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Nonlinear simulations of plasma discharges in the Sustained Spheromak Physics 

Experiment demonstrate the role of transient effects in establishing a toroidal magnetic 

structure that confines internal energy.  The magnetohydrodynamics-based model 

includes collisional anisotropic thermal energy transport and temperature-dependent 

electrical resistivity that are realistic for the open-field regions of the plasma.  The 

modeling shows that while dynamo activity is responsible for generating net poloidal flux 

during the formation current pulse, it is insufficient to sustain the configuration during the 

quiescent phase.  The second current pulse improves confinement by keeping the q-

profile from falling significantly below the value of ½, thereby suppressing resonant 

m=1, n=2 magnetohydrodynamic activity.  Direct comparisons of laboratory observations 

and simulation results validate essential aspects of the model. 

 

PACS numbers:  52.55.Ip, 52.65.Kj, 52.35.Py 

 

Magnetic reconnection and relaxation occur to some degree in nearly all magnetic-

confinement configurations, but they are elemental processes for electrostatically driven 

spheromaks.  The plasma conducts electrical current between electrodes that are linked by open 

magnetic field-lines, and nonlinear effects relax the current to a desirable profile through 

reconnection and the conversion of toroidal magnetic flux into poloidal flux [1,2,3].  While 
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inductive effects can contribute to formation, sustaining spheromak plasmas by DC injection 

requires dynamo activity from symmetry-breaking magnetic fluctuations [4,5].  Analytical work 

on the magnetohydrodynamic (MHD) processes underlying electrostatic formation and 

sustainment led to relaxation and statistical theories [6,7], which provide physical insight 

regarding the importance of nonlinear effects.  Experimentally, observations of electric fields 

associated with MHD dynamo in the SPHEX device indicate power redistribution from the open 

current column to the amplified-flux region [8].  Numerically, nonlinear three-dimensional (3D) 

resistive MHD computations without temperature evolution reproduce the flux conversion 

process and electrostatic sustainment from first-principles [9].  However, until now, a consistent 

theoretical calculation of the magnetic evolution and energy confinement has not been 

performed.  The earlier computations predicted chaotic scattering of open magnetic field lines 

throughout the plasma in typical driven conditions [10].  In such open-field configurations, 

electron temperatures resulting from Ohmic heating with classical parallel transport are limited 

to tens of electron-Volts [11,12], whereas much higher temperatures have been observed.  In 

some cases, like the record 400 eV observation [13], the highest temperature clearly occurs 

subsequent to the electrostatic injection pulse, and the earlier computations have shown that 

decay can effect a topological change to closed magnetic-flux surfaces while inductive Ohmic 

heating continues [9].  Temperatures exceeding 100 eV have also been reported in the Sustained 

Spheromak Physics Experiment (SSPX) [14] upon application of a second current drive pulse 

that follows a brief period of decay [15,16]. 

Whether transient effects are important for energy confinement in SSPX is the subject of our 

recent numerical investigation.  We consider a single-fluid model in a domain that is based on 

the SSPX vacuum chamber and apply a simulated injector-current waveform that approximates 
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the DC drive used in discharges numbered 4620-4662 [15].  The temperature computation 

includes anisotropic, temperature-dependent thermal conduction, and the magnetic-field 

computation includes temperature-dependent electrical resistivity.  As a consequence, the 

temperature and magnetic fields are tightly coupled; magnetic topology and parallel thermal 

conduction regulate energy confinement, while resistivity influences magnetic reconnection and 

diffusion.  In addition, the length of open magnetic field lines and the extent of any region of 

closed magnetic flux are governed dynamically by MHD instabilities, which respond quickly to 

changes in the parallel current density distribution. 

