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Transition to Turbulence and Effect of Initial

Conditions on 3D Compressible Mixing in Planar Blast-

wave-driven Systems

A. R. Miles, M. J. Edwards, J. A. Greenough

Lawrence Livermore National Laboratory

Perturbations on an interface driven by a strong blast wave grow in time due to a

combination of Rayleigh-Taylor, Richtmyer-Meshkov, and decompression effects. In this

paper, results from three-dimensional numerical simulations of such a system under drive

conditions to be attainable on the National Ignition Facility [E. M. Campbell, Laser Part.

Beams, 9(2), 209 (1991)] are presented. Using the multi-physics, adaptive mesh

refinement, higher order Godunov Eulerian hydrocode, Raptor [L. H. Howell and J.A.

Greenough, J. Comp. Phys. 184, 53 (2003)], the late nonlinear instability evolution,

including transition to turbulence, is considered for various multimode perturbation

spectra. The 3D post-transition state differs from the 2D result, but the process of

transition proceeds similarly in both 2D and 3D. The turbulent mixing transition results in

a reduction in the growth rate of the mixing layer relative to its pre-transition value and,

in the case of the bubble front, relative to the 2D result. The post-transition spike front

velocity is approximately the same in 2D and 3D. Implications for hydrodynamic mixing

in core-collapse supernovae are discussed.
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I. Introduction

An interface between two fluids becomes hydrodynamically unstable when it

transmits a blast wave down the density gradient. Perturbations grow under the combined

influence of the Rayleigh-Taylor1,2 (RT) and Richtmyer-Meshkov3,4 (RM) instabilities. In

addition, material decompression behind the shock front results in amplitude stretching

that represents a significant contribution to the growth at late times.5 RM dominates at

very early times, but its contribution relative to RT quickly becomes insignificant as the

shock-deposited vorticity spreads out and decays away.5,6 In the nonlinear phase, initial

perturbations evolve into spikes of denser material growing in the direction of shock

propagation and bubbles of less dense material lagging ever further behind the

unperturbed interface position. If the interface is driven by a sufficiently strong blast

wave, 2D and/or 3D secondary instabilities will eventually cause nonlinear spikes to

interact with one another and break down. Energy and momentum are thereby diverted

into the transverse direction and a transition to a turbulent or turbulent-like state occurs.

In a previous paper, we considered the effect of the initial perturbation spectrum

on the nonlinear evolution of a 2D blast-wave-driven system, including spike interaction.6

Based on high-resolution 2D Raptor7 simulations, we concluded that memory of certain

aspects of the initial conditions, such as the rms amplitude, is retained in the mix-width at

all times. Spike interaction and breakup was found to correspond to an increase in small-

scale mixing, a significant reduction in spike velocity, and a loss of initial transverse

spectral information. Consequently, we referred to it as a 2D turbulent mixing transition.

At late times, the inverse cascade driven by bubble competition and merger was halted
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due to drive decay, which imposed an effective box size on the system. After transition

but before the emergence of the effective box size, we observed a quasi-self-similar

regime during which the similarity parameter <λ>/h decays slowly in time, with a value

only weakly dependent on the initial conditions.

In this paper, we extend this study to include 3D calculations of systems that are

otherwise identical to the laser-driven targets described in the 2D paper. Our goal is to

determine how the deep nonlinear instability evolution differs in the 3D case, where

vortex stretching makes transition to full 3D turbulence possible. In particular, we would

like to understand how the initial conditions affect the time to transition and the nature of

subsequent turbulent flow.

We will show that nonlinearity thresholds for spike interaction and breakup are

not significantly changed in 3D, and that the post-transition state is more thoroughly

mixed than in the 2D case. More mix gives a lower effective Atwood number that leads

to a large reduction in the bubble growth rate relative to the 2D values despite the

decreased drag in 3D. Surprisingly, the velocity of the spike front is not significantly

changed when going from 2D to 3D. It is however reduced relative to its pre-transition

value. This is particularly interesting in light of the fact that 2D simulations of blast-

wave-driven mixing in core-collapse supernovae consistently underpredict the asymptotic

spike velocities by about a factor of two (see Ref. 8 and references therein). This problem

is not solved by 3D calculations that predict spike velocities the same as in 2D,

suggesting a balance between velocity enhancement due to decreased drag and reduction

due to increased small-scale mixing.
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II. Transition to turbulence in RT-instability-driven systems

Before continuing on with simulation results, we wish to clarify what we mean by

turbulence. This is particularly important for turbulence in multimode RT systems

because there are at least four ideas of turbulence that appear in the literature, and they do

not all affect the instability growth in the same way.

