¢

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

UCRL-CONF-206798

FUDGE: A program for
performing nuclear data testing
and sensitivity studies

Bret R. Beck

September 24, 2004

FUDGE: A Program for Performing Nuclear Data Testing and
Sensitivity Studies

Santa Fe, NM, United States

September 26, 2004 through October 1, 2004

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Nuclear Data Sensitivity Program: FUDGE

 FUDGE: acronym of “For Updating Data and Generating ENDL”

* Which data category should FUDGE allow users to modify?
— Nuclear data categories:
» Experimental/theoretical
» Evaluated (e.g., ENDL99, ENDF/B-VI)
» Processed data
— Data put into aformat useful for modeling codes

» Deterministic want grouped, L egendre expanded data
(ndf at LLNL)

» Monte Carlo may want equal-probable binned data
(MCAPM at LLNL)

— FUDGE alows usersto modify LLNL’s evaluated data and to
process the modified data for use in modeling codes.

Nuclear Data Sensitivity Program: FUDGE - ||

 LLNL’sevauated nuclear dataformat is called ENDL
— Acronym for Evaluate Nuclear Data Library
— ENDL format stores data as pointwise values

— LLNL has evaluated nuclear databases containing data for neutron,
proton, triton, deuteron, Helium-3, Helium and gamma as
projectiles (also called incident particle).

e Most other databases use the ENDF format

— ENDF uses a combination of pointwise and parametric form to
represent data

— Some other databases are: (ENDF/B-VI, JEFF, JENDL)
— Other databases typically only have data for neutron as a projectile

* We have programsto convert ENDF formatted data into the ENDL
format.

Nuclear Data Sensitivity Program: FUDGE - 111

« FUDGE alows usersto
— Import ENDL formatted data.
* Mix and match data from various databases.
— Create their own pointwise data.
— Print data.
— Plot data.
— Modify data.
» Add, subtract, multiply and divide of data are supported.
— Process modified data for use in modeling codes.
» Advantages of modifying evaluated data versus processed data.
— Modeling codes do not have to change
— Usersonly need to know one program (FUDGE) to modify data.
 FUDGE must know how to interact with processing codes.

FUDGE Design

* Requirements:
— FUDGE must be user friendly.
— FUDGE must be fast.
— FUDGE must be cross platform.
— FUDGE must be scriptable.

» Solution: We choose Python as interface language
— Pythonis:
* Object-oriented,
 |nterpreted,
* |nteractive programming language
e Runson al platforms
— Comes standard on most UNIX operating systems.

Supported Data Types

 FUDGE has 4 datatypes. Each is a Python class.
— 1d, 2d, 3d and 4d pointwise data classes

* These classes are called endl1dmath, endl2dmath, endl3dmath
and endl4dmath.

— These classes are designated by the number of columns needed to
represent the data.

» Cross-section datais o(E) which is 2 column data (2d), one for
projectile energy E and the other for o(E).

* P(E,n) is3 column data (3d). One each for E, 1 and P(E,1).
— K =cos(0): 6 isoutgoing particles angle

— P(E,) isthe outgoing particles probability versus p and
projectile energy E.

— All datatypes have printing and plotting methods (see examples).

— endl2dmath class supports addition, subtraction, multiplication and
division on numbers and other endl2dmath objects.

ENDL and FUDGE Hierarchy

Level 1 (Top): Evaluation
— ENDL99, ENDF/B-VI, JEFF, JENDL, etc
Level 2: Projectile (a.k.a. incident particle)
— Neutron, proton, gamma, etc
Level 3: Target (a.k.a. isotope)
— 6Lj, 17Q, 29y, etc
— Labeled by “za” + 1000 * Z + A (e.g., °Pu is za094239)
Level 4: Target Data
Example
— ENDL99
e neutron
— za094239
» Data (Cross-sections and spectra)

Starting FUDGE: A Simple Processing Example

The top class in FUDGE is the endIProject class that represents a database/incident particle hierarchy. For
example, the Python expression

e = endIProject(database = “endl99”, yi = “neutron”)
creates an endIProject and al default data will come from the neutron incident particle data in the “endl99”
database. Data from a target can be read using endIProject’s readZA method. The following Python code reads
in the cross-section data for 5Li from the end|99/neutron database. It then modifies the (n,t) cross-section, saves
the modification and calls the processing codes to create a new deterministic transport datafile.

from fudge import * # Get FUDGE routines

e = endlProject(database="endl99", yi="neutron") # Create a new endlProject

Li6 = e.readZA(3006) # Read Li information

Li6.read(1=0) # Read al Li cross-section data

xsec = Li6.findData(C=,1=0) # Get reference to (n,t) cross-section

xsec_mod = 1.1* xsec # Increase (n,t) cross-section by 10%

xsec.set(xsec_mod)

e.save() # Save modification

e.process(“ndf1”, “ndfl.new”) # Create a deterministic datafile from modification

In the last line the processing routines are called. The first argument is the name of an exist processed data
file that is to be used as a template. Parameters needed by the processing codes are obtained from this file.
The second argument is the name of the processing file created using the modified data.