Our simulations of SSPX solve nonlinear time-dependent equations for particle number 

density (ni=ne=n with quasineutrality), plasma flow velocity (V), temperature (assuming 

Ti=Te=T), and magnetic field (B).  In MKS units, the evolution equations are 
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where nkTp 2!  is the sum of electron and ion pressures, and BBb !ˆ  is the evolving magnetic 

direction vector field.  The simulations consider n, T, V, B, and J to be functions of all three 
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spatial dimensions and time, so magnetic fluctuations and anisotropic heat flow are modeled 

explicitly.  The parallel and perpendicular thermal diffusivities are 2/5
|| 387T=!  m2/s and 

22/1
50.0

!!
" = BT#  m2/s (B in Tesla) based on electrons and ions [17], respectively, for a 

hydrogen plasma at n=5×1019 m-3.  The numerical computation of χ⊥ is simplified by using the 

toroidal average (indicated by , hereafter) of the evolving temperature and magnetic induction 

fields.  Similarly, the electrical diffusivity is computed as ( ) 2/3

0 eV 1411 T=µ!  m2/s.  

(Numerical tests show no significant deviation from results with a 3D computation of resistivity 

in the conditions of interest.)  An isotropic viscosity (ν) of 2000 m2/s is used to provide nonlinear 

numerical stability during the full-power stage of the evolution.  With temperatures of 

approximately 30 eV during this stage, the Lundquist number (computed as !µ ARv0S = , 

where R is the radius of SSPX and vA is the Alfvén speed) is of order 106.  This is much larger 

than values considered in the earlier simulations of sustainment [9], and the relatively large 

magnetic Prandtl number ( !"µ0Pm # ) maintains a numerically tractable Hartmann number 

( SPmH
-1/2

! ) of order 104.  The diffusion term in Eq. (1) is a substitute for particle transport 

and atomic fueling effects that are not present in the MHD model.  The artificial diffusivity (D) 

is also set to 2000 m2/s to help keep the computed minimum of the number density field above 

zero during the violent full-power stage.  For the same reason, the diffusivity is increased locally 

in computational cells where n falls to 3% of its volume-average value. 

The conductive heat-flux model applied in our MHD simulations is appropriate for 

collisional plasmas [17] with rapid electron-ion thermal equilibration; parallel (perpendicular) 

conduction is computed from the relation for electrons (ions).  Near the electrodes, the 

temperature is on the order of an electron-Volt or less, so the edge plasma is very collisional.  In 
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the interior, magnetic field that links the electrodes allows rapid parallel conduction to the edge 

and tends to keep the plasma collisional.  Since the effective collisional mean-free-path is 

24
104 T

!
"  m (T in eV) [17] for the experimentally measured particle number density n≅5×1019 

and singly charged ions, its value is less than the radius of SSPX (R=0.5 m) for T<35 eV.  Larger 

temperatures, and hence less collisional conditions, only occur where the open field-lines are 

very long [11] or where closed flux-surfaces form.  Since our primary interest is the dynamics 

that lead to improving energy confinement, the collisional behavior is most important.  Where 

high-temperature conditions are successfully achieved, neglecting kinetic effects will tend to 

over-predict parallel heat flux [18,19], and neglecting neoclassical and turbulence effects will 

underestimate ion perpendicular heat transport in closed-field regions.  However, thermal 

equilibration among electrons and ions becomes slow with respect to the MHD dynamics, and 

electron perpendicular heat flux may be over-estimated by the single-temperature model. 

The system of nonlinear equations (1-5) is solved numerically as an initial-value problem 

with the NIMROD code, which uses a high-order spatial representation to resolve anisotropies 

[20].  Our computational domain in these simulations models the SSPX flux conserver and the 

downstream end of its plasma gun with 1152 bicubic finite elements.  For the toroidal direction, 

our finite Fourier series representation includes only the n=0 component when modeling the 

symmetric ejection of plasma from the gun, the 0≤n≤2 components for the brief formation 

period, and 0≤n≤5 components for the decay and second current pulse.  The initial conditions 

include a distribution of poloidal magnetic flux (see Fig. 1a) that is similar to the bias-flux 

generated by coils located outside the SSPX vacuum chamber; this open flux remains tied to the 

electrodes for the time-scale of SSPX discharges.  The computational domain does not represent 

the entire plasma gun region of SSPX, so the boundary at the upstream end is artificial.  For 
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convenience, we model it as a solid wall, noting that the MHD dynamics of interest occur away 

