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1. Introduction 
 
The second axis of the DARHT flash X-ray facility at Los Alamos National Laboratory 
(“DARHT-II”) is a multiple-pulse, 18.4 MeV, 2 kA induction electron linear accelerator [1]. A 
train of short (~50 ns) pulses are converted via bremsstrahlung to X-rays, which are then used to 
make radiographic images at various times (nominally four) during a “hydrotest” experiment. 
The train of pulses is created by carving them out of a two microsecond long macropulse, using a 
fast switching element called a kicker [2]. The unused portion of the macropulse is absorbed in a 
beam dump. Thus, upstream of the kicker, two microseconds of beam are transported through a 
vacuum system roughly sixty meters long. These conditions involve length and, specifically, 
time scales which are new to the transport of high-current beams. 
 
A concern under such conditions are the macroscopic interactions between the electron beam and 
positive ions created by impact ionization of the residual gas in the vacuum system. Over two 
microseconds, the ion density can develop to a hundredth or even a tenth of a percent of the 
beam density – small, to be sure, but large enough to have cumulative effects over such a long 
transport distance. Two such effects will be considered here: the ion hose instability, where 
transverse forces conspire to pull the electron beam farther and farther off axis, and background 
gas focusing, where radial forces (with respect to the beam) change the beam envelope during 
the course of the macropulse. The former effect can cause beam emittance growth (affecting the 
ability to focus the beam on the target) and eventually catastrophic beam loss; the latter can 
cause either serious degradation of the statically tuned final focus on the converter target, or a 
pinching of the beam on the surface of the main dump to the point where the heat flux causes 
damage. 
 
The beam transport upstream of the kicker has two distinct phases. First, the beam is created and 
accelerated up to 18.4 MeV over a distance of about fifty meters. Then the true downstream 
transport begins: the beam drifts through a matching section in preparation for the kicker, over 
some ten meters; the long-pulse beam then travels about four more meters from the kicker to the 
main dump. In the accelerator, the beam energy is obviously not constant; the transport is 
emittance-dominated and done through nearly continuous solenoidal focusing. In the 
downstream section, there are only two discrete solenoids over the entire fourteen meters and the 
transport is largely ballistic. Since ion hose has been studied in the accelerator [3] and since the 
lack of continuous focusing is considered a concern with respect to ion hose in the downstream 
section, the focus of this study is only from the exit of the accelerator to the main dump. A more 
in-depth description of the baseline (ion-free) DARHT-II downstream transport, including 
description of the actual transport elements and their use, will not be presented in this document; 
such details can be found in the documents cited in the References. 
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The study of these effects will be done in stages. In the next section, the nature of the residual 
gas in the vacuum system will be considered, along with the various assumptions made in 
characterizing the creation of ions. Then the ion hose instability will be described in its simplest 
form. In the fourth section, additional features of ion hose will then be presented which attempt 
to capture some of the key behavior. Then a much more complete model using particle-in-cell 
(PIC) numerical techniques will be described, followed by details of the specific implementation 
used here. In section seven, the code will be benchmarked against results published in the 
literature. Section eight has the most relevant material: the actual study of the effects of ion hose 
and background gas focusing in the DARHT-II downstream transport region. In section nine, a 
simple experiment which can be tacked on to existing experiments is proposed in order to verify 
the modeling. Finally, the results are summarized and the very last section lists references. 
 
2. A Brief Examination of the Background Ion Creation 
 
There are two ingredients to determining the nature of the ions created in the vacuum system. 
One is the nature of the (neutral) residual gas in the system. The other is the ionization of that gas 
to create the ions. With respect to both ingredients, we will largely be presenting the work of 
others rather than deriving anything new from experiment or first principles. 
 
The residual gas in the system is composed of two parts: the background gas inherent to the 
vacuum system (i.e., characteristic of the pumps, the vacuum protocol, the materials present, 
etc.), and species desorbed from surfaces during the course of the beam pulse with its attendant 
heating due to beam scrape. The latter will be due to more than incidental contact: in the 
downstream region, the main dump will directly absorb most of the beam pulse, and in the 
course of the kicker switching to carve out the pulse train, the beam will sweep back and forth 
across the “septum” that necessarily divides the long- and short-pulse beam lines. 
 
Studies have been done to characterize both the species in the background vacuum [4] and the 
most likely to desorb from a heated surface [5]. In both cases, the dominant species is water. To 
simplify the modeling and to allow direct benchmarking with published results (Section 7), we 
will make the assumption that water is the only species present. 
 
Next is the ionization model. We assume: 

a) Beam impact ionization is the only mechanism – no cascading of secondary electrons 
and no contribution from ion-neutral collisions. 

b) The net charge density (beam plus ions) is always high enough that the secondary 
electrons are immediately ejected to the walls, so that the neutrals are a source of positive ions 
only. Given the lack of any magnetic confinement in the downstream section, this should be a 
good assumption. 

c) The depletion of neutrals due to ionization is negligible, i.e., the background neutral 
gas density is unchanged by ionization. 

d) There is no recombination. 
 e) When given a background pressure in torr, the neutral density is determined from the 
ideal gas law at 300 K: 
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These assumptions allow the ion density to be determined from a trivial rate equation relating the 
ion density to the beam density nb, the neutral density no, and a cross section σ for impact 
ionization: 
 

 
 
In the case of a beam with a uniform, hard-edged profile  of radius rb that does not vary in space 
or time, we can estimate the neutralization fraction f, ni/nb: 
 

 
 
For the cross section, we take the value from [3], σ=10-22 m-2. Thus at a background pressure of 
10-7 torr (no of 3.3x1015 m-3), the neutralization fraction is 
 

 
 
or 2x10-4 at the end of 2 µs, which justifies assumption (b). For a 2 kA beam with a radius of 5 
mm (the smallest which might occur in the downstream region), the peak ion density at the end 
of the pulse would be 1014 m-3, which justifies assumption (c). 
 
From this, one can estimate the effect of background gas focusing on the beam. Considering only 
the space-charge term in the RMS envelope equation, for a 1 cm, 2 kA, 18.4 MeV beam 
transported 10 meters through f=10-4, we get 
 

 
 
which may be enough to influence the symmetry of the short-pulse transport through the 
quadrupoles in the short-pulse line, but is not threatening to long-pulse transport to the dump.  
The effect of higher pressures will be seen below. 
 
 
 
3. The Ion Hose Instability 
 
In this section we consider an extremely simple ion hose scenario in order to give the reader a 
physical picture of how the instability works. Consider a relativistic electron beam with a 
uniform radial current profile with hard-edge radius rb and charge density ρb=-I/cπrb

2. Suppose 
that this beam is traveling through a stationary column of ions that has the same radial profile but 
whose charge density is given by ρi=-f Ζρb, where f is the neutralization fraction discussed in the 
previous section and Z is the charge state of the ions. 
 
