tends to 

reduce these principal stresses so that Av is specified in the form

Av = 2 [Γv1 β1 (p1⊗p1) + Γv2 β2(p2⊗p2) + Γv3 β3  (p3⊗p3)], (10) 

where the scalar functions Γvi require constitutive equations. For these constitutive assumptions 

the rate of material dissipation (5) reduces to [1] 
 ξ' = ξv'  + ξd'   ,  ρθξv'  = σ1 Γv1 + σ2 Γv2 + σ3 Γv3  , (11)

where ρθξv'  is the dissipation of void formation and ρθξd'  is the dissipation of plastic distortional 

deformation, which is nonnegative if ∂ψ/∂α1, and Γp are each non-negative [2].  The rate of 

change of porosity and the rate of elastic distortional deformation (3) can then be rewritten in the 
forms

•φ/(1–φ)   = Γv1 + Γv2 + Γv3,

•
Be' =LBe'  +Be' L

T–
2
3 (D • I)Be' –Ap–2β1Γv' 1(p1⊗p1)–2β2 Γv' 2(p2⊗p2)–2β3 Γv' 3 (p3⊗p3). (12)

Next, it is convenient to introduce a symmetric tensor ∆∆∆∆, which is interpreted as the 
distribution of damage due to directional tensile failure.  In particular, the damage ∆ in a general 
direction n (n • n =1) and the damage ∆i in the principal directions of stress pi are defined by

∆ = 〈∆∆∆∆ • (n⊗n)〉  ,   ∆i = 〈∆∆∆∆ • (pi⊗pi)〉   (no sum on i)  , (13)

where 〈x〉 represents the Macauley brackets 〈x〉 = 1/2[x + |x|]. Thus, the principal directions of ∆∆∆∆
represent normals to potential weak planes, with the weakest plane being normal to the principal 



direction associated with the largest principal value of ∆∆∆∆.  In this sense, ∆∆∆∆ acts like a structural 
tensor which characterizes the directionality of tensile failure. 

3. NUMERICAL SCHEME

The Eulerian framework of adaptive mesh refinement (AMR) [3] is a relatively mature technique 
for dynamically applying high numerical resolution to those parts of a problem domain that require 
it, while solving less sensitive regions on less expensive, coarser computational grids. In 
combination, Eulerian Godunov methods with AMR have been proven to produce highly accurate 
and efficient solutions to shock capturing problems. The method used here is based on some 
modifications of the single-phase high-order Godunov method. The multidimensional equations 
are solved by using an operator splitting technique.

Here, it is of interest to compute large-deformation flows in problems consisting of multiple 
resolved phases. The algorithm used here treats the propagation of surfaces in space in terms of an 
equivalent evolution of volume fractions. The approach to modeling multimaterial cells is similar 
to that in [4]. Specifically, material properties are multiply-valued in a cell, but the velocity and 
stress are single valued. In order to use the single-fluid solver it is necessary to define an effective 
single phase for the mixed cells and to update material volume fractions based on self-consistent 
cell thermodynamics [4]. 

Many source terms for viscoplastic materials with damage are very non-linear and 
consequently require special numerical methods appropriate for solutions of stiff equations. Often, 
it is possible to simplify the numerical procedure by defining the “target” value of a parameter and 
then solve a relaxation equation implicitly based on the “trial” value and the target value of the 
parameter. This approach was used to find appropriate values for Γvj in (12) based on an acoustic 

approximation. In this case it is possible to form a system of linear equations,

σ i
n+1 = σ i

* – Cij Γfj    i,j=1,2,3 (15)

where Cij is a matrix dependent on elastic coefficients and σ i
* is a “trial” stress. The specific 

values of Cij  depend on whether or not there is an active failure process in specific directions. 

Consequently, the solution is obtained by guessing a branch of the solution (based on the values of 
Γfi associated with estimates of the stresses σi), then using the appropriate values of Cij to solve 

(15) for the updated values σ i
n+1.  The solution is considered to be correct if the updated values of 

Γfi correspond to the same branch that is being checked.