2d Computations with FUDGE: Example

FUDGE can do addition, subtraction, multiple and division with endl2dmath objects. In this example | will first
scale the 6Li(n,t)a cross-section by 3.14. Then, | will scale it by another endl2dmath object labeled scal eFactor.
A plot of scaleFactor is shown in on the page labeled “2d Computation example: Plot of scaleFactor”. A plot of
the original cross-section and the two modified cross-sections are shown on the page labeled “2d Computation
example: Li (n,t) Plot”.

from fudge import *

e = endlProject(database="endl99", yi="neutron")
Li6 = ereadZA(3006)

Li6.read(1=0)

xsec = Li6.findData(C=,1=0)

xsec_mod = 3.14 * xsec

scaleFactor = endl2dmath([[1e-10, 1],

[1e-3, 1],
[1e-2, 3.14],
[le-1, 1],
[20, 111)

xsec _mod2 = scalefFactor * xsec

scaleFactor.plot()

gmultiPlot([xsec, xsec _mod, xsec_mod?2], legends=[" xsec", " xsec _mod", " xsec _mod2"],
title="Li-6 (n,t) cross-section”, xylog = 3)

2d Computation example: Plot of scaleFactor

scaleFactor

35

257+

1.5+

0.5+

1e-10 1e-08 1e-06 le-04 0.01 1 100

Cross-section (barns)

2d Computation example: Li (n,t) Plot

% Gnuplot

Li-6 (n,t) cross-section

100000 ¢ - . : . : . . ;

tC4210 — |
tC4210_mod

10000 ¢ tC4210_mod2 — -

1000 |
100 ;

10 ¢

0.1

0_01 . 1 . 1 . 1 L 1 L 1 .
le-10 le-08 le-06 le-04 0.01 1 100

Energy (MeV)

2d Plot Example and Dialog Window

from fudge import *
readOnly()

e = endlIProject(database = "endl99", yi = "neutron")
Li6 = ereadZA(3006)

Li6.read()

tC4210 = Li6.findData(C=42,1=0)

tC4210.plot()

tC4210.gplot()

b6 = endlProject(database = "endfb6_alphal6", yi = "neutron™)
Li6_b6 = b6.readZA(3006)

Li6_b6.read(1=0)

tC4210_b6 = Li6_b6.findData(C=42,1=0)

X| tk
File
% Lines .~ Points -~ Lines & Points
point, line width = |5 4
font size = |20 1
% label = |E (MeV)
¥ lahel = _'n::r'*l:nés—séi:t'in:'lh Eh'arhsa
title = [Title

xrange [1.000000e-10 : 2.000000e+01] |*:~ m xlog

yrange [2.000040e-02 : 1.501730e+04] i o yic-,

2d plot examples (plot vs gplot)

|ot

|ot

X Gnuplot

crozz-section (barns) Flot example
100000

10000

1000

100

10

0,1

0,01

le-10 le-08 le-06 0,0001 0,01
E (Mev)

100

X Gnuplot

'CPDS%EFECtiDn (barrs) ' plot exanple

o1

0,01

0,01 0,1 1
'E (Mev)!

10

2d gmultiPlot example

tC4210 = Li6.findData(C=42,1=0)
tC42I10_b6 = Li6_b6.findData(C=42,1=0)
gmultiPlot([tC42I0, tC4210_b6], legends=["ENDL99", "ENDF/B-VI"], xylog = 3, title = "gmultiPlot example")

X! Gnuplot

quultiPlot exanple
Cross-section (barns)

100000

ENDL9S
ENDF/B-YI —

10000 =

1000 =

100 =

0 =

le-12 le-10 le-08 le-06 0,0001 0,01 1 100

Energy (Hey)

2d gmultiPlot example - cont.

Be9AlIxSec = Bed.findDatas(| =0)

I=1]

for i in Be9AlIxSec : |.append(reactionEquations(1, 4009, i.C)[1])
gmultiPlot(BeSAIIxSec, xylog = 3, legends = |, title = "n + Be9 cross-sections’, xMax = 1000, \

lineWidth = 4, fontSize = 36)

100 . . | . . .
Be9(n,)?
- Bed(n,n}Bed
10 | \ B ‘ Be9(n,2n He)Hed]
i ' e | Be9(n,p)Li9
i «\\ Be9(n,d)Li8
1 - Be9(m)Li7 E
" Be9(n,t)Li7
2 i
= Be9{n,He)Heb
£ 0.1 (n,He) |
‘é’ Be9(n,g)Bell
$ |
3 0.01 | { -
2
&
0.001 | f :
le-04 |]
1e-05 1 1] 1 1 1
le-10 1e-08 1e-06 1e-04 0.01 1 100

X/ Gnuplot

n + Be9 cross-sections

Energy (MeV)

10000

3d plot example

3d plot dialog window

% tk
File
% label = |E (MeV)
¥ label = [mu
z label = F{E,mu) File menu options
title = |Li-fi{n tia reaction] Savehs eps
% rot SaveAs ASCII
i
Print
z rot Exit
38
Zrange [1.000000e-10 : 2.000000e+01 | b ®log
yranie [-1.000000e+00 : 1.000000e+001] " : ° ylog

zrange [1.296080e-01 : 2.698010e+00] B Zlc~-

4d plot example

X| Gnuplot

E (HeV) = 4.500000e+(0

Probability

2.5

1.5

E' (Hel)

-

0.5

4d plot dialog window

Ntk

File
X label = |mu
¥ label = |E' (MeV)
Z label = |Frobahility
title =
Incident Energy time {sec ™ 10)
4 Animate 10
® rot
63 | Hidden
Z rot
a3
Zrange [-1.000000e+00 : 1.000000e+001] "~ | Xlog
yrange [1.093000e-03 : 1.638100e+01] | * | ylog

Zzrange [1.308620e-05 : 1.614360e+01] |°:° | Zlog

Future Improvements to FUDGE

Use Numerical Python arrays to store data instead of the Python lists

— Numerical Python arrays require less memory and are faster to
search.

Update FUDGE to handle uncertainty values.
— ENDL format currently does not allow for uncertainty values

— We areredesigning the ENDL format which will include support
for uncertainty values.

— End users want uncertainty values for guidance.

Add more 3d and 4d math functionality.

Add a Graphical User Interface (GUI).

