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NIF ignition 
double-shell design

Omega ignition-like
double-shell design
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OUTLINE

Introduction

- Highly-resolved simulations of April, 2003 all-CH double-shell implosions

- Highly-resolved simulations of upcoming glass inner-shell double-shell implosions

- complementary roles of double-shell/single-shell ignition on NIF 

NIF ignition design

Omega experiments

Summary

- why so stable?

≈ 0.5 mm

Double-shell research at LLNL shows growing 
promise for demonstrating ignition in FY11



Double-shell ignition is complementary to 
cryogenic single-shell ignition effort at LLNL

• D-shells will be fielded at
room temperature

• Single-shells require cryogenic
preparation

• D-shells utilize volume ignition
(≈4 keV)

• Single-shells require hot-spot 
ignition (≈10 keV)

• D-shells are low gain • Single-shells are high gain
• D-shells use reverse-

ramp pulse-shape
• Single-shells require a 4 

shock ramped pulse

• D-shells have in situ
high-Z pusher

• Single-shells have 
pre-formed low-Z pusher

• D-shells are sensitive to
fuel-pusher mix

• Single-shells have like-material
low-Z fuel and pusher

• Fast-track single-shells require     
fill-tube at present

• D-shells will be diffusion filled, 
i.e., no fill-tube required 

INTRODUCTION
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Stable double-shell design requires material
science development and laboratory validation

• A similar graded design with W/Cr also exhibits near 1D behavior with 
the advantage of added tensile strength

NIF

Foam



• Best fit for linear growth on outer 
surface of inner shell near outer 
surface deceleration onset (t = 10.95 
ns)

• Convolving these growth factors with 
the initial perturbation spectrum (RMS 
≈ 3nm) gives following mix-widths:

Single-mode GFs for the graded capsule show 
small mix-widths consistent with 2D modeling
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The April 2003 campaign on OMEGA advanced
our confidence in double-shell ignition path
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Recent Campaign

Consistently high compression neutron yields 
were observed at ignition-like convergences (> 30)
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Increasing mix



Several important candidates sources of yield 
degradation have been identified and studied

• Foam surface roughness (≈ 5 µm)
• Bulk porosity is ≈ 100 nm

• Outer-shell joint imprinting

– Joint gap size
– Glue opacity / density mismatch
– Irregularities in the bonding

10 µm

OMEGA

AdhesiveVoid



• Initial Setup: 10 µm in wavelength and 5 µm amplitude
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Initial configuration
2 µm
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• Hint of core splitting shows some agreement 

Joints appear to have a significant influence 
on double-shell performance
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• Pre-shot radiograph shows 
evidence of voids in joint

• Simulations with a completely 
2 µm empty join yields large 
degradation in yield

• YoC ≈  7 %

Simulations suggest a large impact from an 
empty joint
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A glass-foam design will be fielded for 
the March ‘05 double-shell implosions

SiO2

50 mg/cc
SiO2

2% Br-CH
275 µm

222 µm

111 µm
103 µm

62 atm
DD

• Glass foam should reduce instability on
outer surface of inner shell, i.e., smaller
Atwood number since like-material

• 50 mg/cc glass aerogels with small pore
size (≈100 nm) exist and are machinable

• Preheat absorption outside inner shell 
will help mitigate M-band strength and
asymmetry (transverse smoothing by conduction)

Y1D ≈ 3x108

τ ≈ 11ps

OMEGA



Like-material foams substantially reduce the 
inner-shell outer-surface perturbation growth

Time: Peak neutron production

CRF Foam Glass Foam

50

25

0

50

25

0
-25                         0                         25 -25                         0                         25

Radius (µm)

SiO2 
Foam

SiO2

DD MaterialsDensity

CRF
Foam

SiO2

DD MaterialsDensity

OMEGA



Simulated foam gouges on both surfaces and shell 
surface perturbations show intact implosion

-25                        0                        25   

50

0
-150                        0              150   

300

0

Initial Configuration Peak neutron production

• Surface roughness (l = 12 – 408) + foam gouging 

Glass

DD

SiO2 
Foam

MaterialsDensityMaterialsDensity

Glass
DD

SiO2 
Foam

Radius (µm)

YoC ≈ 85%

OMEGA



SiO2 Foam
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2D simulations of the outer shell joint indicate 
the need for careful design and manufacturing
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• The presence of voids greatly affects the yield performance

• The March ’05 shots will use a 20x smaller (100 nm) joint gap with 
density-matched glue
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Progress in simulation and experiment enhances 
prospects for NIF double-shell ignition in FY11

SUMMARY

• Simulation studies have identified a stable double-
shell ignition design based on graded density shells 
and metallic foams

• Recent double-shell implosion experiments on 
Omega have shown unprecedented performance

• Identification of possible failure mechanisms have 
motivated new and improved double shell designs, 

• e.g. like-material outer surface of inner shell and 
foam

• Greatly reduced gap size 
• Density-matched glue

Progress in double-shell research has inspired many 
exciting material science advances on the path to ignition 




