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Abstract

We report the first no-core shell model results for *Ca, *8Sc and “T% with
derived and modified two-body Hamiltonians. We use an oscillator basis with a
limited /2 range around 40/A'/3 = 11MeV and a limited model space up to 1 AS.
No single-particle energies are used. We find that the charge dependence of the
bulk binding energy of eight A = 48 nuclei is reasonably described with an effec-
tive Hamiltonian derived from the CD-Bonn interaction while there is an overall
underbinding by about 0.4 MeV /nucleon. However, resulting spectra exhibit defi-
ciencies that are anticipated due to: (1) basis space limitations and/or the absence
of effective many-body interactions; and, (2) the absence of genuine three-nucleon
interactions. We introduce phenomenological modifications to obtain fits to total
binding and low-lying spectra. The resulting no-core shell model opens a path for

applications to experiments such as the double-beta (33) decay process.

1 Introduction

Motivated by the intense interest in nuclear double-beta (53) decay and the asso-

ciated need for precision treatments of nuclear many body systems, we investigate



the ab-initio no core shell model (NCSM) for the lightest case for which 53 decay
has been measured. This (33) decay case involves **Ca, *Sc and **T.

Previous efforts have addressed A = 48 nuclei with similar goals by solving
the shell model of eight nucleons in the pf shell with an inert °Ca core. Chief
among these efforts is the work of Caurier et al. [1] who made predictions for the
2vB8 decay mode of ¥Ca. They carried out a full 0A) calculation for the nuclei
involved in this decay, using a KB3 effective interaction [2]. Single-particle energies
extracted from experiment were used to model the valence-core interactions. They
obtained a satisfactory description of the spectroscopy (energy levels of positive
parity, E2 and M1 transitions) when they used a factor of 0.77 to renormalize the
nuclear matrix elements (NME) of the Gamow-Teller (GT) operator ory. This
quenching factor accounts for possible missing nucleon correlations and/or non-
nucleonic contributions. It is noteworthy that their calculated half-life T12/”2 = 3.6 x
10" years is in good agreement with the experimental result 777, = 4.3 x 10 years,
measured later [3].

Similar calculations have been performed using either slightly different param-
eters in the Hamiltonian [4] or more severely truncated model spaces (allowing at
most 4 nucleons lifted from the f7/, sub-shell in 8Ca and “®T% and at most 5 in
#8Sc) [5]. Such calculations have also been extended to the 0v(33 decay mode of
8Ca [6].

Caurier et al. [7] also performed a systematic calculation of the spectroscopic
properties (positive parity energy levels, B(E2), M1, quadrupole moments, GT
strengths) of several A = 48 isotopes: *¥Ca, ¥Sec, ¥Ti, ¥V, ¥Cr and ®Mn.
The model space consisted again of 8-nucleons in the full pf shell and they used
a minimally monopole modified realistic KB3 interaction along with experimental
single particle energies. Their results reproduced well the existing data with few
parameters.

In ref. [8] the authors also performed a full pf shell model calculation of the 2v33
decay rate of *Ca using a Hamiltonian given as a set of 195 two-body NME. Since
the model parameters could not be accurately determined starting from a realistic
NN force, they showed how modifications in the Hamiltonian (retaining, however,
the acceptable agreement with experiment) have significant influence on the value
of the decay rate. The significance of nuclear shell structure in the 2v55 NME was
also analyzed in ref. [9].

Capilla et al. [10] performed a shell model calculation of the 2v53 decay rate



emphasizing the role of the spin-orbit term compared with the other terms of a
schematic potential that also included central and tensor terms.

Beyond these applications to A = 48, the role of additional correlations has been
extensively investigated. For example, the proton-neutron quasi-random phase ap-
proximation (pnQRPA) methods have been employed (see for example [11] and the
refs. therein). However, within these methods only a few classes of nucleon-nucleon
(NN) correlations are taken into account and there is still debate whether missing
correlations may be important [12]-[13]. Moreover, the calculated NME’s for the
two neutrino double beta decay (2vF3) mode are very sensitive to variations of the
particle-particle interaction strength parameter, exactly in the region of physical in-
terest. As a result, one cannot fix adequately this parameter for the more interesting
OvB[ decay calculations.

Most recently, Honma et al. have developed a new semi-realistic valence Hamil-
tonian for pf-shell nuclei which provides impressive fits to a wide range of nuclear
properties in the region [14]. Further research will be needed to elucidate the distinc-
tions between our no-core Hamiltonian and the successful valence space Hamiltonian.