First of all, RT-unstable systems can exhibit turbulence in the classical fluid

mechanical sense. Unfortunately, there is no universal consensus on what classical

turbulence is either. We describe it as a disordered state that undergoes random

fluctuations in both space and time and is characterized by energy-flow from some large

driving scale down to dissipative scales via the 3D phenomenon of vortex stretching.

When driven by the RT instability, there is a range of driving scales set by the density

spectrum or bubble size distribution. When bubble competition and merger are active, the

dominant driving scale for the turbulence grows in time.

Transition to classical turbulence typically requires that the Reynolds number be

greater than some threshold value.9 This requirement amounts to sufficient spectral

separation between the driving and dissipative scales. Dimotakis observed10 that many

systems exhibit a transition to a state of increased molecular mixing, which he called the

turbulent mixing transition, above a critical Re of about 2x104. This corresponds to three

orders of magnitude separation between the driving and dissipative scales, allowing for

an extended inertial range that is decoupled from both. Above the critical Re for the
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mixing transition, the internal structure of the flow is less Re-dependent than before the

transition.

In non-stationary flows, there is a time constraint as well.11-14 Even if the Reynolds

number is high enough that an inertial range can in principle exist, transition cannot take

place until the inertial range has had time to develop. A final requirement for transition

that is common to both non-stationary and stationary flows is the existence of some seed

perturbation that instabilities can act on. The seed requirement is often not focused on

because it will naturally be satisfied in virtually every system, whether physical or

computational, due if nothing else to thermal or numerical noise.

The turbulent mixing transition often takes place in flows that have already

undergone a transition from a laminar, ordered state to a disordered, spectrally complex

state.10 The term “turbulence” is often also applied to any such system that appears

random, regardless of whether or not there is a forward energy cascade via vortex

stretching down an inertial range. This includes 3D simulations that leave the physical

dissipation range and much of the inertial range unresolved. The resulting computational

Re is often greatly reduced relative to the actual Re in the modeled system, even to the

point that there is no discernible inertial range and the computational Re is lower than the

experimentally observed critical Re. We will refer to such flows as weakly turbulent or

turbulent-like, and to the initiating transition as the weak transition.

Two-dimensional turbulence is distinct from its 3D counterpart in that it lacks the

vortex stretching and associated forward cascade that are central to 3D turbulence. There

is, however, a forward enstrophy cascade and an inverse energy cascade driven by vortex

pairing and merger.15,16 Since 2D simulations are often used to model 3D turbulent
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systems, it is important in each case to consider whether or not transition in the 2D

system proceeds similarly to transition in the analogous fully resolved 3D system.  This

will likely depend on whether or not the latter is driven by instabilities that are inherently

3D (such as the Widnall vortex ring instability17). In such cases, 2D calculations of course

cannot be counted on for predicting the transition time.

Finally, we note that the word turbulence is sometimes used to describe the

inverse cascade, driven by bubble competition and merger in 3D as well as in 2D, that is

characteristic of nonlinear multimode RT evolution. This continual generation of

successively larger scales leads to acceleration of the bubble front and explains the

conjectured loss of initial conditions and establishment of a self-similar regime.18-20 Like

transition to classical turbulence, transition to the self-similar regime requires time, space,

and a seed. The seed spectrum must contain multiple, incommensurate modes that are

unstable (ie not so small that they are stabilized by viscosity or other mechanisms).