Let us make the incorrect but highly simplifying assumption that both the beam and the ions are 
completely fixed in cross section, i.e., there is no radial motion of either species with respect to 
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its centroid. We will allow both the beam and the ions to shear along their transverse planes (note 
this is not bending since we are not allowing the normal direction of a differential slice to rotate). 
We consider motion in only one direction in the plane, the x direction. We also will ignore any 
axial forces that might be required for true self-consistency, so that the ions always remain in the 
same plane and the axial beam motion is fully specified by vz=βc, for constant β. Note that the 
fixed-plane assumption means that we will be ignoring the magnetic forces of the beam current 
on the ions, which would tend to rotate them out of their planes. Keep in mind that, in this 
section, all assumptions are being made to allow a simple picture, not because the assumptions 
are physically valid! 
 
Now restrict our attention to what happens downstream of a fixed axial plane, which we will 
label as z=zo, where we will consider the beam to be “born” with a fully specified centroid 
position in the transverse direction. Let this position vary with time. Since we have not added 
any forces to our system, any given slice labeled by its injection time ti will retain its initial 
centroid position xo(ti) as it moves downstream. In the fixed frame of an observer in the lab, the 
beam will appear to wiggle as the different initial positions are convected downstream. In 
pictorial form, consider the centroid motion of each slice as it is born at zo, for the case of a 
simple oscillation at fixed frequency w: 
 
 
 
 
 
     
 
 
 
 
 
 
 
At any time t, a beam slice at some arbitrary location z must have been born at ti=t-z/βc so that 
the centroid location of the beam as a function of t and z is given by sin ω(t-z/βc). A snapshot in 
time of our beam/ion system as function of z would look something like this: 

 
Let us now add transverse forces to the picture. We start with the ions. Under our assumption of 
a rigid cross section, the ions cannot exert a force on themselves. However, the beam produces a 
static (we assume) radial electric field which will act on the centroid of the ions. (Formally we 
need to average the field over the cross section of the ions but for simplicity we will neglect what 

ti xo 

Beam cross section versus injection time at zo 
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happens at the edges and assume the average equals the value at the ion centroid xi). As a 
function of displacement r from the center of the beam xb, the electric field grows linearly from 
zero until the edge of the beam is reached, then decays as 1/|r|. We will restrict ourselves to the 
linear regime within the beam. The direction of the field is along the displacement vector. Since 
we are restricting ourselves only to displacements in x, r = (xi – xb)ex, the field is in the x 
direction and is given by 
 

 
 
and the equation of motion for the ion centroid is 
 

 
 
where we use partial derivatives since xi = xi (t,z). Z is the ion charge state, A is the atomic mass, 
and mp the proton mass; mi=Amp. 
 
The resulting equation is that of a driven oscillator, which immediately sheds some light on 
where an instability can arise, since the oscillator has a resonance at frequency ωo. Without going 
through the exercise of solving for the behavior of a driven oscillator, we will state that the ion 
displacement can grow without bound if the beam centroid motion has frequency content at ωo – 
even if the magnitude of the beam displacement is small. Of course, we are not really interested 
in the fate of the ions – we want to know what happens when we couple a large ion displacement 
back to the beam! 
 
The above derivation holds, to a certain point, for the beam as well. The most obvious changes 
are using -q/γme instead of Zq/Amp, and the scaling of the ion field strength by the neutralization 
fraction, f.  For convenience we will still write the answer in terms of ωo. 

 
 
There is a subtle problem with this result: the partial derivatives are not the same. The ion 
equation is taken at constant z while the beam equation is taken at constant ti – because the 
electron equation of motion follows individual particles and we have labeled our particles (or 
transverse slices of them, all particles in the slice being essentially the same) by their injection 
time. We can cure this mismatch by two changes of variable; we will map the ion equation from 
(t,z) to (ti,z) and we will map the beam equation from (ti,t) to (ti,z). For the ions, 

   
and the chain rule gives 
 

 
 
For the beam, 
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and 
 

 
 
which does not change the appearance of the equations much 
 

 

 
 
but does insure that the two systems are described in a compatible set of variables. If we 
normalize t by 1/ ωo and z by βc/f1/2 ωo we arrive at the very simple system 
 

 
 
where dots and primes are partial time and spatial derivatives, respectively, in the normalized 
coordinates (which we will still write as t and z for simplicity). Expanding in plane waves 
proportional to ei(kz-ωt) we can find a dispersion relation 
 

 
 
which we will solve for k in terms of real ω since our input to the system is essentially the 
behavior of the beam centroid as a function of ti. The results are plotted below. 

 
Since this is an initial value problem, turning the system on at ti=0 will, in the unbounded Fourier 
space of the above dispersion relation, have frequency content at all frequencies even the beam 
oscillates like a pure sine wave at ti=0+. Thus the system is guaranteed to pick up a negative 
imaginary component to k and grow exponentially in z. This assumption that the instability is 

ω 
kr 
ki 
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indeed convective will not be proven here but the reader can find the appropriate testing 
procedure described in [6]. 
 
4. Important Features of Ion Hose 
 
The simple picture given in section 3 is only an illustration of the basic mechanism – it does not 
actually have much in common with  ion hose in high-current induction linacs. The good news is 
that most of the missing features, while complicating any attempt at pen-and-paper analysis, tend 
to reduce the strength of the instability. They all do so via a similar mechanism – phase mixing 
of many more ion components than the single fixed-area rod considered above. 
 
How phase mixing reduces the instability can be understood by considering the previous 
example but with a second column of ions. Suppose (never mind why!) the motion of that 
column is defined by xi,2 = -xi,1. The force on the beam is the sum of the forces from the two 
columns; since the force is linear in the ion position, the terms in the beam equation proportional 
to the ion displacement will sum to zero, leaving a simple oscillator equation for the beam as it 
moves with respect to an “average” ion column whose centroid is fixed at x=0. Since the beam is 
described via initial conditions in time, not space, there is no way to drive the oscillator in a 
resonant fashion and the system is stable. 
 
Here are some sources of phase mixing in real ion hose. The reader will undoubtedly be able to 
think of more: 
 
•   Ions are created across the entire cross section of the beam. Thus, each particle starts with zero 
velocity but at a different position in the potential well – the average particle position is always 
the beam centroid (but only at the time of creation). 
•   Ions are created continuously in time. Early in the pulse there are so few ions that their 
influence on the beam, regardless of their offset, is negligible; at any time, a population of ions is 
being created with zero average offset from the beam. 
•   The force between the beam and ions is not linear. There is no single frequency that 
characterizes the ion motion and the transverse distribution of both the beam and ions is not 
uniform. 
•   The ion population does not form a shape with rigid cross section – far from it! A set of ions 
born across the area of a beam with circular cross section will exhibit radial motion on a fast 
time scale. 
•   The ion population does not consist of a single species. Even in linear forces, each species will 
have a different characteristic frequency because of the dependence on mass. In fact, this is the 
inspiration for the spread-mass model [7], which approximates the nonlinear motion of a single 
species with a carefully weighted range of frequencies (masses), meant to capture the spectrum 
of the anharmonic motion, but in a linear system. 
 