We also call the interested reader’s attention to a recent review article by Brown
that presents an extensive overview of important shell model literature addressing
the A = 48 nuclei as well as other regions [15].

As an alternative approach, we investigate the NCSM for these A = 48 nuclei.
This is the first time such calculations are reported for nuclei with A > 17. Our
initial goal is to demonstrate the utility of such NCSM calculations in this region.
We will display the current status of the NCSM and, with phenomenological adjust-
ments, also demonstrate how far we still must go before making ab-initio predictions
of fundamental processes such as Ov33 decay rates. Due to the signficant gap be-
tween present ab-initio NCSM theory and the best fit results, we defer evaluations
of decay rates to later efforts.

To distinguish the ab-initio NCSM from the model with additive phenomenolog-
ical terms, we refer to the latter as simply the "no-core shell model” or ” NCSM”
without the ”ab-initio” adjective.

The main ingredients of our approach are the following:

1) We adopt the NCSM approach and approximate the full H,. ;s with a two-body
cluster truncation. In solving the A = 48 systems, all nucleons are treated with
the same two-body Hamiltonian derived from a realistic NN interaction including

Coulomb interaction between proton pairs. There are no single particle energies



involved and the eigenenergies are the total binding energies. We explore a very
limited range of AS, around 40/A'/% = 11MeV and we limit the model space to
1 AS) excitations.

2) We work in a neutron-proton basis so full isospin mixing is allowed including
isospin mixing arising from the bare NN interaction and those induced within Heff
itself.

3) For 48-Ca we evaluate both the positive (0 7£2) and negative parity (1 A{2)
spectra.

4) Our spectra are free of spurious center of mass motion effects.

5) We provide a baseline for further improvements to Heff such as the inclusion
of real and effective three-body forces.

Of course the present work has a significant drawback. Due to the limited model
space and/or the neglect of effective many-body interactions, as well as the neglect
of genuine three-body interactions, we must resort to additive phenomenological
terms to obtain a good description of selected experimental data. The dependence
on the parameters introduced, including the basis space parameters N,,,, and hf2,
as well as dependence on the forms and strengths of the additive potential terms,
severely limit the predictive power of our present approach. On the other hand, the
good descriptions achieved with our initial choice of additive terms provides insight
into the shortcomings of our current Heff in the 0A2 and 142 model spaces.

The paper is organized as follows. In section 2 we give a brief description of the
NCSM formalism. In section 3 we present our results and analysis and section 4 is

devoted to conclusions and perspectives.

2 No core shell model (NCSM) formalism

In order to take a step towards increased predictive power, we adapt the recently
derived ab-initio NCSM as we will briefly outline here. However, due to compu-
tational limitations translating into model space limitations, we expect and find
that the spectroscopic results differ significantly from experiment. Since previous
investigations summarized above have indicated the importance of obtaining good
spectroscopic descriptions in order to minimize uncertainties in predictions of key
experimental observables, we will introduce additive phenomenological corrections

sufficient to fit experimental spectra.



2.1 Basic NCSM and Effective Hamiltonian

The NCSM [16]-[21] is based on an effective Hamiltonian derived from realistic
“bare” interactions and acting within a finite Hilbert space. All A-nucleons are
treated on an equal footing. The approach is demonstrably convergent to the exact
result of the full (infinite) Hilbert space.

Initial investigations used two-body interactions [16] based on a G-matrix ap-
proach. Later, we implemented the Lee-Suzuki-Okamoto procedure [22, 23] to derive
two-body and three-body effective interactions based on realistic NN and NNN in-
teractions.

For pedagogical purposes, we outline the NCSM approach with NN interactions
alone and point the reader to the literature for the extensions to include NNN
interactions. We begin with the purely intrinsic Hamiltonian for the A-nucleon
system, i.e.,

A (= =2 A
Hy=Tutv="13 PP 5 i) 1)

1<J 1<j=1

where m is the nucleon mass and Vy(7; — 7), the NN interaction, with both strong
and electromagnetic components. Note the absence of a phenomenological single-
particle potential. We may use either coordinate-space NN potentials, such as the
Argonne potentials [24] or momentum-space dependent NN potentials, such as the
CD-Bonn [25] which we select for the present investigation.

