‘ ! ! . UCRL-PROC-208287

LAWRENCE
LIVERMORE
NATIONAL

~onroer | \\ XN INAOWS Interface for CALE

Paul Amala, Christopher Egner, Jeffery Hagelberg

December 1, 2004

Nuclear Explosives Code Development Conference (NECDC
2004)

Livermore, CA, United States

October 4, 2004 through October 8, 2004

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence
Livermore National Laboratory under Contract W-7405-Eng-48.

bledsoe2
Text Box
This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Proceedings from the NECDC 2004

WxWindows Interface for CALE (U)
UCRL-XXXXX

Paul Amala*, Christopher Egner’, Jeffery Hagelberg'’

*Lawrence Livermore National Laboratory; " Rochester Institute of Technology,
Rochester NY; i University of California - Davis

wxWindows is an Open Source, platform independent, User Interface (UI) which has
been in development for over eleven years (http:/www.wxwindows.org). Currently
wxWindows is actively supported for the Linux/Unix (X11, Motif and GTK+), Mac OS 9
and X, all Win32 OSes, MGL, and OS/2 operating systems. wxWindows is written in
C++ using an object oriented programming framework; it is a reasonably lightweight API
(called wxWidgets) sitting over the native graphics packages of the various platforms it
supports.

The original version of CALE was written for the basic target platform of Unix using
X11 as the graphics package. There have been separate efforts to port the code to Mac
0OS 9, Mac OS X, Win32, Windows Services for Unix (SFU) and CygWin. Each of these
used a variety of different graphical interface approaches and build/make systems. For
instance Windows SFU and CygWin could still only use X11 graphics. So could the
Win32 version, if a X11 server library and client software were installed. A native Win32
version of CALE was contemplated, but never started. The Macintosh versions were
completed but never widely distributed to the users. Given the growing code version
support issues, and the slow deviation from the portable code model CALE originally
started with, it was desired to come up with a simple graphical Ul that would be cross
platform portable with only a single code base and build system.

During the past two summers, two Laboratory summer students and a CALE team code
physicist have worked on porting CALE to the wxWidgets Ul In the summer of 2003
Jeffery Hagelberg (formerly Purdue University, now at the University of California-
Davis) started the project. During the spring & summer of 2004 Christopher Egner
(Rochester Institute of Technology) completed the work. Paul Amala (A/X-Program at
LLNL) supervised the students for their combined 30 weeks of effort.

This poster session describes the wxWindows interface as it is implemented in CALE, the
level of cross platform portable it actually affords, and the lessons learned during the
porting of an existing X11 program to this open source software package. (U)

Amala, et al. 1

Proceedings from the NECDC 2004
Introduction

This project began several years ago when it was desired to come up with a common
code base for CALE, which was portable to all platforms that CALE might run upon. As
the three physicists who work upon CALE were unable (due to time and interest
constraints) to make this effort, it was decided that this relatively computer science
intensive project would be a good summer job for some laboratory summer students.

During the first summer of 2003, Jeffery Hagelberg was hired to do this work.
Moving from the X11 base of the code to a platform independent version was
significantly more work than anticipated. By the end of his 10-week summer term he had
a working version running on the Win32 platform with a limited functional
implementation of the graphical CALE interface.

The second iteration on this work was the following spring and summer of 2004 when
an intern was hired for 20 weeks to complete the project. Chris Egner updated the project
to the latest version of wxWidgets and completed the porting to the Win32, Linux,
Tru 64, and Mac OS X platforms. In doing this work, he also completely overhauled the
build system for CALE, moving it from a customized m4 configuration to an automated
GNU autotools setup (see figure below). It was found that this substantially more general
build system was necessary for building upon the various platforms while still giving the
flexibility of using both the wxWidgets and X11 APT’s.

CALE’s new build process

Amala, et al. 2

Proceedings from the NECDC 2004

Lessons Learned
* Buffered graphical I/O is a must
* Threaded implementation is also important
* Raw X11 is still faster than a universal API, but not as portable
¢ C language discipline is very important when using C++ compilers

e WxWidgets is still immature after 11 years

CALE’sSs RENDERING PROCESS

UsSER INTERFACE READ BEUFFER WRITE BUFFER

8na . CALE Graohics winds.

[(COMPLETE) (1IN PROCESS)

btz

PLOT DISPLAY

GUI THrEAD| |
UrDAaTES
ScCREEN

S |
t‘

..........

PHYSICs THREAD
e RENDERS PLOT

= ARBITRARILY MANY BUFFERS...
I/W ({CALE Uses Two)

ﬁﬁﬁﬁﬁﬁﬁﬁ

BUFFERS SWAP AFTER RENDERING COMPLETES

The first thing that was found when using the wxWidget API was that the graphics
were unacceptably slow. It was determined that a buffered I/O system would be much
more efficient. The figure above illustrates the method used. In the original X11
implementation this was never an issue; with added overhead of wxWidget’s C++ API
this became a critical speed bottleneck.

Basically, while a new frame is being rendered in memory, the current frame is being
displayed. When an update is needed, the frame in memory is then displayed and the
memory is recovered for future use. This model is commonly used with the native Win32
graphical API’s, among others.

The second item is that originally CALE was written to be a console-based
application that called X11 as a library to display graphics only. However, like many
modern ‘event based’ API’s, wxWidgets wants to be in the driver’s seat too. This led the
design to of the CALE/wxWidgets based version to be thread based. The base CALE
physics code with its associated routines runs in one thread, the wxWidgets API routines
run in a second thread, and the graphics rendering runs in a third thread. Unfortunately
this model is somewhat problematic in the current implementation of wxWidgets on Mac
OS X.