Other effects are not linked to phase in the transverse plane, but in the axial direction. If the 
average ion position in z is reduced, the effect on the beam can be reduced (but not as a general 
rule, since z variation in the ion forcing terms can couple resonantly to the beam at arbitrarily 
small amplitude). Some effects along these lines are: 
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•   The beam and ion motion cannot in general be decoupled into x and y planes. The presence of 
an axial magnetic field will cause a radial force to lead to orbital rather than purely radial motion. 
•   The beam will not in general have a fixed radius as it propagates axially. Even in the simple 
linear picture, the frequency of the ion motion will vary with z and so the average ion position 
will not have fixed phase. 
 
Simple illustrations of some of these phenomena are as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Many of the above effects have been studied on an individual basis, both in references already 
cited and (particularly regarding envelope variation) in [8]. However, to study them all requires 
resolution of the ion phase space that makes analytic study extremely difficult. Without dwelling 
on additional algebra, then, we will turn to numerical modeling. 
 
 
5. PIC Modeling of Ion Hose and Background Gas Focusing 
 
Particle-in-cell (PIC) simulation of ion hose allows a much fuller treatment than any tractable 
analytic approach. To perform the studies given in the remainder of this document, the ADCGlib 
beam physics library, an object-oriented toolkit written in C++ and developed at LLNL, was 
expanded to include some specialized facilities for large-scale ion hose simulations. 
 
The main advantage of PIC is that it allows one to follow the evolution of the detailed phase 
space of both the beam and the ions, with reasonable resolution. Note that the details which 
follow are those used in these particular ion hose simulations and do not represent the way in 
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which all beam simulations are done with ADCGlib – the library has a variety of models 
available. 
 
The beam is divided into transverse slices, each slice representing a particular time ti at which 
particles enter the system. The slice is composed of macroparticles, each representing a large 
number of electrons, sampled from a given initial phase space f(x,y,px,py;pz,zo, ti). The phase 
space f is normalized so that each slice carries a current I. The vector components of p are the 
normalized relativistic momenta, γv/c. 
 
Particles are “pushed” via a fourth-order Runge-Kutta step according to the Lorenz force, written 
in terms of propagation in the axial direction: 
 

 

 
 
The fields are assumed quasi-static and therefore constant over the (very short) time interval of a 
particle step ~ Δz/c. They are also assumed to be paraxial; that is, within any transverse slice of 
the problem it is assumed that the charge and current densities, determined by the PIC statistics 
of the beam and ions at that slice, do not vary in the axial direction. The applicable field 
equations are 
 

 
 

 
 

 
where the Laplacian operates on the transverse coordinates only. The subscript “ext” indicates 
that these components are fully specified external fields. Note that the ions do not contribute to 
the axial current. 
 
The pipe is taken to be a perfect conductor with a circular cross section. This sets the boundary 
conditions that both the scalar and vector potential must go to zero on this surface. Solution of 
the field equations is done by breaking the sources into Fourier modes in θ via FFT and solving 
the resulting set of uncoupled radial equations. 
 
The ions are sampled and pushed via PIC similarly to the electrons, but with additional 
assumptions. There is no axial velocity. The motion is assumed non-relativistic. For the 
downstream transport study but not the benchmarking runs, the ions are also assumed to be 
unmagnetized, for reasons to be explained later (even in the magnetized case, only Bz is used). 
The ions are born with zero initial velocity, so the phase space from which they are sampled is 
just the density of ions created within a time step Δt in accordance with the model outlined in 
section 2: 
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The sampling process is carried out in two steps. First, a low-resolution sweep of the bounding 
rectangle of the beam is carried out in order to estimate the beam area, which is required to 
convert the local ion density to an actual number of macroparticles. Then the desired number of 
samples (new ions per time step) is done within the area of the beam. Successful samples are 
weighted by the beam current density; samples at locations of zero density are rejected. 
 
The physical system (as already implied by the paraxial field assumption) is itself divided into 
slices of finite thickness (the beam slices are essentially slices of finite time) in the axial 
direction. To avoid confusion with the beam slices, the axial slices will hereafter be referred to as 
“chunks”. Each such chunk has its own population of ions that evolves independently of the 
other chunks. Consider the collection of beam slices to be a deck of cards. Each card is fed, one 
by one, into a given chunk of pipe. The passage of one card represents the passage of a fixed 
amount of time at that axial location. The deck of cards is collected at the output of that axial 
chunk, then fed into the next, until the beam has been transported through the entire domain. In 
this picture, only one axial chunk of ions needs to evolved at any given stage of the process. 
 
 
 
 
 
 
 
 
 
 
One additional bookkeeping process is required in order to maintain tractability of the problem, 
even assuming considerable computational resources. To give a feel for the scope, suppose the 
number of new ions created at each time step is fairly modest, say 40. With time resolution of 0.1 
ns, the population of ions at each axial chunk is 8x105 by the end of the run. Suppose that, on 
average, half that number is pushed at each time step. Then a 50 m simulation with 3 cm 
resolution (as done for the benchmark runs, see section 7) will involve ~1013 macroparticle steps 
before all is said and done – the work in pushing the beam is almost negligible. Given that each 
macroparticle step involves several degrees of freedom and various field evaluations, this is a 
very large number of operations to complete within any reasonable amount of time. Thus, to 
reduce the scope of the problem almost an order of magnitude, the ion population per chunk is 
capped at about 105. Whenever the population reaches 1.1x105, 104 macroparticles are chosen at 
random and discarded; the sum of their charge is evenly distributed among the remainder. Since 
the down select is done randomly, no attempt is made to force conservation of any quantity other 
than charge. 
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6. Numerical Details 
 
The following parameters are used in all simulations that follow: 
 
Time resolution       0.1 ns 
Axial resolution = Δt/c      3 cm 
Number of radial grid points      150 
Number of azimuthal modes      128 
Number of macroparticles per beam slice    3000 
Number of ion macroparticles created per time step, per slice 40 
Beam current        2 kA 
Ion charge (in units of q)      1 
Ion atomic mass       18 
 
Note that the axial resolution is tied to the temporal resolution. This is not a Courant condition in 
the usual sense (the quasi-static field calculation is stable regardless of step size) but linked to the 
fact that the time resolution is set by how fast the ion phase space is evolving. Since time is a 
fixed parameter for the beam Runge-Kutta push (which, recall, is done in z, not t), the largest 
spatial step for the beam corresponds to the longest amount of time over which the fields are 
considered unchanged – which is the time step for the ions. A more sophisticated push technique 
would allow these quantities to be uncoupled, especially since the spatial variation for the 
parameters of interest is very long wavelength; but the present technique was ready to use 
without any additional bookkeeping or code development. 
 