Next, we add the center-of-mass HO Hamiltonian to the Hamiltonian (1) Hey =
Tom + Ucsm, where Uy = %AmQZEZ, R = %224:1 7. In the full Hilbert space the
added Hcy term has no influence on the intrinsic properties. However, when we
introduce our cluster approximation below, the added Hcy term facilitates conver-
gence to exact results with increasing basis size. The modified Hamiltonian, with a

pseudo-dependence on the HO frequency €2, can be cast into the form
AT =2 A 2
: 1 Q
HY = Hy+ Hoy =3 lg’%wmm@] s [VN(T:-—@-)— (=7

i=1 i<j=1

(2)

In the spirit of Da Providencia and Shakin [26] and Lee, Suzuki and Okamoto [22,
23], we introduce a unitary transformation, which is able to accommodate the short-
range two-body correlations in a nucleus, by choosing an antihermitian operator S,

acting only on intrinsic coordinates, such that

H=e HieS . (3)



In our approach, S is determined by the requirements that H and H' have the
same symmetries and eigenspectra over the subspace K of the full Hilbert space.
In general, both S and the transformed Hamiltonian are A-body operators. Our
simplest, non-trivial approximation to # is to develop a two-body (a = 2) effective
Hamiltonian, where the upper bound of the summations “A” is replaced by “a”, but
the coefficients remain unchanged. The next improvement is to develop a three-body

effective Hamiltonian, (a = 3). This approach consists then of an approximation to

() &
A a Z ‘/;1i2...ia , (4)
( )(2) 11<i2<...<la

a

a particular level of clustering with a < A.

A
H=HD+HD ="+
i=1

with .
‘712...0. = e_S(a)H(?eS(a) - Z hz 3 (5)
1=1

and S is an a-body operator; HS! = hy +hy+h3+...+h,+V,, and V, = Yici Vig-
Note that there is no sum over “a” in Eq. (4) so there is no coupling between
clusters in this approach. Also, we adopt the HO basis states that are eigenstates
of the one-body Hamiltonian Zle h;.

If the full Hilbert space is divided into a finite model space (“P-space”) and
a complementary infinite space (“Q-space”), using the projectors P and @) with
P+ @ =1, it is possible to determine the transformation operator S, from the

decoupling condition
Qae’s(a)erS(a)Pa =0, (6)

and the simultaneous restrictions P,S®P, = Q,5®Q, = 0. Note that a-nucleon-
state projectors (P,, Q,) appear in Eq. (6). Their definitions follow from the defini-
tions of the A-nucleon projectors P, (). The unitary transformation and decoupling
condition, introduced by Suzuki and Okamoto and referred to as the unitary-model-
operator approach (UMOA) [27], has a solution that can be expressed in the follow-
ing form
5@ = arctanh(w — w') , (7)
with the operator w satisfying w = Q,wP,, and solving its own decoupling equation,
Que “H'e“P, = 0. (8)

Let us also note that H, . = Pae_S(a)ngeS(a)Pa leads to the relation

Hy o = (Py + w'w)™2(P, + Pw!Qy) HY(QuwP, + P,) (P, + wiw)™2 . (9)



Given the eigensolutions, H}|k) = Ej|k), in the infinite Hilbert space for the cluster,

then the operator w can be determined from

(aglwlar) = Y (aglk)(klar) , (10)
kek
where we denote by tilde the inverted matrix of {(ap|k), ie., 3, (k|ap)(ap|k')y =
Sp and Yy (clp|k)(klap) = 61 ap, for k&' € K. In the relation (10), |ap) and
lag) are the model-space and the Q-space basis states, respectively, and K denotes
a set of dp eigenstates, whose properties are reproduced in the model space, with
dp equal to the dimension of the model space.

In practice, the exact (to numerical precision) solutions for the a=2 cluster are
obtained in basis spaces of several hundred A2 in each relative motion NN channel.

We note that in the limit a — A, we obtain the exact solutions for dp states of
the full problem for any finite basis space, with flexibility for the choice of physical
states subject to certain conditions [28].

We define our P-space to consist of all A-particle configurations in the oscillator
basis with oscillator energy less than or equal some cuttoff value, NV,;, = Nyin+ Niaz,
where N is the sum of 2n + [ values of the occuppied single particle states in the
configuration. N,,;, is the minimum value required by the Pauli principle and equals
84 for these A = 48 nuclei. Our P-spaces are equally described by the excitations
allowed through N, which begins with 0. The cluster space, P, is defined by the
range of 2-body states encountered in the P-space.