Amala, et al. 3

Proceedings from the NECDC 2004

The third lesson is that we could not get the wxWidgets implementation to run as fast
as the raw X11 implementation had. This was even true with ‘backend’ implementations
such as Windows Services for Unix (Unix kernel running in parallel with a Win NT
kernel, using a separate X11 server/client such as X-Win32) or CygWin (Unix core
ported to Win32 platform). While it wasn’t tested, now that current versions of Mac OS
X come with X11 libraries, the same concerns are present; a direct X11 port to Mac OS X
probably will run faster. In our testing with Windows, Linux and Tru_ 64 (i.e. Dec Alpha)
platforms it was consistently found that wxWidgets was approximated 25-33% slower in
graphical performance. Of course physics performance was unaffected. The slower
graphical performance was disappointing, given that interactive graphics was the main
envisioned use of the common API interface. It is yet to be decided if this slow down is
acceptable, given that the common single code base and build system is still a big win on
the multiple desired platforms supported.

The fourth lesson learned was somewhat interesting. A lot of effort had been made
over the past several years to make CALE ISO C compliant. However, when we began
using the C++ compilers (gcc, Intel C++, Compaq cc, etc.) on the base code, all kinds of
nits began to show up. It was not appreciated that to make CALE’s base C code
compatible with wxWidget’s C++ API that CALE would have to be more meticulously
made to conform to the modern C standards. While this was unexpected it was not a
wasted effort. No matter what the end conclusion in using the wxWidgets API, we want
to make CALE as portable and code safe as possible; finding subtle problems with our C
code is desirable. It is possible that a more mature, professional API is a better way to go
(see comments below).

The most disappointing conclusion to the over-all project however is how immature
we found wxWidget to be. The documentation is very spotty, and complete sections are
missing. Much of the actual documentation still exists only the comments within the code
itself. On-line news groups and mailing lists were a help, but not equal to well written
documentation. Also the API is unevenly implemented. Substantial parts of the Mac OS
X interface are not done. The base X11 calls are being deprecated in favor of the GTK+
ones. The latest version of wxWidgets is fundamentally broke in various parts; when
Chris Egner was done for the summer he warned us that we would need to update to the
newer version when available and that this would probably entail more rewriting of the
glue code linking the CALE physics routines to the graphical routines.

The most unfortunate part of all of this is that by looking at the documentation and
the base source code one cannot always see this — a call that may work perfectly well
under Win32 will crash a run under Mac OS X. This of course does not encourage one
attempting to make a single platform independent code base. And to figure out what is
actually wrong takes a combination of looking through the imcomplete documentation,
looking at the source code, and asking questions on news groups on-line.

However, on the positive side, the API does give a consistent look and feel on the
various platforms:

Amala, et al. 4

Proceedings from the NECDC 2004

CALE RUNNING ON FOUR PLATFORMS

TRUG4 UNIX REDHAT LINUX MaAaAcCcOS X WINDOWS X P

& calehe Dump Ede Plot Help] [CALE Graghics Windew
CALE Graghiss Wandow e R B

625 [\ } = 2.92177602

Time = 1, 50008002] 02 Time = 2.00000a+02
L) 3 (1,11} = 2.72620e-

= i = - L]
N

A J

CALE RUMNS A SIMULATION OF THE EXPAMSION AMND COLLAFPSE OF A BUBBLE MEAR A RIGID WaLL.

THE PLOT IS OF PRESSURE IM TWO DIMENSIONS. THE BUBEBLE IS 1IN THE LOWER LEFT. TIME PROCEEDS TO THE RIGHT.

Conclusions

When this project was first considered in the early spring of 2003, QT3 was not
available yet for Mac OS X. Since this was one of our base platforms this was a
showstopper. Now in the late fall of 2004 QT3 is available for all the platforms of
interest. QT3’s main disadvantage is its moderately expensive licensing fee if one does
not want to distribute their source code under an open source type license (which we do
not want). Its great advantages however are that it is well documented, it is a commercial
product with professional technical support to answer questions without having to avail
oneself of a hit or miss mailing list, and the availability of high quality text books to teach
oneself how to use the API. All of these facets were lacking in our use of wxWidgets.

This is of course quite a bit of “Monday Morning Quarterbacking”, stating that a
totally different API could solve many of our problems with wxWidgets. Thirty weeks of
effort went into getting an almost fully functional platform independent version of CALE
up and running. But the unfortunate fact of the matter is that quite a bit of that effort was
taken up in dealing with bugs in the wxWidgets API, spotty documentation, and an
uneven level of implementation that left one feeling that somehow the developers missed
the ‘platform independence’ part of their claims of platform independence. Caveat
emptor.

Student Follow Up

Jeffery Hagelberg is now working with Andrew Cook (AX-Div/LLNL) on the
Miranda project, attempting to improve parallel I/O performance with the PACT
libraries. He is working on his Master’s Degree through the UC-Davis Dept. of Applied

Amala, et al. 5

Proceedings from the NECDC 2004

Science. Chris Egner, upon graduating from R.I.T., has accepted a flex position at LANL
working with the Biometrics group on Natural Language Programming. He hopes to
continue with his graduate education in the fall of 2005 in this field.

Acknowledgements

The authors would like to thank Lila Chase, Robert Managan and Robert Tipton for
their help during this work.

References

WxWidgets: http://www.wxwindows.org

QT3: http://www.trolltech.com

Windows Services for Unix: http://www.microsoft.com/windows/sfu/
CygWin: http://www.cygwin.com/

X-Win32: http://www.starnet.com

Amala, et al. 6