Otherwise, scales larger than those present in the initial conditions cannot be generated

and the asymptotic state will be characterized by a stable, periodic array of bubbles. The

characteristic wavelength of the spectrum will shift towards the low-l end of the initial

spectrum, but will not pass beyond it. Noise (including numerical) present in the system

can of course serve as the required seed, eventually triggering the interaction and breakup

of spikes, but the transition will be delayed.6

The space requirement for transition to self-similar “turbulence” is that the system

or box size be at least several times larger than the longest-wavelength significant modes

present in the initial conditions.19 There must also be sufficient time for larger scale to be
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generated. If the space requirement is not met and until the time condition is satisfied, the

scale-invariant bubble distribution21 will not be realized.

In blast-wave-driven systems (or other system with similarly decaying drive), the

effective box size can play the same role as the physical box size in limiting the inverse

cascade.6,22 If the drive becomes very small at late times but does not vanish, then

thinking in terms of the effective box size amounts to a transformation of the time

requirement into the spatial domain.

III. Effect of transition on RT instability growth

The evolution of an RT-unstable interface is likely to be similarly affected by

transition to a classically turbulent or turbulent-like 2D or 3D state. Our previous 2D

simulations agree with 2 and 3D simulations of others that such transitions leads to a

higher degree of small-scale “molecular” mixing and typically a reduction of the growth

rate.6 We have noted, however, that the velocity of the bubble front can be increased if

the transition leads to bubble competition in what would otherwise be a stable, periodic

array. In that case, transition to a classically turbulent or turbulent-like state provides the

seed requirement for a subsequent transition to quasi-self-similar “turbulence”. In our

simulations, the 2D transition was found to occur when the dominant modes in the

spectrum reached a nonlinearity threshold of about h/λ ≈ 5-6. For spectrally complex

initial conditions, the 2D and self-similar transitions occurred virtually simultaneously. In
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single or few-mode systems, the self-similar transition sometimes occurred significantly

later than the 2D transition.

While transition to a classically turbulent or turbulent-like state leads to enhanced

mixing that tends to reduce the RT growth rates,23,24 transition to a (quasi-)self-similar

regime leads to an inverse cascade that tends to enhance the perturbation growth.25 When

both transitions are coincident, the overall effect on the growth rates depends on which

effect wins out. Simulations in 2 and 3D tend to show an initial growth rate reduction,

especially for the spikes, but the growth must eventually be enhanced if the system

allows for unlimited generation of larger structures with higher terminal velocities.6,24

We now consider the question of coincidence among the various transitions. It has

been proposed that the mixing-transition time in RT-unstable systems is limited by the

viscous growth of a shear layer along the spike stalks, and with it the Liepmann-Taylor

scale that sets the low-l end of the inertial range.13,14 However, for broadband systems in a

big box at high Reynolds number (ie seed and space requirements met for both classical

and self-similar transitions), the mixing transition is preceded by nearly coincident weak

and self-similar transitions. Once modes become nonlinear and begin to couple and

generate larger scales, marking transition to self-similar turbulence, spikes soon reach

their nonlinearity interaction and breakup thresholds.6 These interactions drive mix-layer-

scale vortices, effectively short-circuiting the process whereby the low-l end of the

inertial range is limited by the viscous growth of a shear layer. Even in 2D, spike

interaction and breakup due to Kelvin-Helmholtz (KH) activity results in abrupt growth

of small-scale vortices, thereby temporarily mimicking full 3D turbulence characterized

by vortex stretching and the associated transfer of energy down to the dissipative scales.
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Diffusive growth of the shear layer will likely provide the time limitation for transition to

classical turbulence only in single-mode or otherwise spectrally simple systems.

When the mixing transition occurs in a system that has already undergone

transitions to weak and self-similar turbulence, it can only cause a reduction of the

growth rates by effectively lowering the Atwood number within the mix layer.

At low Re, the weak and self-similar transitions need not be coincident. For

example, consider that the inverse cascade can occur at any Reynolds number, and in 2D

as well as 3D. Equivalently, the presence of an inverse cascade does not imply strong

interactions between spikes and the associated increase in mixedness. The Reynolds

number will eventually become high if the inverse cascade is allowed to continue long

enough (Re ~ λ3/2g1/2 if h ~ λ), but the system can be “turbulent” in the self-similar sense

at lower Re as well.