Due to our cluster approximation a dependence of our results on V,,,, and on A2
arises. For a fixed cluster size, the smaller the basis space, the larger the dependence
on hf). The residual N,,; and h{2 dependences can be used to infer the uncertainty
in our results arising from the neglect of effective many-body interactions.

In light nuclei, the strategy has been to evaluate H.ss for each model space
leading to a separate H,s for positive and negative parity states. As one proceeds
to heavier systems we reason that a better strategy is to use the same H,y; for both
positive and negative parities e.g. use the 1782 H,s; in both the 0A(2 and 1A£2 model
spaces. The logic for the revised strategy stems from two considerations: (1) either
strategy will converge to the exact result in sufficiently large basis spaces; and (2) for
adjoining spaces in heavier systems, the predominant sets of pairwise interactions
are in the same configurations with just one pair at a time shifting to the larger

space. Hence, the bulk of the binding should not be altered in proceeding from a



0R€2 to a 1R£)2 model space in A=48, suggesting the same H,s is preferred. For
small model spaces, such as those investigated here, the revised strategy improves
the splitting between positive and negative parity states for the physical reason just
mentioned.

One simplification of this revised strategy is that H.sy is required only for every
other increment in the basis space, such as 1A£), 3h€), 5hS), etc., to evaluate the
converging sequence.

In order to construct the operator w (10) we need to select the set of eigenvectors
K. We select the lowest states obtained in each two-body channel. It turns out that
these states also have the largest overlap with the model space for the range of Af2
we have investigated and the P-spaces we select.

We input the effective Hamiltonian, now consisting of a relative two-body oper-
ator and the pure H¢gys term introduced earlier, into an m-scheme Lanczos diago-
nalization process to obtain the P-space eigenvalues and eigenvectors [29]. At this
stage we also add the term Hgj, again with a large positive coefficient to separate
the physically interesting states with 0s CM motion from those with excited CM
motion. We retain only the eigenstates with pure 0s CM motion when evaluating
observables. All observables that are expressible as functions of relative coordinates,
such as the rms radius and radial densities, are then evaluated free of CM motion
effects.

In the case of the 0A) model space for *®Ca, the neutrons occupy part of the
pf shell while the protons fill the sd shell. Now, for the 142 model space that we
adopt for Ca, we take proton pairs in the Q-space as those with relative harmonic
oscillator states having (2n +[) > 6. Similarly, we take neutron pairs in the 1A
Q-space having (2n + 1) > 8. For the neutron-proton pairs we take the Heff with
pairs in the Q-space of (2n+1) > 7. This defines the effective Hamiltonian for both
positive and negative parity states.

It is important to note that we retain this same Hamiltonian for all the A = 48
results presented here even though some have protons in the pf shell. In so doing,
we recognize that these are additional approximations that we expect to become
less severe in future efforts with enlarged P-spaces.

Since we have chosen separate P-spaces for the neutrons and the protons, we
felt the need to confirm that our treatment of the spurious CM motion remains
valid. We tested this with the *Ca positive parity spectrum in the following way.

We lowered the Lagrange multiplier of the Hgys term from our conventional value



of 10.0 to a value of 2.0. In the past this was more than sufficient to reveal any
deficiencies in our treatment of CM motion. In the present case this means that,
since h{2 = 10MeV, our lowest spurious states are around 20 MeV of excitation in
8Ca (assuming the CM motion is treated correctly). This is about as low as we can
safely go for a test since we still have significant separation of the spurious from the
non-spurious states.

The test showed that six of the lowest 15 eigenvalues changed by 1 keV, a change
in the 6th significant figure, while the other 9 were unchanged at this precision, indi-
cating at most a change in the 7th significant figure. This numerically demonstrates
that the CM motion in the NCSM is accurately treated by the constraint method
even when neutrons and protons occupy different shells, as long as the model space
is defined with a many-body cutoff as we have implemented.

The m-sheme basis dimensionalities are (12022, 139046, and 634744) for (*Ca,
8Sc, and *8T7) respectively in the 0 model spaces, and 2921360 for *Ca in the
1482 model space. By way of reference, “*Ca in the 2A) model space produces an
m-scheme matrix dimension of 214664244.

We close our outline on the theoretical framework with the observation that all
observables require the same transformation as implemented on the Hamiltonian.
To date, we have found rather small effects on the rms radius operator when we
transformed it to a P-space effective rms operator at the a=2 cluster level [20].
On the other hand, substantial renormalization was observed for the kinetic energy

operator when using the a = 2 transformation to evaluate its expectation value [30].

