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Abstract



Z-pinch dynamic hohlraum spectroscopic 
computational geometry

• What are the system properties as a function of time?

• What are the best values of (R, ne, Te) for a given experiment?

R

ICF Capsule Detector

• ICF Capsule:
– Time independent sphere
– Mixture of D2 and Ar
– Uniform f(R, ne, Te) 

• Detector:
– Area-integrated intensity
– No instrumental broadening
– Spectral range [2.95,3.75] Å



Computational tools for plasma spectroscopy

• Computational tools to model ICF capsule spectra:
– HULLAC:  

• Relativistic atomic structure and cross section data
– TOTALB:

• Many electron atom spectral line shapes
• Includes the effects of an applied magnetic field

– CRETIN:
• Nonlocal thermodynamic equilibrium (NLTE) atomic kinetics 

and radiative transfer
• Multi-dimensional geometries and many electron atoms

• Computational tool to determine the best plasma properties:
– DAKOTA:

• Design Analysis Kit for Optimization and Terascale Applications



Using new computational tools to implement 
established spectroscopic techniques
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Example:  CRETIN model of an ICF capsule 
with R= 200 µm, ne = 1023 cm-3, Te = 1 keV

• HULLAC Ar atomic model
– H-like: 58 levels; n=1-8
– He-like: 952 levels; n=1-8; 

Satellites through n=5 
– Li-like: 1676 levels; n=1-8; 

Satellites through n=5 

• TOTALB spectral line 
shapes are in use for:
– Lya, Lyb, Lyg

– Hea, Heb, Heg, Hed, Hee

• Continuum lowering

H-like

He-like

Li-like

Ar isoelectronic densities

Since CRETIN accounts for optical 
depth effects, the isoelectronic 
sequence varies with position.



CRETIN K-shell Ar spectra from a capsule 
with R= 200 µm, ne = 1023 cm-3, Te = 1 keV
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Central features of 
spectral line shapes 
are not seen in 
experiments.

Both the alpha 
and beta lines 
are optically 
thick.



DAKOTA determines best plasma properties 
using established spectroscopic techniques

• Minimization Technique:
– Parameter study on a fine mesh

• Parameter Space: (8x21x36=6048)
– R: 50-400 µm, 8 points linear spacing
– ne: 1021-1024 cm-3, 21 points log spacing
– Te: 700-1400 eV, 36 points linear spacing

• Best Fit Criterion:
– Line ratios between: Lya, Lyb, Lyg, Heb, Heg

– Full-width at half-maximum (FWHM) of Heb

– Chi-square comparison of simulated line ratios and FWHM with 
experimental data

• CRETIN simulations are performed once and comparisons with 
experimental data are performed in a postprocessing fashion.



Analysis of z1294 FSSR data using Ar Lyb and
Ar Heb line ratios reveals valley of candidates

• Optimal properties: R= 150 µm, ne =7.9•1022 cm-3, Te = 940 eV

Ln(F)
R=150 µm

Heb

Lyb

Continuum and high-n 
lines are different



Analysis of z1294 FSSR data using the FWHM 
of Ar Heb shows a strong density dependence

• Optimal properties: R= 300 µm, ne =1023 cm-3, Te = 880 eV

Ln(F)
R=300 µm

Heb

Line ratios are different



Analysis of z1294 FSSR data using the FWHM 
of Ar Heb shows a strong density dependence

• Optimal properties: R= 250 µm, ne = 7.9•1022 cm-3, Te = 920 eV

Ln(F)
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Framework of this general spectroscopic 
capability is now established

• Self-consistent modeling of argon doped ICF capsule:
– Relies on relativistic atomic data (HULLAC)
– Implements detailed spectral line shapes (TOTALB)
– Performs full NLTE atomic kinetics and radiative transfer 

calculations in multi-dimensional geometries (CRETIN)

• Due to the spatial resolution of the ICF capsule, opacity effects 
are more accurately represented in the spectral intensity.  (Ar
Lya and Hea lines significantly affect the level populations.)

• Automated spectroscopic analysis of experimental data:
– Computationally expensive simulations are performed once for a 

given gas fill (typically not altered between experiments)
– Optimization analysis of experimental data takes minutes



More details are needed to obtain better 
agreement between experiment and theory

• Spectral line shapes (SLSs):
– Central features of SLSs are not observed in experiment.
– Continuum lowering is affected by the broadening of large upper 

principal quantum number lines
– Satellites are not included in the SLS due to computational cost

• Larger questions for spectroscopy:
– How is the spectral intensity affected by spatial averages?
– How can time integrated experimental spectra be dissected to yield 

information about peak implosion conditions?



TOTALB enables extension of the framework 
to magnetized plasmas

• Ar H-like lines with plasma conditions: ne=1021 cm-3, Te=1 keV

Argon Lyα Argon Lyβ
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