Conversely, a system with simple modal content can exhibit localized classical

turbulence, including the mixing transition, if the Reynolds number is high enough. For

example, in RM shock tube experiments by Jacobs et al.,26 secondary instabilities lead to

transition to classical turbulence within the KH rollups of single-mode spikes, while the

large-scale single-mode structure remains intact and there is no bubble competition. Even

so, spike interaction and breakup should increase the extent to which areas of turbulence

permeate the mix region.

V. Calculation setup and description
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The simulations are performed using the multi-physics radiation hydrodynamics

code Raptor, which uses a 2nd order (in space and time) Godunov method applied to the

Euler equations.7 Raptor is parallelized and uses adaptive mesh refinement (AMR),

making it well-suited to problems such as ours that require high resolution in only a

portion of the computational domain. The calculation setup is nearly identical to our 2D

simulations detailed elsewhere,6 and only an abbreviated description will be given here.

The only difference in the 3D calculations is that the initial spectra are now typically 3D,

and the nominal resolution is 256 cells across the computational domain instead of 512.

The highest level of refinement is reserved for the interface region, and the total number

of cells grows with the mix width, eventually reaching over fifty million.

Our hypothetical target [see schematic in Fig. 1(a)] consists of a 150 µm plastic

pusher section (density 1.42 g/cc) in contact with a cryogenic hydrogen (density 0.086

g/cc) 2.2 mm payload section. An initial perturbation is imposed at the pusher/payload

interface, and the width the computational domain was typically 200 µm. Open boundary

conditions are used in the parallel (to the shock) direction while periodic conditions are

specified in the transverse direction.

The end of the pusher opposite the perturbation is driven with a 25 kJ, 1 ns laser

pulse, which launches a strong planar blast wave into the target. Planar experiments with

these drive properties will be possible within a few years as the National Ignition

Facility27 (NIF) becomes operational. The simulations are initiated with a high-velocity,

heated, compressed slab with characteristics taken from a laser-driven Lasnex28

simulation at the end of the laser pulse. The Mach numbers of the incident and

transmitted blast waves are in the range of 10-30, where the precise value depends on the
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degree to which x-ray preheat can be controlled (the incident Mach number with no

preheat would be about 60). The resulting initial interface speed is about 130 µm/ns [see

Fig. 1(b)]. The post-shock Atwood number remains nearly constant at about 0.7.

In this paper, we will present results from four high-resolution (256 ppb)

multimode runs and one low-resolution (128 ppb) mode 4 “egg-crate” run [given by z0 =

(2.5 µm) cos(k4x)cos(k4y), where k4 corresponds to mode 4]. Two of the high-resolution

multimode runs include only a short wavelength spectral component with modes 20-80,

given by a narrow gaussian in one cases and a 1/k2 spectrum in the other [see Fig. 2(a)].

Each interface was constructed by determining all modes in the annulus satisfying 20 ≤

(kx
2+ky

2)1/2 ≤ 80 (for integer kx and ky) and assigning to each a random phase and

randomized amplitude taken from the prescribed spectrum. Contour plots of the initial

conditions are shown in Figs. 2(b)-2(c). The other two multimode calculations include a

simple long wavelength component in addition to the narrow gaussian short wavelength

component [see Figs. 2(d)-2(e)]. The long wavelength component is either a single 2D

mode 4 or the 3D mode 4 “egg crate”.

In estimating the Reynolds number in the calculations, we take Reh(t) ≡

[2h(t)/∆x]4/3 where 2h(t) is the mix width and ∆x is the cell size. This give a time-

dependent Reynolds number that climbs as high as ~ 5500 in the first 18 ns of a 40 ns

experiment. This is the same order of magnitude as the time-independent Reynolds

number based on the width of the computational domain ReL = 1626. If the perturbation

amplitude growth is similar in 2D and 3D, then we expect to find Reh ~ 11000 at 40 ns.