2.2 Phenomenological adjustments

To obtain NCSM spectroscopies fit to the data for these A = 48 nuclei by means
of additive phenomenological potentials is a major undertaking. Hence, we investi-
gate here minimal approaches to modifying the theoretical Heff to improve selected
spectroscopic properties. We consider this as a baseline effort for future investi-
gations in larger model spaces where we believe there will be a reduced need for
phenomenological terms.

Our overall fitting strategy is to emphasize the total binding energy and the
lowest lying excited states.

Inspired by successful modifications found in Ref. [7], we first investigate whether

a phenomenological S-wave or monopole interaction supplies the main missing in-



gredient from our NCSM realistic effective two-body Hamiltonians. We chose to
add simple T'= 0 and T" = 1 delta functions and we found that they can produce
greatly improved properties. However, we find it necessary to adjust the 7" = 0 and
T =1 strengths for each nucleus to obtain the good agreement with experimental
properties. Thus, we conclude that, with this approach, six parameters are needed
to obtain reasonable results for the binding energies and the positive parity spectra
of the three nuclei we address. However, the spectrum of 8Sc is still rather poor.

In the hopes of obtaining a single NCSM Hamiltonian for the binding energies
and spectra of these three nuclei, we then explored the utility of two-body central
plus tensor forces added to the ab-initio H.rr. We achieve a reasonable description
of a small set of the targeted properties in these three nuclei by fitting the strengths
and ranges of these three terms.

The specific forms of the finite range central and tensor potentials we found

acceptable are as follows:

V(r) = Voexp(—(r/R)?)/r?* + Viexp(—(r/R)*) /r* + V;S1o /1* (11)
where the central strengths, Vy = —14.40 MeV — fm? and V; = —22.61 MeV — fm?
with R = 1.5fm, the tensor strength V;, = —52.22 MeV — fm3, and S;, is the

conventional tensor operator.

3 Results and Discussion

We begin with a survey of the ground state eigenenergies of A = 48 nuclei presented
in Fig. 1. The experimental values and extrapolations based on systematics [31] are
presented as square points and portray the valley of stability with *T% being the
most stable A = 48 system. The upper set of results (round dots) are those obtained
with the ab-initio NCSM as outlined above with A2 = 10 MeV, a typical choice
for this region. Note that the trend of the even-even and odd-odd nuclear binding
energies matches reasonably well with experiment except that theory consistently
underbinds by about 20 MeV (0.4 MeV /nucleon). In other words, except for this
underbinding, the ab-initio NCSM already predicts some subtle features of the valley
of stability.

While all even-even nuclei obtained here in the ab-initio NCSM have the correct
J™ = 0" ground state spin and parity, the odd-odd nuclei generally have the incorrect

ground state spin.



The point proton (neutron) rms radii are 3.51, 3.55, and 3.59 fm (3.75, 3.73, and
3.71 fm) for Ca, *®Sc and *T'i respectively, when evaluated with the bare operator
in the intrinsic coordinate system. Of course, due to the limited model space, these
results are insensitive to configuration mixing and are controlled by the choice of
hS.

Increasing 7if2 leads to increased binding (and decreased rms radii) in this ap-
plication of the ab-initio NCSM (A2 = 10.5MeV would produce a good fit to the
binding alone) but fails to improve the errors in ground state spins and other defi-
ciencies in the spectral properties described below in more detail.

The overall binding energy picture is considerably improved with the phenomeno-
logical additions described above. These additive terms were fit by hand to the
ground state energies of ¥Ca, Sc and 8T as well as the first excited positive and
negative parity states in **Ca. This limited amount of data under-constrains the fit
and alternative parameterizations of the additive terms would yield equivalent fits to
these limited data. Our approach here was to cease fitting when the first successful
fit was obtained. Hence, all other properties of these A = 48 nuclei, including the
ground state energies of the remaining 5 nuclei presented in Fig. 1, constitute pre-
dictions of this model. With the additive terms, the ground state spins and parities
for the eight nuclei evaluated now agree with experiment, where available.