The radial resolution can be determined once the pipe size is known. For the benchmarking 
studies, a pipe radius of 6 cm was used, giving a resolution of 0.4 mm; for all other runs, an 8 cm 
radius was used, for a resolution of 0.53 mm. 
 
The number of azimuthal modes has been criticized by some as “excessive” and that only 
monopole and dipole terms are significant. Given that the simulations are meant to capture 
emittance growth in beams that can move off axis by their own diameter, this is incorrect. So 
long as the center of the polar system is the pipe origin and not the beam centroid – which must 
be the case since the pipe sets the boundary conditions – high order is required to capture the 
field structure at the location of the beam. Another way of seeing this is that for large beam 
displacements, the X and Y directions in a Cartesian frame would have to have similar 
resolutions; the same remains true in a Fourier decomposition. In this case, the advantage to the 
Fourier decomposition is simply the computational efficiency of the FFT given the boundary 
conditions, not because it is a more efficient representation of the eigenmodes. 
 
The simulation algorithm was made parallel by the use of the Message Passing Interface (MPI). 
An assembly line technique was used which allowed very good load balancing and a minimum 
of inter-process communication. Consider a simulation of axial length L which is broken into 
Ntot=L/Δz axial chunks. If N processors are available, each is responsible for Nc=Ntot/N 
contiguous chunks. (Since Ntot/N is not in general an integer but Nc must be, the total simulation 
ends up covering a length slightly shorter than L.) The beam is represented by Ns slices in time. 
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The initial state of these slices is determined by the incoming phase space and the initial 
perturbation put on the beam centroid. One beam slice at a time is transported through all Nc 
chunks of a given processor, then handed off to the next processor. The first processor creates the 
incoming beam slices as it needs them; later processors receive these slices one at a time; thus, 
storage is dominated by the field solutions and the ions. For the resolutions quoted above, a 50 m 
simulation spread over 32 processors requires on the order of 300 MB of RAM per processor, a 
modest requirement. At any given time, the relevant quantities of interest are output to disk 
rather than stored in memory. 
 
The main algorithm that drives the various ADCGlib components is listed in the Appendix. The 
ADCGlib objects themselves are not given. 
 
7. Benchmarking the Code 
 
Since the ion-related objects and FFT solver are new to ADCGlib, it is imperative to benchmark 
the code against a known quantity in order to believe the results of such a large-scale simulation. 
This was done by comparing ADCGlib simulations to results published in the literature using the 
commercial code LSP [3]. The cases considered in the reference are meant to represent not the 
downstream transport but the accelerator itself, and are hence a much longer distance, some 50 
meters. The particular runs chosen for comparison are the constant-energy cases with uniform 
background pressure. The beam energy is 12.5 MeV, representing the average value in the 
accelerator, and has a constant RMS radius of 5 mm and an emittance of 1000 mm-mrad, 
normalized Lapostolle (2x10-5 m-rad un-normalized Lee-Cooper). The corresponding magnetic 
field for matched transport, found by considering the RMS envelope equation, is 
 

 
 
which gives a value of 0.083 T. In this expression Io is the Alfven current for electrons, ~17kA. 
 
The initial perturbation on the beam is a fixed-frequency oscillation in one plane with an 
amplitude of 1% of the radius, 50 µm. The chosen frequency is 21.6 MHz; the full explanation is 
given in the reference, but the basic explanation is that this corresponds to maximum growth 
according to the spread-mass model. 
 
The input phase space for the ADCGlib runs is KV but the input phase space for the LSP runs is 
Gaussian. This is, strictly speaking, a mistake in the benchmarking process and it has not been 
addressed due to time and funding limitations. However, some comparisons done for the 
downstream transport region, discussed in the next section, indicate that the physics is not 
terribly sensitive to the beam distribution – a fortunate turn of events, since we have no way of 
knowing what the DARHT-II phase space will actually look like. (As often as people scoff at the 
unphysical nature of a KV beam, the author has never seen a truly Gaussian one, either.) 
 
The resolution of the LSP simulations in the transverse direction is lower by a factor of about 
three, 1.25 mm versus 0.4. The axial resolution is much lower, 30 cm versus 3. The resolution of 
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the ion “birth” phase space is very much lower, 1 macroparticle per time step rather than 40. 
These numbers are not in the reference but come from [9]. 
  
The runs are done at three background pressures, 1x10-7, 3x10-7 and 6x10-7 torr. The ADCGlib 
run times are about two days on 32 CPUs, per case. The output quantities available for 
comparison are the centroid of the beam and the ion column, plotted as a function of time at the 
fixed location of the accelerator exit. The figures are on the following pages. 
 
Overall, the agreement between the codes is acceptable but not spectacular. The nonlinear 
saturation amplitudes agree well but the linear growth rate tends to be slower in the ADCGlib 
runs, especially at the lower pressures. The ADCGlib curves appear stretched out relative to their 
LSP counterparts. It is unclear at this time what could cause a difference that is noticeable but 
not enormous.  
 
•   The lower spatial resolution of the LSP runs should still be adequate to capture the centroid 
motion (although perhaps not emittance growth, but that is not compared here).  
•   The lower ion phase space resolution in LSP may be a factor; the use of the KV phase space 
with ADCGlib may also be a factor. 
•   For these runs, the v x Bz term was retained in the ADCGlib equation of motion for the ions, 
whereas the LSP ions are unmagnetized, but the latter is a good assumption and is not likely to 
have produced a large difference. 
•   The details entering the nonlinear regime may be dependent on the phase of the initial 
perturbation. 
•   The 6 cm pipe size used with ADCGlib is much smaller than the pipe size in the DARHT-II 
accelerator (~12 cm), and at low values of the neutralization fraction, the image forces that an 
offset beam experiences from the pipe wall at this size are in fact comparable to the ion hose 
contribution (this is not true for the entire pulse). 
 
However, since these runs are the most time-consuming of any required by this entire study and 
since additional time and funding are not available, the agreement is considered “good enough” 
and we shall move on to the downstream transport region. 
 



 

 15 

LSP – 1x10-7 torr 

ADCGlib – 1x10-7 torr 
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LSP – 3x10-7 torr 

ADCGlib – 3x10-7 torr 
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LSP – 6x10-7 torr 

ADCGlib – 6x10-7 torr 
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8. Downstream Transport Study 
 
In this section, we deal with the main concern of this report: transport in the downstream region 
of DARHT-II, in the long-pulse line to the main dump. We consider four sets of cases. In the 
first, the beam is transported through the predicted baseline vacuum conditions. In the second, 
transport is through localized perturbations of that baseline, simulating a local pressure rise due 
to outgassing in the septum and dump area. In the third, to get a general feel for the overall 
pressure requirements in case the predicted profile is not accurate, the beam is transported 
through uniform profiles of various pressures. In the fourth, a couple of cases from the first set 
are reconsidered but with a Gaussian beam phase space; the first three are done with a KV beam. 
 