The estimated Re number in the actual experiments is of order 105, or two orders of

magnitude greater than in the simulations.13 Typical of numerical simulations of turbulent
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systems, the dissipative scales are much smaller than the grid scale. We might expect,

however, to qualitatively capture the effect of the turbulence on the large scales if we

adequately resolve the lower end of a self-similar inertial range. According to Dimotakis,

this scale can be estimated by the Liepmann-Taylor scale, which he defines as λLT =

5LReh
-3/4 where L is the driving scale.10 With L = 2h, we find for the experiments λLT ≈ 3-

10 µm. In the simulations, there are then about 4-13 cells per Liepmann-Taylor scale,

which corresponds to mode 67-20. Thus we estimate that we are beginning to resolve the

upper end of the inertial range with 256 ppb. We would feel much more comfortable with

another factor of 2-4 in resolution, but such calculations are for now prohibitively time-

consuming.

VI. Simulation results

A. Effect of dimensionality on single-mode growth

In Fig. 3, we compare the growth of the mode 4 “egg-crate” with a single 2D

mode 4. The 3D spikes and bubbles have the same transverse scale as the 2D spikes and

bubbles, so, during the pre-transition phase, the difference in their growth rates should be

set by the ratio of their drag coefficients25,29,30

u u C CD D D D3 2 2 3 6 2 1 22 2 46 1 57/ / / . . .= ≈ ⋅( ) ≈ ≈π π . In fact, the 3D growth rate

initially saturates at about 1 5 1 2. .≈ times the 2D growth rate [see Fig. 3(b)], possibly

because the 3D bubbles appear to develop with a slightly smaller diameter.

A late-time log density image from the mode 4 “egg-carton” interface is shown in
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Fig. 3(d). Despite nonlinearity a/λ = 7, regular single-scale structure persists along much

of the length of the spikes. However, a transition to turbulence appears to have occurred

in localized regions where shear layers from individual spikes have merged. An x-ray

radiograph at 25 ns from a 2D short-on-long Omega experiment31 shows indications of

similar localized transitions [see Fig. 3(e)]. The perturbation in the experiment is less

nonlinear both because it is 2D and the drive is five times less energetic. Based on the

time required for establishment of an inertial range via the viscous growth of the

Liepmann-Taylor scale, Robey et al. predict that the mixing transition is possible in the

experiments after 17 ns.13   This scenario seems appropriate in this spectrally simple

system where there is no weak transition early on.

B. Evolution of short wavelength component

Perturbation amplitude and velocity histories from the two high-resolution 3D

shorts-only cases are shown in Fig. 4. Results from 2D calculations with the same initial

spectral shapes are shown for comparison. In general, the variation between the 3D

calculations is slightly less than in 2D. This could be due at least in part to better statistics

in the identification of the spike and bubble positions.

At early times, 3D bubbles grow faster than 2D bubbles of the same size. This is

expected based on the reduced drag of spherical relative to cylindrical bubbles. At about

5 ns, however, the 3D bubble velocities begin to drop off rapidly, falling to about half the

2D bubble velocity by 10 ns.
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Within a few ns after shock transmission, a transition begins from a state with

little small-scale mixing to a highly-mixed state [see Fig. 5(a)]. The degree of

“mixedness” is determined by using Youngs’s “molecular mix”, defined by32

Θ ≡
−

−

∫
∫ ∫

f f dz

f dz f dz

( )1

1
, (1)

where f and 1-f are the volume fractions of the two fluids and the angular brackets denote

averaging over the transverse direction. In the 2D calculations, this “2D mixing

transition” is complete when the mixing parameter begins to saturate at 4 ns at a level of

about 0.7. As we noted previously, this is noticeably higher than the value of about 0.54

obtained by Youngs and Cook et al. from their 2D simulations of classical,

incompressible RT.24,33  In 3D, the mixing parameter continues to increase until about 10

ns, when it begins to saturate at a higher value of about 0.90. Again, this is higher than

the value of about 0.83 reported by Youngs and Cook et al.24,33 Three-dimensional Raptor

simulations of classical RT do not show this discrepancy, suggesting that it results from

RM, thermal conduction, decompression, or a combination of these effects. We have

verified that conduction is not responsible, and do not believe that RM is important after

the first few ns. This leaves decompression, which tends to increase the number of mixed

zones at material interfaces. We have not yet determined whether the resulting increase in

asymptotic mixedness is a physical or numerical effect.