We again stress that the ab-initio NCSM Hamiltonian and the fit Hamiltonians
are pure 2-body Hamiltonians describing the interactions of all A = 48 nucleons.
There is no division into valence and core subsystems, no explicit mean field and
no single-particle energies. In addition, all results that we present are free of effects
from spurious CM motion. As mentioned above, we distinguish the ab-initio NCSM
from the model with additive phenomenological terms by referring to the latter as
simply the ”no-core shell model” or ”NCSM” without the ”ab-initio” adjective. For
convenience in labelling figures and tables, we employ H.fy or ”CD-Bonn” for the
former and ”CD-Bonn + 3 terms” for the latter.

Fig. 2 presents the 0A$) model space results for **Ca with the CD-Bonn ef-
fective Hamiltonian, [H.ss], at three values of the basis space parameter, h{) =
10(twocases), 11, and 12 MeV. The first column presents the experimental ground
state and first two excited states. For h{2 = 10 MeV, we present results for the
1995 version of CD-Bonn (second column in the figure labelled ” CDB”) and for the
2000 version (third column labelled ”CDB2K”) [25] in order to display the minor

differences in the spectra from these two potentials.



The main impression from Fig. 2 is that the spectra in **Ca are severely com-
pressed relative to the experimental spreading. Inspecting the corresponding ground
state wavefunctions reveals an absence of the expected dominance by the [0 f7/2]8
neutron configuration. Instead, the 1ps/, neutron state is significantly populated.
We conclude that the expected energy spacing between the 0f7/ and the 1p3/; state
is not supported by the ab-initio NCSM in such a small model space. This means
there is insufficient spin-orbit splitting.

Here, we can remark that a recent mean-field study with similarly derived H. s
showed some deficiency in the spin-orbit splitting for **O in smaller model spaces
when compared with experiment [32]. Similarly, a detailed study of 2C neutrino
scattering and magnetic transition observables revealed that the a = 2 cluster ap-
proximation underpredicts the spin-orbit splitting needed to explain these data [33].
This deficiency appears to be solved by the addition of true three-nucleon forces
which is beyond the scope of our present efforts. Detailed investigations of the
binding energies and spectroscopy of p-shell nuclei have provided strong evidence of
the need for true three-nucleon forces when local realistic NN interactions, such as
CD-Bonn, are employed [34]. This need is manifest significantly in the spin-orbit
properties.

We do not display the theoretical negative parity states in this case but we
comment that they are similarly compressed relative to the experimental spreading.
Furthermore, the lowest negative parity state appears at a rather high excitation
energy. This feature is reminiscent of the results obtained for *2C where the negative
parity spectra appeared high relative to the positive parity spectra for model spaces
up through 37 [20].

Note, however, that when we adopt the new strategy discussed above, using
the H,¢; of the 172 model space for both the positive and negative parity states at
h) = 10MeV , the relative spacings of the states within a given parity are essentially
unchanged while the lowest negative parity excitation above the ground state is now
at 6.9 MeV of excitation, a major improvement. This will be discussed shortly along
with other results in Fig. 3.

Figs. 3 - 5 display, in column 2 labelled ”CDB + 3 terms”, the spectra for these
A = 48 nuclei resulting from our best fit Hamiltonian as described in the previous
section. The resulting BE/A were presented in Fig. 1 for eight A = 48 nuclei with
this same Hamiltonian.

In each of the Figs. 3 - 5, we display the experimental spectrum in column 1



and the results of Ref. [7] in column 3.

As seen in Fig. 3, our fit yields a good description of the low-lying positive
and negative parity states of ®Ca. In particular, we observe that the calculated
first excited 0", which was not involved in the fit, appears to be rather close to
the experimental first excited 0*. On the other hand, we are missing another low-
lying excited 07. This may indicate that the intruder state inferred from the results
presented in Ref. [7] is significantly mixed between the two low-lying excited 0"
states in *¥Ca.

The reasonable agreement of our “®Ca negative parity spectrum with experiment
is significant considering that only the position of the first 3~ state was involved in
our fit. It is also significant since the negative parity spectrum is sensitive to a set
of 2-body matrix elements that is considerably larger than the set controlling the
positive parity spectrum. In particular, we are sensitive to matrix elements involving
excitations from the sd states to the pf states as well as from the pf states to the
sdg states.

Turning now to **Sc shown in Fig. 4 we obtain one of the more important
signatures of the success of the 3 term fit to these nuclei. Column 2 of Fig. 4 shows
that we now obtain the correct ground state spin and a reasonable low-lying positive
parity spectrum. Our spectrum is slightly more spread than the results of Caurier,
et al., [7].