from this boundary.  The tangential component of electric field, nE ˆ! , is set to zero on the 

electrode surfaces, and a time-dependent boundary condition on the toroidal component of B  

along the artificial boundary is used to inject power and magnetic helicity.  In SSPX, the injected 

current is controlled over the entire discharge, and the potential difference between the electrodes 

is measured.  Injector current is also specified in the computations, except during the current-

decay phase between the two applied pulses, which is simulated as a temporary short-circuit.  A 

final point related to the injector current is that while radiation amounts to a small fraction of the 

power loss in SSPX [15] and is therefore not modeled, a sink of internal energy is imposed in 

computational cells that are adjacent to the artificial upstream boundary.  Here, the simulated 

plasma remains at the imposed wall temperature of 0.1 eV to control the thickness of the 

resistive boundary layer and allow the discharge to lift off of the artificial surface when power is 

applied.  Very little poloidal flux traverses this layer, so parallel thermal conduction tends to 

deposit energy on other external surfaces. 

As shown in Fig. 2a, the injector-current waveform is modeled as increasing linearly over the 

first 0.1 ms, constant at 400 kA for the next 0.02 ms, decaying until 0.5 ms, and then constant at 

200 kA.  The resulting parallel current density profile is initially stable to toroidally asymmetric 

perturbations as mass and poloidal flux are swept out of the gun.  While the profile is still stable 

but becoming pinched at t=0.08 ms, the n=1 and n=2 Fourier components are introduced with 

velocity perturbations amounting to 2 J of kinetic energy.  At t≅0.09 ms, the current profile 

becomes unstable to an n=1 MHD mode, and magnetic fluctuations subsequently grow at a rate 

of 5×105 s-1, which is fast relative to the injector-current transient.  Abrupt changes in toroidal 

plasma current and magnetic energy, evident at t=0.1 ms in Figs. 2c-d, occur when the n=1 mode 
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saturates and toroidal flux is converted into poloidal flux [1,9,21].  The flux conversion extends 

the range of poloidal flux by 200% during the evolution from the unstable pinch state (Fig. 1b) to 

the saturated state (Fig. 1c), but the injector voltage is very large (> 1kV) in both the simulation 

and the experiment (see Fig. 2b).  In contrast, the voltage during the second current-drive pulse is 

much smaller, 20 V in the simulation and fluctuating around 200 V in the experiment, where the 

latter includes the sheath potential, which amounts to approximately 100-150 V [11,22].  The 

power injected with the second current pulse is, therefore, only a small fraction of the power 

used during formation.  Nonetheless, the rates of decay of toroidal current and magnetic energy 

are reduced (Figs 2c-d) relative to the period between the two injector-current pulses.  Although 

it is not possible to measure toroidal current and magnetic energy in SSPX directly, we are able 

to fit MHD equilibria to various laboratory measurements after t=0.3 ms using the CORSICA 

code [14].  A comparison of results from the 3D simulations and from a sequence of fitted 

equilibria is shown in Figs. 2c-d.  Over the second current-drive pulse, there is agreement to 

within 25% for the toroidal current, the magnetic energy, and their rates of decay. 

The magnetic fluctuations are largest during the 400 kA formation pulse, when the n=1 mode 

is relaxing the configuration, and decay rapidly during the subsequent ramp-down.  They evolve 

to their lowest levels during the second current pulse, as shown in Fig. 3.  In fact, the relative 

fluctuation in the poloidal component of B measured on the outer wall at the midplane (Z=0) 

drops below 1% in both the experiment and the simulation (Fig. 3a).  The n=2 mode is 

particularly responsive to the second current pulse.  Figure 3b shows traces of volume-integrated 

magnetic fluctuation energy from the simulation, together with results from another simulation 

where the second current pulse is not applied.  The energy in the n=2 component decays until 

t>0.8 ms in the simulation with the second current pulse.  When current is just allowed to decay, 
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the n=2 and n=4 Fourier components grow to much larger levels from t=0.6 ms onward.  The 