These simulations differ from the benchmarking runs in a few ways. First, the pipe size has been 
increased to the correct value of 8 cm. Second, the initial beam perturbation is not at a fixed 
frequency but is random with a flatband power spectrum from 0 to 100 MHz; the RMS value of 
the transverse displacement is one percent of the initial radius, and the phase in the transverse 
plane varies randomly. Details of how this is generated can be read directly from the source code 
in the Appendix. The third difference is that the ion equation of motion does not have the 
magnetic field term. This is a good approximation but was done for less honorable reasons: since 
the magnetic field is localized to small sections of the total, and since computation time is 
dominated by pushing ions, MPI load balancing would be broken because some processes would 
need to evaluated field quantities that others would not. The fourth difference is the beam 
energy, which outside the accelerator is obviously at its maximum value of 18.4 MeV. Finally, 
the emittance is at the specification for the downstream transport, 1500 mm-mrad normalized 
Lapostolle. 
 
8.1. The Baseline Case 
 
The baseline pressure profile, assuming no gas desorption due to localized beam heating during 
the course of the pulse, is taken from [10]; it is plotted below. The average pressure is about 
8x10-8 torr. A detailed transport layout will not be given here, for the reasons stated in the 
introduction, but the following conditions are used: the beam size entering the calculation is 3.54 
mm (5 mm edge); the S0 solenoid is set to 0.187 T; the S3 solenoid is set to 0.177 T. Since 
ADCGlib is constrained to round pipe cross sections and since the beam moves far off axis 
following transport through the kicker, the quad septum, and the dipole ahead of the main dump, 
there are no quadrupole or dipole elements included in this simulation. Thus the beam stays 
round going into the dump even though this would not be the case in reality. This is not 
considered germane to the question of ion hose. 
 
The baseline beam envelope, in the absence of any ions, is also given below along with the 
corresponding calculation in [11]; they agree extremely well. Note that the Transport results 
from [11] appear shorter in length but this is because they follow the true bend of the beam 
centroid for a path length of about 14 m but are plotted versus the projected Z coordinate. 
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The quantities of most interest in these simulations are the centroid motion, the beam emittance, 
and any change in the beam envelope due to radial gas focusing forces. The emittance and 
envelope are plotted below versus z, at t=0 and t=2 ms. The beam centroid location is plotted 
over the course of the pulse at z=0 and z=14 m. 
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Thus, from these results, neither ion hose nor gas focusing is a major concern in the baseline 
configuration. The change in the beam envelope is not negligible with respect to transport 
through the short pulse line, but it can be dealt with in that section and does not pose a threat to 
the main dump from excessive heat loading by a pinched beam. The emittance is completely 
unaffected (the spikes in the curve are numerical artifacts from the de-spinning algorithm used in 
ADCGlib to account for a beam with correlated X and Y directions in a magnetic field). The 
centroid motion actually appears to damp – although this is not quite the case. Let us consider 
another way of examining the centroid behavior: treating the centroid position as a complex 
signal X(t) + iY(t) at a given location and looking at its power spectrum. The input spectrum of 
the flatband signal described at the beginning of this section looks as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The spectrum at the location of the dump can be examined the same way; we can see the relative 
growth at a given frequency by looking at the normalized spectrum P/P(z=0). The result for the 
baseline case indeed shows damping at many frequencies but growth in a region in the vicinity of 
25 MHz: 
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8.2 Localized Pressure “Transients” 
 
Let us now consider the effects of gas desorption from the septum walls and the main dump as 
the beam deposits energy on these surfaces during the course of the long pulse. We will do this 
by incorporating a localized pressure rise, relative to the baseline, at the end of the transport line, 
that is present at t=0 (so it is not really a transient). To bound it in space, we will assume that it 
extends no farther upstream than the first pumping station after the kicker. The values chosen for 
the simulations are 5x10-7, 1x10-6, and 5x10-6 torr, to insure that the threshold for unacceptable 
behavior is found. These modified pressure profiles, along with the baseline, are shown on a log 
scale in the following plot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results of the simulations are shown on the following three pages. In each case, there is a 
plot of the normalized power spectrum at the end of the transport line, the centroid trajectory at 
the start and end of the transport line, the beam envelope versus z at the beginning and end of the 
pulse, and the beam emittance versus z at the beginning and end of the pulse. 
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The threshold pressure rise for a localized occurrence is somewhere over 1x10-6 torr. Note that it 
is not until the 5x10-6 torr case that there is emittance growth, and even there it is modest given 
the large amplitude of the beam motion. Thus it appears safe to say that emittance growth will 
not be a concern for any acceptable level of centroid motion. 
 
The threshold for strong gas focusing also appears to be at the 1x10-6 torr level. Note once again 
that this is defined in terms of a threat to the main dump, not to the quality of transport in the 
short pulse line. 
 
In perspective, 1x10-6 torr would be a considerable rise over the baseline. Under this scenario, 
there is plenty of margin in the safety of the downstream transport with respect to ion hose. 
 
8.3 Uniform Pressure Profiles 
 
The baseline pressure profile given in section 8.1 is a calculation, not a measurement. It would 
be useful to know at what uniform pressure level for the entire 14 m length does ion hose 
become problematic; certainly an unexpectedly high pressure along the whole line is a worst-
case scenario. Thus here are the results from three additional simulations where the pressure 
profile is constant in z, at values of 3x10-7, 6x10-7, and 1x10-6 torr. Only the centroid trajectories 
and power spectra are shown, on the following page. 
 
For this scenario, the threshold pressure is lower, in the vicinity of the 6x10-7 torr case. Note that 
this is still more than six times higher than the average baseline pressure is expected to be. 
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8.4 Studies with a Gaussian Phase Space 
 
A valid criticism of the above results is that they are all performed with a KV phase space for the 
incoming electron beam. The LSP simulations used as benchmarks used a Gaussian beam, and 
while the real DARHT-II beam will be neither Gaussian nor KV, it is likely to be much closer to 
the former. The main concern that has been expressed is that a KV beam has a truly linear radial 
force on the ions within the body of the beam and so lacks some of the phase-mixing effects 
present in a more realistic potential. That this should result, if there was a difference at all, in 
more conservative predictions did not satisfy critics, and so additional runs of the downstream 
transport have been done with a Gaussian beam to compare with the KV results. 
 
On the subsequent two pages are runs with the baseline pressure profile and a 1x10-6 torr 
localized pressure rise. The centroid motion, emittance, and envelopes are largely 
indistinguishable from their KV counterparts. The power spectrum is somewhat different – the 
peak is lower but broader. An interesting comparison is the sum under these curves compared to 
the KV cases: 
 

  Baseline  1x10-6 local rise 
KV  21.1   664 
Gaussian 26.3   658 
 

So even though the shape of the curves is different, the average amplification is basically the 
same. This is perhaps not as surprising a result as it might seem if one considers the field profile 
of the two distributions “everywhere” rather than just inside the beam (which is ill-defined in the 
Gaussian case). It has been established that ion hose is characterized by a considerably larger ion 
displacement than beam displacement, so that even for modest ion hose growth (such as the 10-6 
torr case) there will be ions beyond the edge of the KV beam and hence in a nonlinear field. 
Since the numerical beam edge is defined by a 3000 macroparticle PIC phase space, then an ion 
creation rate of 40 macroparticles per time step means the beam edge is statistically likely to be 
found at a time only 0.4% into the simulation. 
 