By about 10 ns, the simulation appears to have undergone a turbulent mixing

transition. Indeed, at 90% mixed, it is difficult to imagine what additional mixing

transition could possibly take place.

Two-dimensional density and velocity power spectra are integrated over annuli in

kx-ky space to give a 1D representation that depends only on the magnitude of the
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transverse wavevector. Results from the 3D narrow-gaussian case are shown in Fig. 6.

The density fluctuation is defined by δρ(z) = ρ(z) - <ρ(z)>, where <ρ(z)> is the z-

dependent transverse density average. Each spectrum shown is the average of several

(typically four) 1D spectra evenly spaced throughout the interior of the mix region. The

inverse cascade to longer wavelengths is apparent in the density spectra. It proceeds

rapidly at early times but slows dramatically by 20 ns, indicating the approach of the

asymptotic freeze-out stage. This slowing is more apparent in 3D than in our earlier 2D

calculations, where vortex pairing and merger contributes to the inverse cascade.

The fluctuating velocity components are defined in the same way as the density

fluctuation: δvx,y,z(z) = vx,y,z (z) - < vx,y,z (z)>, where “<>” again denotes transverse

average. An inertial range with Kolmogorov k-5/3 scaling34 is visible by about 10 ns in the

density spectra from about mode 10 to about mode 30 and in the parallel energy spectra

from about mode 10 out to mode 20. The appearance of an inertial range in the transverse

energy spectra is somewhat delayed relative to the parallel component. This effect has

been previously noted in 3D classical RT simulations and attributed to the secondary

nature of the transverse flow.24 That an inertial range appears at all is at first glance

surprising considering the relatively limited range of scales present in these simulations

and the lack of a sub-grid-scale model. The grid-resolution Reynolds number, defined by

Re∆x ≡ (h/∆x)4/3 ~ 103, is an order of magnitude smaller than the integral-scale Reynolds

number observed by Dimotakis to mark the mixing transition in many flows.10 It appears,

however, that the effective integral-scale Reynolds number is much higher than the grid-

resolution Reynolds number. Following the scaling used by Dimotakis, we find that the

ratio of the lower end to the upper end of the inertial range is approximately given by
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0.1Re1/4.  Based on the inertial range observed in the calculated spectra, this gives Re >

105. As predicted by Dimotakis, the appearance of the inertial range corresponds with a

turbulent mixing transition.

It is important to note that the 3D bubble velocity falls off precisely while the 3D

mixedness is increasing above the value seen in the 2D calculations. This suggests that

the increased mixing in the bubble region has resulted in a lower effective Atwood

number and, consequently, a lower growth rate.

In this spectrally complex system, the time to transition does not seem to be

limited by the viscous growth of a shear layer as was suggested in the 3D single-mode

calculation. Instead, transition is triggered by strong interactions between neighboring

spikes. When the dominant spikes reach their nonlinear breakdown thresholds, a

significant fraction of their energy is diverted into the transverse direction, resulting in

forcing of mix-layer-scale vortices. Since this happens earlier when the characteristic

mode number in the spectrum is higher, the transition here takes place earlier than it does

in the single-mode system despite the fact that the integral scale (the mix width) is much

smaller.

C. Effect of shorts on long

Two high-resolution, 3D, short on long simulations were run. In each case, the

short wavelength component was the same 3D narrow gaussian shown in Figs. 2(a) and

2(b) and used in Fig. 5. The long-wavelength component was a 2D mode 4 (2Dm4) in

one case and a mode 4 “egg carton” (which we will call 3D mode 4 or 3Dm4) in the



17

other. Amplitude histories from these calculations are shown in Fig. 7 along with results

from 2Dm4, 3Dm4, and 2D narrow gaussian shorts on a 2D mode 4 (2Dm4+ng). In each

case, the amplitude of mode 4 was 2.5 µm (a/λ = 0.05), and the rms amplitude of the

short wavelength component was ten times smaller.