‘quiescent’ period brought about by the second current pulse correlates with increasing 

temperatures, as reported for the experiment in Ref. [15].  Figure 4a shows a comparison of 

Thomson-scattering measurements of central Te recorded over the laboratory discharge series 

with the evolution of maximum T  from the simulations.  While the experiment produced a 

sharper positive response at t=1 ms, reaching a maximum of 120 eV vs. 75 eV in the simulation, 

it is clear that temperatures also rise substantially with the decline of magnetic fluctuations in the 

simulation.  Furthermore, without the second current pulse, the single-fluid model produces a 

maximum temperature of only 49 eV.  Temperature profiles (Fig. 4b) show that energy 

confinement occurs in a toroidal region, which surrounds relatively cold plasma along the 

geometric axis. 

The discharge essentially appears to be in a sustained state during application of the second 

injector pulse (see Figs. 2c-d); however, indefinite sustainment of !J  against resistive 

dissipation in the region of amplified poloidal flux requires dynamo activity [4].  The existence 

of dynamo activity in simulations of sustained conditions has been demonstrated with the 

simpler “0-β” MHD model [9], but it is accompanied by large n=1 fluctuations and chaotic 

scattering of magnetic fields.  The present set of simulations exhibits similar behavior only 

during the first injector-current pulse, as shown by the MHD dynamo power density in Fig. 5.  

Here, we are considering Jbv !"#  as a fluctuation-induced contribution to JE !  in the 

evolution of energy density associated with the symmetric component of B, 
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from Fararday’s law.  (Lower-case vector notation indicates the sum of n>0 Fourier 

components.)  Near the axis of the amplified poloidal flux, R≅0.35 m, the magnitude of the 

dynamo power density during the first pulse (t=0.12 ms) reaches 109 W/m3, whereas with 

5.2!J  MA/m2 and η =3.1×10-6 Ohm-m at T =30 eV, the resistive power density is only 

2×107 W/m3.  The toroidal component of bv!"  also exceeds !" J  by a factor of 50, so the 

amount of amplified poloidal flux is still increasing at this time.  During the second injector-

current pulse (t=1.2 ms), the dynamo power density is more than two orders of magnitude 

smaller, and in the vicinity of the magnetic axis, it is less than 5×105 W/m3.  The current density 

at this location is essentially unchanged, and even considering the large increase in temperature, 

the resistive power density is 3×106 W/m3.  Thus, any possible dynamo activity is far less than 

what is required to sustain the current; though, the instantaneous resistive decay rate is slow 

relative to the injector transients. 

Through anisotropic thermal energy transport, the temperature evolution provides an indirect 

but sensitive gauge of the magnetic topology.  In Figure 6, we compare temperature profiles and 

Poincaré plots of the magnetic field at the same toroidal angle (φ) during the first and second 

current pulses.  During the first pulse (Figs. 6a-b), the magnetic topology exhibits chaotic 

scattering, as found in the earlier simulation study of spheromak sustainment [10] and in related 

computations for DC current injection with a toroidal bias field [23].  The sparsity of punctures 

in Fig. 6a indicates that the traced field-lines complete only a small number of toroidal transits 

before encountering an electrode surface.  The computed maximum temperature of 35 eV is 

consistent with an analytical prediction for temperature on open magnetic field-lines subject to 

Ohmic heating and parallel thermal conduction at a fixed current density [11].  For the plasma 
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parameters listed previously, a current density magnitude of 8 MA/m2 (taken from the geometric 

axis), and a parallel connection-length estimate of 3 m, the analytical relation Eq. (19) from Ref. 

[11] predicts a maximum temperature of 30 eV. 