There are two additional plots at the end of this section. The first shows the overlap of the ion 
population relative to the beam edge at the end of the pulse in the 10-6 torr case (chosen because 
it has some growth but is still small amplitude) for the KV beam. The ions extend to a distance 
some 10% larger than the beam size. There is no equivalent information for the edgeless 
Gaussian, but let us assume that the ions are themselves smeared over a Gaussian with 
σion=1.1σbeam. The second plot shows the field profiles of the two beams with the intensity of the 
color weighted by the ion density occupying that radius. Since the “actual” ion density is not 
used in either case – such information was not preserved in the simulations – these plots are not 
rigorous proof of anything, but as an estimate of the relative occupancy of the linear versus 
nonlinear regions of the field profiles, they offer some explanation for why the difference in 
distributions is not a major factor in the physics of ion hose.
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9. Proposed Experiment to Verify Results 
 
Ion hose over this scale of time and length is a complex problem and it would be foolhardy to put 
blind faith in purely computational conclusions. An opportunity exists to perform a simple set of 
experiments to verify the predictive capabilities of the code. There is a planned series of scaled 
experiments to look at the beam stability (in the presence of BBU and perhaps ion hose also) 
within the DARHT-II accelerator, at an energy of 8 MeV and a current of 1.4 kA. It would be a 
simple matter to piggyback some downstream transport experiments onto this configuration as 
well. 
 
One limitation to this experiment is that the downstream line will terminate only about 5 m from 
the accelerator exit, at the location of the “shuttle” dump whose specific purpose is machine 
commissioning. There are no other transport elements on the line. In order to see convincing 
evidence of ion hose under these circumstances, it may be necessary to deliberately raise the 
pressure in that downstream reason to fairly high levels (~1x10-6 torr). 
 
In addition to the pressure, there is another knob: the size of the beam exiting the accelerator. 
This can be used to verify the importance of envelope variation in reducing the ion hose growth 
rate. A small, emittance-dominated beam leaving the accelerator will expand rapidly, whereas a 
large beam will not. 
 
The data collection and reduction for these experiments is very similar to the types of results that 
come directly from the simulation. A beam position monitor at the end of the accelerator and just 
before the shuttle dump can be used to record the centroid motion with time. A power spectrum 
analysis of that data should provide results directly comparable with those of the simulation. 
 
On the following pages are simulations of these experiments, in a uniform pressure profile with 
magnitudes of 5x10-7, 8x10-7, and 2x10-6 torr. Two beam sizes exiting the accelerator are used, 5 
mm and 2 cm (rms). The first page shows plots of the beam envelope with background gas 
focusing, which shows that the pressure and the beam envelope are not truly decoupled effects at 
these levels. The plots on the second page show that strongly measurable power amplification 
does not occur until pressure into the 10-6 range, and then only for the small beam. It is 
interesting to note that the small initial beam size, with significant subsequent envelope 
variation, leads to a stronger ion hose effect than for the larger beam with flatter envelope. 
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10. Conclusion 
 
In this report, we have studied the effects of the ion hose instability and background gas focusing 
in the downstream transport section of the DARHT-II accelerator and found that they are not 
significant, with appreciable margin of safety. 
 
The ADCGlib beam physics library was used to perform a series of simulations. First, a set of 
benchmark calculations was performed to compare ADCGlib results with those published in the 
literature. The comparison has some outstanding issues but is good enough for the purpose at 
hand. Then, a number of scenarios in the downstream transport line were considered. The 
baseline case, using a predicted background pressure profile, shows no effects of ion hose, gas 
focusing, or emittance growth. Localized pressure increases relative to this baseline, meant to 
simulate the effect of gas desorption from the septum region and main dump due to beam 
heating, do not have an effect until extreme levels, more than thirty times the baseline value. A 
uniform pressure profile over the 14 m transport length would not have an effect until a value six 
times higher than the average of the baseline. 
 
In all scenarios, centroid motion and gas focusing become significant at about the same pressure 
level. Emittance growth is not appreciable until after the other effects become serious. A 
preliminary comparison of runs done with a Gaussian beam to the results with a KV beam shows 
that the details of the beam distribution are not important. 
 
A simple experiment to verify these simulations is proposed as an add-on to an existing set of 
DARHT-II experiments planned for 8 MeV, 1.4 kA operation. The experiments should provide 
results that are easily compared with code, namely the power spectrum amplification of the 
centroid motion over a 5 m drift space, at high pressure.  
 
11. References 
 
1. Burns M.J., et al. “Status of the Dual Axis Radiographic Hydrodynamics Test (DARHT) 
Facility.” BEAMS 2002, Albuquerque, NM, pp. 139-142. 
 
2. Chen Y.J. et al. “Experimental Results of the Active Deflection of a Beam from a Kicker 
System.” LINAC 1998, Chicago, Il, pp. 1007-1009. 
 
3. Genoni T.C., Hughes T.P, “Ion Hose Instability in a Long Pulse Linear Induction 
Accelerator.” PRST-AB vol. 6, 2003. 
 
4. Behne D., Bertolini L. “Vacuum Desorption Studies of DARHT II Beam Dump Materials.” 
UCRL-ID-147135, Section 4.2. This document is export controlled. 
 
5. Hughes T.P., Davis H. “Effect of Stimulated and Thermal Desorption in DARHT-2.” PAC 
2003, Portland, OR, pp. 120-122. 
 
6. Bers A. “Space-Time Evolution of Plasma Instabilities – Absolute and Convective.” 
Handbook of Plasma Physics, Vol. 1, North-Holland Publishing 1983, pp. 451-517. 



 

 36 

7. Buchanan H.L. “Electron Beam Propagation in the Ion Focused Regime.” Physics of Fluids 
vol. 30, no. 1, Jan 1987, pp. 221-231. 
 
8. Chen Y-J., et al. “Downstream Transport System for the Second Axis of the Dual-Axis 
Radiographic Hydrotest Facility.” BEAMS 2002, Albuquerque, NM, pp.147-150. 
 
9. Hughes, T.P., private communication. 
 
10. Bertolini L., et al. “DARHT II Downstream Transport Vacuum System Calculations.” 
UCRL-ID-147135, Section 4. This document is export controlled. 
 