The large reduction in bubble growth seen with the short-wavelength spectrum is

not so apparent when mode 4 is present [see Fig 7(b)]. We believe that this is because it

takes much longer for mode 4 to grow up to its nonlinear interaction and breakdown

thresholds. Consequently, the mixing transition does not occur until between 10 and 15

ns (see Fig. 8). This is consistent with the conclusion we made based on our 2D

calculations that the presence of a long-wavelength mode with significant initial

amplitude can delay the transition to a turbulent-like state.

Log density slices through the evolving mix layer from the 3Dm4+3Dng

calculation are shown in Fig. 9(a). The dominant mode 4 spikes begin to interact with one

another when a/λ ≈ 2.  A very clear transition to a well-mixed state has taken place by 18

ns, at which point a/λ ≈ 5. These same nonlinear thresholds for spike interaction and

breakdown/transition were found in our 2D calculations.6 Thus it appears that, for

complex initial spectra, transition in blast-wave-driven systems proceeds similarly in 2D

and 3D, indicating that three-dimensional secondary instabilities do not play a dominant

role in initiating the transition. Again, the mixing transition corresponds to the loss of

transverse spectral information and the appearance of an inertial range with k-5/3 scaling

[see Figs. 10(a) and 10(b)].   

The 2Dm4+3Dng evolves similarly except that the interior of the mix region

remains anisotropic in the transverse plane until the mixing transition has taken place (see
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Figs. 9(b), 10(c), and 10(d)]. The post-transition mix width remains somewhat smaller

than with the egg-carton perturbation, but the two flows are otherwise very difficult to

distinguish.

Figure 9(c), which is a side-by-side comparison of 2Dm4+2Dng and

2Dm4+3Dng, provides a useful illustration of the importance of 3D effects. Early on, 3D

effects are not important. In both cases, a transition at about 10 ns takes the interface to a

less ordered, more mixed state. The post-transition state is very different in 2D and 3D,

but the process of transition is not.

VII. Conclusions

When an RT-unstable interface grows to several times its characteristic

wavelength, it can undergo a “weak transition” to a disordered, apparently random state.

This transition proceeds similarly in 3D and 2D systems with approximately equal

nonlinear spike interaction and breakdown thresholds. In the latter case, it can lead to 2D

turbulence with an inverse energy cascade due to vortex pairing and merger. A separate

inverse cascade in 3D as well as 2D systems follows transition to the self-similar regime

of bubble competition and merger. In systems that are not spectrally simple, the weak and

self-similar transitions are likely to occur nearly simultaneously. In 3D systems, a

subsequent mixing transition leads to fully-developed classical turbulence if the Reynolds

number is high enough. Because the post-transition interface region is more thoroughly

mixed in 3D than in 2D, its growth is more suppressed relative to the single-mode case.
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Each of these transitions has time, space, and seed requirements that must be met

before it can occur. The time requirement for the mixing transition may be given by a

viscous diffusion time for spectrally simple systems, but is more likely to be set by a

nonlinearity threshold for strong spike interaction and breakdown when the intial

conditions are spectrally complex.

The weak, 2D, and mixing transitions lead to increased small-scale mixing that

reduces the instability growth rate at least temporarily. Wherever it occurs, the self-

similar transition will eventually give accelerated growth if it is allowed to proceed

unhindered by system size or drive time constraints. For interfaces that have already

undergone a transition to self-similar growth, a subsequent mixing transition can only

inhibit future instability growth.

These conclusions are in large part born out by 2D and 3D Raptor calculations of

planar blast-wave-driven systems. The 3D calculations have not yet reached the freeze-

out stage, but do appear to exhibit a mixing transition despite a grid-resolution Reynolds

number only of order a thousand. Whether or not the current resolution captures enough

of the inertial range that further increases in resolution will be unnecessary remains for

now an open question.