When the primary drive is removed, the magnetic topology changes quickly.  Without the 

large source of power, the edge and geometrically central regions cool rapidly via parallel 

conduction, making them very resistive.  This enhances magnetic reconnection and diffusion in 

these regions, and it helps remove the current-gradient drive of the n=1 mode.  The length of 

field-lines that pass through the toroidal region of amplified poloidal flux then increases, leading 

to the start of increasing temperatures shown in Fig. 4a.  Application of the second current pulse 

at t=0.5 ms and the resulting quiescent period produce large closed-flux surfaces at t=1.2 ms, as 

evident in Fig. 6c.  Ohmic heating continues, due to gradual resistive decay, but energy loss 

involves slower cross-field transport.  This results in a large temperature gradient at the edge of 

the magnetically closed region (Fig. 6d) and the largest temperature over the entire simulation 

(Fig. 4).  The late-time Poincaré plot also shows an m=2 island structure from the n=4 magnetic-

field component that lies near the edge of the closed-flux region and an m=2 structure from the 

n=3 component near the magnetic axis.  Between the two island chains is a region of stochastic 

magnetic field.  The influence of the two island structures and the stochastic region are evident in 

the constant-temperature contours shown in Fig. 6d. 

It is clear that the magnetic fluctuations with Fourier components n>1 have a strong influence 

on the evolution of temperature and that the second current pulse provides a means of transiently 

controlling the n=2 component.  The beneficial effect of the second current pulse can be 

understood from the safety factor (q) profiles shown in Fig. 7.  The q-computation is based on 

the toroidally symmetric fields, !"= ddq , where !  and !  are toroidal and poloidal 
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magnetic flux functions of B , respectively.  Although the profile cannot be interpreted as a 

magnetic winding number at t=0.12 ms when the field is open and chaotic, it does indicate that 

the toroidal flux is greatest during the initial pulse.  When the injector current and magnetic 

fluctuations decrease (and the sense of a magnetic winding number becomes more appropriate), 

the q-values fall, particularly near the edge of the amplified flux.  Without the second current 

pulse, the outer q-values are well below 0.5, and the m=1, n=2 mode is resonant near the middle 

of the amplified flux region.  In contrast, application of the second current pulse retains more 

toroidal flux, so that the m=1, n=2 mode is not resonant until later in time and then only near the 

edge of the amplified flux region.  The tendency of excluding poloidal flux from the gun (if not 

the existence of a separatrix) when current is injected makes the q-profile rise sharply at the edge 

of the amplified flux region.  By noting the position of the closed-flux region in Fig. 6c and 

comparing it to the extent of the amplified-flux region in Fig. 1d, it is evident that a nontrivial 

fraction of the amplified flux remains open.  Thus, the m=2, n=4 island structure lies along the 

inner of the two q=0.5 surfaces, so the large closed-flux surfaces, which form a transport barrier, 

are at or near the minimum of the q-profile.  Near the magnetic axis, our q-value computation 

loses accuracy, but the fact that its value is near 0.67 is consistent with the existence of the m=2, 

n=3 island structure in Fig. 6c. 

In assessing the MHD/collisional heat-flux modeling of these SSPX discharges, we note that 

quantitative results on driven plasma current, stored magnetic energy, local magnetic fluctuation 

levels, and temperatures compare fairly well over most of the discharge.  The largest discrepancy 

is in the evolution of temperature when it climbs rapidly in the experiment during the 

magnetically quiescent period.  The slower response in the simulation may be due to the 

limitations of the single-temperature collisional heat-flux model or the simplifications of the 
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injector waveform.  Nonetheless, the 3D simulations reproduce nearly all of the important 

characteristics of the experiment with physical parameters chosen to model these discharges and 

without any fitting parameters.  The results of this numerical study call attention to the 

importance of transient effects in SSPX discharges, despite the use of DC current-drive, which 

can be sustained indefinitely in principle.  When the second current pulse is applied, the 

configuration appears to be sustained because the time required for the amplified poloidal flux to 

decay is much longer than the injector pulse-length.  However, the plasma current is driven 

inductively by the decay of poloidal flux generated earlier in the discharge by predominantly n=1 

MHD activity.  According to the simulations, the primary role of the second current pulse is to 

tailor the q-profile with respect to avoiding harmful MHD activity that is resonant in the 

decaying poloidal flux.  The correlation of performance-limiting n>1 modes with the appearance 

of corresponding safety-factor values in fitted MHD equilibria has also been noted recently 

[16,24] for the experiment. 