11. Paul, A.C. “The DARHT2 External Beamline.” UCRL-ID-147135, Section 1. This document 
is export controlled. 
 
 
12. Appendix: The MPI Version of the Main Algorithm 
 
#include "mpi.h" 
#include <cstdlib> 
#include "planar_emitter.h" 
#include "gauss_emitter.h" 
#include "align_slice.h" 
#include "pipe_pSC_FFT.h" 
#include "ions_XY.h" 
#include "align_solenoidAP.h" 
 
using namespace ADCGlib; 
 
// In these coords, 10.7 is the pump station past the kicker; a 
// septum or dump related pressure rise is assumed to occur after this region 
f_type pressure(f_type z, const f_type Prise) { 
 z += 2.733; // move to origin of VacCalc simulation 
 if (z<0.0)   return(2.1e-7); 
 if (z>=10.7) return( Prise); 
 f_type zs[9] = { 0.0,    0.8,    2.0,    2.4,    2.6,    4.9,    6.6,    9.4,    10.7 }; 
 f_type Ps[9] = { 2.1e-7, 1.3e-7, 1.2e-7, 3.2e-7, 1.6e-7, 7.0e-8, 1.1e-7, 8.0e-8, 3.0e-8 }; 
 Ps[8] = Prise; 
 uint i=1; while(zs[i]<z) ++i; 
 uint j=i-1; 
 return(Ps[j] + (Ps[i]-Ps[j])*(z-zs[j])/(zs[i]-zs[j])); 
} 
 
class constEB:public em_source { 
 public: 
  constEB(const f_type B00):em_source(em_source::fB) { B0=B00; return; } 
  em_source* clone_as_em_source() const { return((em_source*)(new constEB(*this))); } 
  void B(const f_type*, const f_type, f_type* ans) const { ans[0]=0.0; ans[1]=0.0; 
ans[2]=B0; return; } 
 private: 
  f_type B0; 
}; 
 
typedef struct { 
 int  nproc; 
 int  rank; 
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 uint src; 
 uint dest; 
 int  rc; 
 bool first, last; 
 MPI_Status stat; 
} ADCG_mpi; 
 
int main (int argc, char * argv[]) { 
// MPI stuff ///////////////////////////////// 
 ADCG_mpi mpi; 
 MPI_Init(&argc,&argv); 
 MPI_Comm_size(MPI_COMM_WORLD,&mpi.nproc); 
 MPI_Comm_rank(MPI_COMM_WORLD,&mpi.rank); 
 mpi.first = false; 
 mpi.last  = false; 
 if (mpi.rank==0) { 
  mpi.src   = mpi.nproc-1; 
  mpi.first = true; 
 } else mpi.src   = mpi.rank-1; 
 if (mpi.rank==mpi.nproc-1) { 
  mpi.dest = 0; 
  mpi.last = true; 
 } else mpi.dest = mpi.rank+1; 
///////////////////////////////////////////// 
 
// Simulation params 
// Some other noteworthy locations: the exit of the quad septum, z~9.5, and the 1st pump cross 
after the 
// kicker, z~8 m 
 const f_type Zaccel = -2.733; // 78 cell exit relative to defined "LLNL beamline origin" 
 const f_type Zdump  =  11.67; // Approx main dump location relative to defined "LLNL 
beamline origin" 
 const f_type tp     = 2.e-6;                 // Pulse length 
 const uint   nslice = 20000;                 // Number of slices representing the pulse in 
time 
 const f_type dt     = tp/f_type(nslice);     // Size of slice in time 
 const f_type dz     = dt*ADCGc0;             // Size of slice in space 
 const uint   nz     = (uint)((Zdump-Zaccel)/dz);        // Number of slices (in space) 
spanning the accelerator 
 const uint   nper   = 3000;                  // Number of macroparticles per beam slice 
 const uint   nchunk = nz/mpi.nproc;          // Number of spatial slices per processor 
 
// Beam and misc. params 
 f_type r0              = 5.e-3/ADCGsqrt2; // Beam radius if no input arg: Nominal ACP tune 
of 5 mm EDGE 
 if (argc>1) r0 = std::atof(argv[1]); 
 const f_type     w0    = ADCGtwopi*21.6e6*0.005/r0; // Fixed beam oscillation frequency 
(angular) 
 const f_type     fmax  = 1.e8;             // Max. end of flatband frequency spectrum (Hz) 
 const f_type     dr0   = 0.01*r0;          // Oscillation amplitude 
 const f_type     bwall = 0.08;             // wall radius 
/* planar_emitter   emit(7264552,nper); 
 emit.set_E(18.4e6); 
 emit.set_r(r0*ADCGsqrt2);                  // Edge size = root(2)*Rrms 
 emit.set_rp(0.0); 
 emit.set_Iflat(2000.0); 
 emit.set_eps(3.e-5);                     // Edge emittance: eps_Lee_Cooper_rms = HALF of 
this value 
 emit.set_parax_depression(bwall); 
*/ 
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 gauss_emitter    emit(7264552,nper); 
 emit.set_E(18.4e6); 
 emit.set_r(r0); 
 emit.set_rp(0.0); 
 emit.set_Iflat(2000.0); 
 emit.set_eps(1.5e-5); 
 emit.set_cutoff_sigma(3.0); 
 
// Ion params 
 f_type Ptorr   = 3.e-8;        // Default pressure in septum/dump area 
 if (argc>2) Ptorr = std::atof(argv[2]); 
 ions_XY_data  ion_data; 
 ion_data.n0    = 3.3e22*Ptorr; // neutral density; roughly 3.3e22 times pressure in torr 
 ion_data.sig   = 1.e-22;       // ionization cross section, based on P*t=1 for f=1 
 ion_data.z     = 0.0;          // slice location 
 ion_data.dz    = dz;           // slice thickness 
 ion_data.q     = 1.6e-19;      // ion charge 
 ion_data.m     = 18.0*ADCGmp;  // ion mass 
 ion_data.n     = 40;           // number of ion macroparticles to create at each time step 
 ion_data.ngrow = 110000;       // nslice*ion_data.n+1 or the max cull size; representative 
size of max. population 
 
// DARHT-II beamline elements 
 const f_type Zs0 = -1.1671; 
 const f_type Zs3 =  4.6929; 
 align_solenoidAP S0(0.187,Zs0,0.16002,0.51704,0.54975,1.6365,0.0,bwall); 
 align_solenoidAP S3(0.177,Zs3,0.16002,0.51704,0.54975,1.6365,0.0,bwall); 
 S0.set_nonlinear_off(); 
 S3.set_nonlinear_off(); 
 