The simulations show sensitive dependence on the initial conditions deep in the

nonlinear post-transition phase of the instability growth. Where the low mode 4 is

included in the initial conditions, the late-time mix width is much larger. It could be

argued that the boundary conditions are affecting the growth at this stage, but that effect

should be to inhibit the growth rather than suppress it. Perhaps if the transverse domain

could be made arbitrarily large and the drive sustained arbitrarily long, the shorts only
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and short-on-long systems would begin to look very similar. However, at 20 ns we are

already nearing the freeze-out stage, in which differences in perturbation amplitude will

be preserved at later times.

Thus three-dimensional effects do not add anything that will counter the tendency

of blast-wave-driven systems to remember some aspects of the initial conditions. For

supernova calculations, this means that an understanding of the initial conditions is

important for getting that late-time mix width correct. Experiments should include similar

initial conditions in order to be truly relevant to supernova. In particular, spectrally

simple initial conditions are of limited utility since even the process by which they

undergo transition may be different than with more realistic multimode spectra.
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Figure 1: (a) Target schematic (not to scale). (b) Variation in time of interface velocity

and deceleration.

Figure 2: (a) Initial spectral shapes used for the short-wavelength component in the 3D

calculations. Initial interface contour plots: (b) narrow gaussian (ng), (c) 1/k2, (d) narrow

gaussian shorts plus 2D mode 4, and (e) narrow gaussian shorts plus mode 4 “egg crate”.

Figure 3: Effect of dimensionality on single-mode growth: (a) amplitudes, (b) averaged

growth rate, and (c) log density images. The 3D growth rate initially saturates at about

√1.5 (rather than √2.5) times the 2D growth rate. (d) Late-time log density image from

mode 4 “egg-carton” interface. Despite nonlinearity a/λ = 7, regular single-scale structure

persists along much of the length of the spikes. However, a transition to turbulence

appears to have occurred in localized regions where shear layers from individual spikes

have merged. (e) An x-ray radiograph at 25 ns from a 2D short-on-long Omega target

shows indications of similar localized transitions (Ref. 31). The perturbation in the

experiment is less nonlinear both because it is 2D and the drive is five times less

energetic.

Figure 4: Perturbation amplitude and velocity histories from narrow gaussian and 1/k2

shorts-only cases. Results from 2D calculations (resolved to 512 ppb) with the same

spectral shapes are included for comparison.

Figure 5: (a) Mixing parameter and (b) log density plots from 2D and 3D ng shorts-only
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calculations.

Figure 6: Time evolution of (a) density spectra ρk, (b) k5/3 ρk, and (c) turbulent directed

energy spectra.The appearance of an inertial range in the spectra corresponds to the

increase in mixedness apparent in Fig. 9(a).

Figure 7: Perturbation amplitude histories from calculations with mode 4 (m4) in the

initial conditions. Results from 2D calculations with the same spectral shapes are

included for comparison.

Figure 8: Mixing in simulations with mode 4 (m4) in the initial spectra. The 2D

calculations show evidence of  weak transition at around 20 ns. The 3D single-mode

“egg-carton” perturbation also shows a transition at around 20 ns, which is the same time

that log density plots appear to show localized mixing transitions.  When 3D noise is

present, the transition happens much earlier (between 10 and 15 ns).

Figure 9: Log density plots of the evolving mix layer from the (a) 3Dm4+3Dng

calculation and (b) 2Dm4+3Dng calculations. In (a), the upper row of slices is taken from

a spike position, and the lower row from a bubble position. In (b), solid lines in parallel

slices denote approximate locations of transverse slices. Spike interaction (between the

mode 4 spikes) begins when a/λ ≈ 2.  A very clear transition to a well-mixed state has

taken place by 18 ns, at which point a/λ ≈ 5. In the 2D m4 case, the interior of the mix

region remains anisotropic in the transverse plane until the mixing transition has taken
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place. (c) Comparison with the analogous 2D calculation (2Dm4+2Dng) illustrates the

importance of 3D effects. The post-transition state depends strongly on the

dimensionality, but the process of transition proceeds similarly in 2D and 3D.

Figure 10: Density and energy spectra from the 3Dm4+3Dng and 2Dm4+3Dng

calculations. An inertial range is apparent by the time the mixing transition has taken

place. Even in the 2Dm4 case, the transverse velocity spectrum is nearly isotropic after

the mixing transition.
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