The formation of magnetic flux-surfaces during decay from chaotic and open magnetic 

configurations was observed in 0-β computations with a fixed resistivity profile [9,25].  

However, here it has been demonstrated for the first time with consistent energy transport 

modeling and nonlinear interactions between the temperature and magnetic field through 

temperature-dependent resistivity.  The increasing temperatures during free decay show that the 

spheromak system tends to self-organize a coherent and energy-confining structure when it is not 

sustained, even without external control.  The extent to which external controls, such as the 

second injector-current pulse, can benefit cyclical operation remains to be determined.  Already, 

temperatures exceeding 200 eV have been obtained in SSPX by extending the second current 
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pulse and carefully adjusting its amplitude [16].  Simulations of the newer current-drive 

strategies are underway. 

The authors wish to thank Simon Woodruff for many valuable discussions regarding SSPX 

operations and physics and Ken Fowler for pointing-out the relevance of collisional closures 

when modeling DC injected spheromaks.  Some of the reported simulations have been performed 

at the National Energy Research Scientific Computing Center.  The spheromak research is 

supported by the U.S. Department of Energy through grant DE-FG02-02ER54687 at the 

University of Wisconsin-Madison and contract W7405-ENG-48 at Lawrence Livermore 

National Laboratory. 
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FIG. 1.  Contour plots of the poloidal magnetic flux function for the toroidally symmetric 

component of magnetic field for (a) the initial vacuum distribution, (b) the pinched state at 

t=0.08 ms before becoming unstable, (c) the relaxed state with Iinj=400 kA at t=0.12 ms, and (d) 

the partially driven state at t=1.2 ms.  Dashed contour levels indicate poloidal flux converted 

from toroidal flux by MHD activity. 
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FIG. 2.  Evolution of (a) injector current, (b) injector voltage, (c) toroidal current, and (d) stored 

magnetic energy from SSPX discharge 4624 (solid traces) and the simulation (dashed traces).  

The SSPX results in (c) and (d) are based on a sequence of fitted MHD equilibria. 
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FIG. 3.  Magnetic fluctuation information of (a) rms of the poloidal component of magnetic 

fluctuations relative to the equilibrium poloidal component at the outboard midplane probe 

location (R=0.5, Z=0 in Fig. 1) from the experiment and simulations, and (b) volume-integrated 

magnetic fluctuation energy from the simulations by Fourier component.  The energy plot shows 

the fluctuations with (dashed lines) and without (solid lines) the second current pulse. 
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FIG. 4.  Comparisons of electron temperature measured with Thomson scattering in SSPX 

discharges 4620-4642 with simulation results on T .  The two plots show (a) temperature 

evolution central to the amplified poloidal flux and (b) midplane temperature profiles from t=1.1 

ms and t=1.2 ms in the experiment and simulation, respectively.  The simulations with and 

without the second current pulse are identical for t≤0.5 ms. 
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FIG. 5.  Magnetohydrodynamic dynamo power density, Jbv !"# , along the midplane (Z=0) 

at the end of the first current pulse (t=0.12 ms) and during the second current pulse (t=1.2 ms). 
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FIG. 6.  Magnetic puncture plots and contours of constant temperature at the end of the first 

current pulse and during the second current pulse.  The frames show (a) magnetic punctures at 

t=0.12 ms, (b) temperature at t=0.12 ms, (c) magnetic punctures at t=1.2 ms, and (d) temperature 

at t=1.2 ms.  Shading in the two temperature plots is for the same range of 0 to 75 eV, and 

contour levels for T≥40 eV are indicated by white lines. 
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FIG. 7.  Safety factor profiles as a function of the square root of normalized poloidal flux.  The 

computation is based on the toroidally symmetric component of magnetic field over the range of 

flux generated by the MHD activity (the dashed-contour region in Figs. 1c-d).  The trace labeled 

“t=1.1 ms, decay” is taken from the extended-decay computation, which does not have a second 

current pulse. 