Our plan to apply these results for 35 processes, leads us to comment on the 1%
states in Sc. There are eight established 17 states below 5.1 MeV of excitation and
our 3 term fit spectrum provides only five 17 states over the same span. Given our
limited model space and the possibility of intruder states, we may expect additional
states to appear when the model space is eventually enlarged. In the meantime, our
beta transition strength function will be distributed over a more limited set of states
in a way that will approximate the distribution among the more dense experimental
spectrum of 1 states. Of course, we will include an even larger set of 1+ states up
to higher excitation energies when evaluating the double beta decay rate in a later
effort.

Finally, we consider the case of *T% shown in Fig. 5. Here again, the low-
lying positive parity spectrum from CDB + 3 terms is in reasonable agreement
with experiment except that it is more spread. We note one particular deficiency
- the 0F — 2% — 47T theoretical splitting is nearly that of a vibrator while the

experimental spacings indicate a tendency toward rotational character. The fit of



Caurier, et al., [7] succeeds better in this collective property. It will be interesting
to discover whether the rotational character emerges from our model as we proceed

further into the open shell situation.

4 Conclusions and outlook

Our main goals have been to present the first NCSM results for **Ca, *Sc and
8T with effective Hamiltonians derived directly from a realistic NN interaction
and to investigate phenomenological improvements. The ab-initio results display
the shortcomings of the limited model spaces presently available as well as possible
shortcomings from neglecting three-body forces. We answer the question of whether
the NCSM can be adjusted to obtain reasonable fits with additive phenomenolog-
ical two-body potentials in the affirmative. In particular, we show that additive
isospin-dependent central terms plus a tensor force can achieve accurate BE/A and
reasonable spectra for these three systems. In addition, accurate BE/A are obtained
for eight A = 48 nuclei reproducing the experimental valley of stability. The net
change of interaction energies is of the order of a few percent with the added phe-
nomenological terms. More extensive searching could undoubtedly improve the fits
to the low-lying spectra.

Future efforts motivated by the present results are many-fold. We intend to
improve the ab-initio H.sy by extensions to the three-body cluster approximation
and to include three-nucleon interactions. We forsee initial applications to 53 decay,
both the vv and Ov decay channels, by first extending our calculations to the Gamow-
Teller (+/-) strengths. In the near future, we will be able to address significantly
larger basis states as well.

These future efforts represent major undertakings which we believe are warranted
in light of the importance of retaining as much predictive power as possible when

addressing 3 decay.
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Figure and Table Captions

Fig. 1: (Color online) Ground state energies in MeV of A = 48 nuclei. At
the extremes of the valley of stability, these energies are determined by systematics
and the label ”experiment” is to be understood in that context. The ab-initio
NCSM results labelled ”CD-Bonn” are obtained with H,ss in the 172 model space,
h{) = 10 MeV and isospin breaking in the P-space, as described in the text. The
same H.;r with added gaussian central terms and a tensor force is used for the
results labelled ”CD-Bonn + 3 terms”.

Fig. 2: (Color online) *Ca positive parity excitation spectra (in MeV) for
the CD Bonn (1995) (column 2) effective Hamiltonian (labelled ”CDB”) and the
CD Bonn (2000) (columns 3-5) effective Hamiltonian (labelled ”CDB2K”) in the
0A£2 harmonic oscillator basis space with 22 = 10, 11, and 12 MeV compared with
experiment (column 1). The CD-Bonn interactions are taken from Ref. [25].

Fig. 3: (Color online) “®Ca excitation spectra (in MeV) in the A2 = 10 MeV
harmonic oscillator basis for the NCSM effective Hamiltonian plus additive cor-
rections (CDB + 3 terms) compared with experiment and with the results of [7]
(Caurier, et al.). Positive and negative parity spectra are shown in the first two
columns and the strength parameters are given in the text.

Fig. 4: (Color online) *8S¢ excitation spectra (in MeV) in the Q2 = 10 MeV har-
monic oscillator basis for the NCSM effective Hamiltonian plus additive corrections
(CDB + 3 terms) compared with experiment and with the results of [7] (Caurier, et
al.).

Fig. 3: (Color online) *T excitation spectra (in MeV) in the {2 = 10 MeV har-
monic oscillator basis for the NCSM effective Hamiltonian plus additive corrections
(CDB + 3 terms) compared with experiment and with the results of [7] (Caurier, et
al.).
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