// Simulation storage allocation 
 ions_XY         *ions[nchunk]; 
 pipe_pSC_FFT    *pipe[nchunk]; 
 align_slice     *slice[nchunk]; 
 for(uint i=0; i<nchunk; ++i) { 
  ion_data.z  = Zaccel + (mpi.rank*nchunk+i)*dz; 
  ion_data.n0 = 3.3e22*pressure(ion_data.z+0.5*dz,Ptorr); 
  ions[i]  = ADCGnull; ions[i]    = new ions_XY(ion_data,33951124+mpi.rank*nchunk+i); 
  pipe[i]  = ADCGnull; pipe[i]    = new pipe_pSC_FFT(150,128,bwall); 
  slice[i] = ADCGnull; slice[i]   = new align_slice(-ADCGq0,ADCGme,nper); 
  pipe[i]->add_source(ions[i],em_source::fRHO); 
  pipe[i]->add_source(slice[i],em_source::fRHO|em_source::fJ); 
  if (std::fabs(ion_data.z-Zs0)<0.5) pipe[i]->add_source(&S0,S0.get_type()); // only 
add mags to slices within 
  if (std::fabs(ion_data.z-Zs3)<0.5) pipe[i]->add_source(&S3,S3.get_type()); // 50 cm 
of magnet centerline 
  pipe[i]->set_z(ion_data.z); 
 } 
 
 f_type           t, z; 
 uint             iz, it; 
 char             beamfilename[30]; 
 std::FILE       *beamfile; 
 std::sprintf(beamfilename,"b%02d.txt",mpi.rank); 
 beamfile = std::fopen(beamfilename,"w"); 
 std::fprintf(beamfile,"t\tz\tx0\ty0\tXrms\tYrms\tepsX\tiX0\tiY0\tiXmin\tiXmax\n"); 
 
 grid *xsig = ADCGnull; 
 if (mpi.first) {  // Input signal of flatband noise from 0-100 MHz generated only by first 
process 
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  const uint nf = 32768; 
  better_rand_portable rng(8378285); 
  xsig = new grid(nf,0.0,tp,2); 
  f_type ang, c, s, *f = new f_type[2*nf]; 
  for(uint i=0; i<2*nf; ++i) f[i]=0.0; 
  ang = ADCGtwopi*rng.random(); 
  c   = std::cos(ang); 
  s   = std::sin(ang); 
  f[0] = c; 
  f[1] = s; 
  uint imax = (uint)(fmax*tp); // discrete location of band edge 
  for(uint i=0; i<imax; ++i) { 
   ang = ADCGtwopi*rng.random(); 
   c   = std::cos(ang); 
   s   = std::sin(ang); 
   f[2*i+2] = c; 
   f[2*i+3] = s; 
   ang = ADCGtwopi*rng.random(); 
   c   = std::cos(ang); 
   s   = std::sin(ang); 
   f[2*nf-2*i-2] = c; 
   f[2*nf-2*i-1] = s; 
  } 
  fourier::reverse(f,nf); 
  c = 0.0; 
  for(uint i=0; i<2*nf; ++i) c += f[i]*f[i]; 
  c = dr0/std::sqrt(c/f_type(nf)); // Normalization to get correct R_RMS (not x_rms) 
offset 
  f_type* xptr = xsig->get_func(0); 
  f_type* yptr = xsig->get_func(1); 
  for(uint i=0; i<2*nf; i += 2) { 
   *xptr++ = c*f[i]; 
   *yptr++ = c*f[i+1]; 
  } 
  delete []f; 
// Miscellaneous reporting for process 0 
  std::printf("Using RMS beam radius %10.3e and pressure in torr %10.3e\n",r0,Ptorr); 
 } 
 
 
// All chunks initialize slice[0], as a crude way to set particles::n 
{  z = Zaccel + mpi.rank*nchunk*dz; 
  f_type x[3] = { 0.0, 0.0, 0.0 }; 
  x[2] = z; 
  emit.set_origin(x); 
  slice[0]->load(emit.emit(1.e-8,0.0)); 
} 
  align_slice slice0(*(slice[0])); 
 
 for(uint it = 0; it<nslice; ++it) { // Loop over time (relative to beam head) 
  t = dt*it; 
  z = Zaccel + mpi.rank*nchunk*dz; 
  if (mpi.first) { // Translate identical copies of z=0 slice according to incoming 
perturbation 
   f_type xcen = xsig->value(t,(uint)0); // dr0*sin(w0*t); 
   f_type ycen = xsig->value(t,(uint)1); // 0.0; 
   *(slice[0]) = slice0; 
   slice[0]->translate(xcen,ycen,0.0); 
  
 std::fprintf(beamfile,"%11.4e\t%10.3e\t%10.3e\t%10.3e\t%10.3e\t%10.3e\t%10.3e\t%10.3e\t%10.
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3e\t%10.3e\t%10.3e\n", 
    t*1.e9,z,slice[0]->get_x0(),slice[0]->get_y0(),slice[0]-
>get_xrms(),slice[0]->get_yrms(), 
    slice[0]->get_epsx(),0.0,0.0,0.0,0.0); 
  } else {        // Load slice from message if not first chunk 
   MPI_Recv(slice[0]->particles::change_naked_data(),nper*slice[0]-
>get_sequence_size(),MPI_DOUBLE,mpi.src,it,MPI_COMM_WORLD,&mpi.stat); 
   slice[0]->particles::do_properties(); 
   slice[0]->update(); 
  } 
  for(uint iz = 0; iz<nchunk; ++iz) { // Loop over space 
   pipe[iz]->solve(t); 
   slice[iz]->step(dz,pipe[iz],t); 
   if (ions[iz]->get_n_local()>ion_data.ngrow-3*ion_data.n) ions[iz]-
>cull(ion_data.ngrow-250*ion_data.n); 
   ions[iz]->step(dt,pipe[iz],slice[iz],t); 
   if (iz!=nchunk-1) *(slice[iz+1]) = *(slice[iz]); 
   z += dz; 
  
 std::fprintf(beamfile,"%11.4e\t%10.3e\t%10.3e\t%10.3e\t%10.3e\t%10.3e\t%10.3e\t%10.3e\t%10.
3e\t%10.3e\t%10.3e\n", 
    t*1.e9,z,slice[iz]->get_x0(),slice[iz]->get_y0(),slice[iz]-
>get_xrms(),slice[iz]->get_yrms(), 
    slice[iz]->get_epsx(),ions[iz]->get_x0(),ions[iz]->get_y0(),ions[iz]-
>get_xmin(),ions[iz]->get_xmax()); 
  } 
  if (!mpi.last) { // Send slice to next chunk via message 
   MPI_Send(slice[nchunk-1]->change_naked_data(),nper*slice[nchunk-1]-
>get_sequence_size(),MPI_DOUBLE,mpi.dest,it,MPI_COMM_WORLD); 
  } 
 } 
  
 std::fclose(beamfile); 
 for(uint i=0; i<nchunk; ++i) { 
  if (ions[i] !=ADCGnull) { delete ions[i];  ions[i]  = ADCGnull; } 
  if (pipe[i] !=ADCGnull) { delete pipe[i];  pipe[i]  = ADCGnull; } 
  if (slice[i]!=ADCGnull) { delete slice[i]; slice[i] = ADCGnull; } 
 } 
 if (mpi.first) { if (xsig!=ADCGnull) { delete xsig; xsig = ADCGnull; } } 
 
// MPI stuff /////////////////////////// 
 MPI_Finalize(); 
//////////////////////////////////////// 
    return 0; 
} 

 
 