4. SPHERICAL WAVE EXPERIMENT

In the experiment, a 2-cm-diameter EL-506D (Detasheet) explosive charge weighing 6 g was 
detonated at the center of an instrumented 27-cm-diameter, 27-cm-long cylindrical block of marble 
[5]. The velocity histories at few ranges are shown in Fig. 1. The letters ‘a’ and ‘b’ following the 
gage number are used to distinguish the two gage arrays on opposite sides of the charge.

At early times, the recorded velocity histories are characterized by a sharp rise to peak 
followed by an outward motion that lasts for about 10 µs.  This early-time response is 
reproducible, as indicated by the nearly identical records from the gage arrays on either side of the 
charge. The Danby marble specimen of the present study was severely cracked, as shown in Fig. 2.  
In addition to the extensively damaged region near the charge cavity, two distinct networks of 
cracks can be seen in each half of the specimen.  The first network consists of numerous cracks 



emanating from the charge boundary and extending radially outward toward the free surface of the 
specimen.  These radial cracks extend throughout the gaged region of the specimen, and a few 
cracks propagate all the way to the free surface.  The second network of cracks consists primarily 
of circumferential cracks and does not appear to be symmetric with respect to the center of the 
explosive charge.  An additional crack that does not appear to be associated with either of the 
crack networks mentioned so far can be observed spanning the whole specimen surface.  This 
crack follows the path of a pre-existing in situ joint in the rock. 

5. NUMERICAL SIMULATIONS

The model was calibrated using laboratory data that included elastic properties, unconfined 
compressive strength, and a pressure dependent failure surface. Pressure-volume data from 1D 
strain wave propagation experiments were also used to calibrate the Mie-Grüneisen EOS used in 
the simulations. Material parameters that could not be determined from the aforementioned data 
were determined through an optimization process using the measured particle velocity histories 
shown earlier in Fig 1. As shown in the figure, the calibrated model is in good agreement with the 
data at early time, when the flow field can be reasonably viewed as spherically symmetric. At late 
time, reflected waves from the cylindrical boundary of the specimen converge toward the charge 
cavity and in so doing render the flow field three-dimensional. Also at late time, the sample 
response becomes anisotropic due to the interaction of the stress waves with pre-existing planes of 
weakness in the sample. These two phenomena cause a breakdown in the 2D axisymmetry 
assumption. For this reason no attempt was made to match the late time velocity histories. 

The damage patterns computed with the calibrated model are shown in Fig. 3. The two halves 
of the figure show void volume fraction and crack patterns, both of which are indication of 
damage. The main difference between the two is that void volume fraction is reversible (i.e., voids 
can undergo recompaction under compression) whereas damage is irreversible, increasing under 
tension and remaining constant under compression. 

These patterns look remarkably similar to the cracking patterns observed in the experiment. 
Like in the experiment, two crack networks are observed; the first consisting of radial cracks 
propagating away from the charge cavity toward the free surface, and the second consisting of 

Figure 2. Measured and simulated particle velocity histories at 6 radii from the explosive charge.



rings of circumferential cracks caused by the reflected wave near the free surface of the specimen. 
The simulated circumferential cracks network is closer to the surface of the specimen than was 
observed experimentally. This is probably because in the simulation the reflected wave is 
spherically symmetric, and therefore more intense than its cylindrically symmetric counterpart in 
the experiment. 

Fig. 3 also shows a near-source region dominated by bulking. Bulking porosity as high as 
10% was computed in the near-source region. This form of isotropic scalar damage is related to 
plastic distortion under compression. It is different in nature from the radial and circumferential 
components of the directional damage variable.

The 2D simulations are in reasonably good agreement with the data indicating that our 
multidimensional cracking model is well suited for simulating directional damage within a 
continuum mechanics framework. To improve agreement with data, a 3D simulation is needed to 
properly account for specimen geometry, including preexisting joints, and for the complex wave 
interactions that take place during the later stages of the experiment.
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Figure 2. Observed damage at the midsection of the 
explosively loaded Danby marble specimen.

Figure 3. Void volume and directional damage from 
the 2D simulation of the spherical wave experiment.


