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Abstract

Object recognition algorithms are fundamental tools in automatic
matching of geometric shapes within a background scene. Many ap-
proaches have been proposed in the past to solve the object recognition
problem. Two of the key aspects that distinguish them in terms of
their practical usability are: (i) the type of input model description
and (ii) the comparison criteria used.

In this paper we introduce a novel scheme for 3D object recognition
based on line segment representation of the input shapes and compar-
ison using the Hausdorff distance. This choice of model representation
provides the flexibility to apply the scheme in different application ar-
eas. We define several variants of the Hausdorff distance to compare
the models within the framework of well defined metric spaces.

We present a matching algorithm that efficiently finds a pattern in
a 3D scene. The algorithm approximates a minimization procedure of
the Hausdorff distance. The output error due to the approximation is
guaranteed to be within a known constant bound.

Practical results are presented for two classes of objects: (i) poly-
hedral shapes extracted from segmented range images and (ii) sec-
ondary structures of large molecules. In both cases the use of our
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approximate algorithm allows to match correctly the pattern in the
background while achieving the efficiency necessary for practical use
of the scheme. In particular the performance is improved substantially
with minor degradation of the quality of the matching.

1 Introduction

In this paper we present a method for comparing a model of a 3D object with
a range image under rigid transformations. Both the model and the image
object are represented in terms of line segments. The method is based on
the computation of the Hausdorff distance between all the transformations
of the set of model segments and the set of image segments. The Hausdorff
distance is a max-min distance that has been often used in computer vision
for object recognition, mostly applied to the case of 2D pointsets. The Haus-
dorff distance easily generalizes to sets of line segments either in 2D or 3D
space. However, the classical definition does not seem adequate for compar-
ing objects represented as sets of line segments. Here we present variants of
the basic definition of the Hausdorff distance between sets of line segments
that are more suitable for object recognition.

The computation of the Hausdorff distance does not necessarily produce a
one-to-one correspondence between the elements of the two sets; it may hap-
pen, in fact, that multiple elements in one set are associated with a single
element of the other set. This is unlike most existing object recognition meth-
ods that give an explicit pairing. Another feature of the Hausdorff distance is
its sensitiveness to occlusion since it does not allow to compare sub-patterns.
However, extensions of the definition may overcome this problem and make
the comparison between subsets of points or segments possible [17].

Much work has been done on the computation of the Hausdorff distance.
In the area of computational geometry [11, 12] exact algorithms have been
studied for the problem of deciding whether there exist a transformation
that maps one set of points into another set within a given distance. Fun-
damental robustness issues are discussed in [2]. Exact algorithms cannot be
used in most practical applications where measurement errors and noise are
present; furthermore, the high computational complexity of the exact algo-
rithms make them impractical for use in real problems. For these reasons,
approximate solutions for the case of pointsets, both in 2-dimensional and in
3-dimensional space, have been considered [20].
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In the field of computer vision, an efficient multi-resolution technique for
comparing images using the Hausdorff distance has been presented in [17]
where the space of possible transformations is limited to translations and
scaling; in [33] the above technique is extended to affine transformations.
Affine transformations are used in [23] for matching pointsets. The problem
of matching sets of segments in images using a multidimensional Hausdorff
distance has recently been considered in [35], where the objects to be matched
are 2-dimensional. Other approaches to matching sets of segments in 3D
space based on various techniques and metrics are given in [3, 5, 10, 23, 26]

In this paper we introduce variants of the definition of the Hausdorff
distance between sets of segments and present an approximate algorithm
for their efficient computation. We show that the error introduced with the
approximation is within a bounded factor from optimal. This bound is the
same as the bound obtained in [20] for the simpler case of pointsets.

We have implemented the matching procedure and tested it on real range
image data. A comparison of the proposed matching procedure with a more
extensive search that examines a larger transformation space has been per-
formed on several range images. The comparison confirms that the quality
of the results of our practical approach is generally good (better than the
theoretically guaranteed error bound). We also show how the scheme can be
applied to other application fields like molecular pattern matching, so long
as one can use the line-based model representation scheme.

The following of this paper is organized as follows. Section 2 reviews the
definition of the Hausdorff distance and introduces different metrics for com-
paring sets of segments, that are suitable for computer vision applications.
Section 3 shows properties of these metrics that allow fast computation of
the distance itself. The matching procedure is presented and analyzed in
section 4. Section 5 presents and compares experimental results both on
range data obtained with different metrics and on secondary structures of
molecular data obtained from the Protein Data Bank. It also contains a
brief discussion of the problem of 3D line detection and of the procedure
used in our approach to extract line segments from range images. In general
the segmentation of a range image is in itself a fundamental problem [6, 24].
Obviously, the variations of the input generated by the different algorithms
can have significant impact on the result generated by the matching proce-
dure. An in depth discussion of the quality of the segmentation produced by
each approach is far beyond the scope of this paper. A good survey of differ-
ent techniques and a framework for evaluating the quality of a segmentation
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scheme can be found in [24].

2 The Hausdorff Distance between Sets of

Segments

We denote a set of straight line segments by an uppercase letter (A, B, . . .),
a single straight line segment by a lowercase letter (a, b, . . .), the start and
end point of segment a by as and ae and a generic point by a Greek letter
(α, β, · · ·). We compare two sets A = {a1, a2, · · · , am} and B = {b1, b2, · · · , bn}
of line segments ai and bj.

Def. 1 (Hausdorff distance)
The Hausdorff distance H(A,B) between A and B is:

H(A,B) = max(h(A,B), h(B,A))),

where h(A,B) is the one-way Hausdorff distance from A to B given by:

h(A,B) = max
α∈ai∈A

(
min

β∈bj∈B
d(α, β)

)
,

and d(α, β) is the Euclidean distance between two points α and β.

In the following we will use, with some abuse of notation, the same symbol
H(·, ·) for the Hausdorff distance between sets of points and sets of segments.
For the case of points in the definition above α ∈ ai ∈ A is replaced by αi ∈ A
and β ∈ bj ∈ B is replaced by βj ∈ B.

The basic Hausdorff distance provides a good metric over pointsets but
does not preserve the notion of relevant subsets like the segments (see [12]).
In our application we wish to keep information relative to the identity of
distinct line segments since they are the basic elements in the description of
the objects. Thus we introduce the following definition:

Def. 2 (Segment Hausdorff distance)
The Segment Hausdorff distance HS(A,B) between A and B is:

HS(A,B) = max(hS(A,B), hS(B,A))),

where hS(A,B) is the one-way Segment Hausdorff distance given by:

hS(A,B) = max
ai∈A

(
min
bj∈B

H({ai}, {bj})
)
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Figure 1: The standard Hausdorff metric functionH({a1, . . . , a5}, {b1}) has a low
distance value. The metric functionHS({a1, . . . , a5}, {b1}) has a higher value
providing a more accurate similarity information.

wherehS(A,B) is the one-way Segment Hausdorff distance given by:

hS(A,B) = max
ai∈A

(
min
bj∈B

H({ai}, {bj})
)

SincehS(A,B) = maxai∈A (minbi∈B H({ai}, {bj})) whereH({ai}, {bj}) is
the the Hausdorff distance (under definition 1) between two single segments, one
can easily show thatHS(A, B) defines a metric1.
Consider the case of figure 1. The standard Hausdorff metric functionH({a1, . . . , a5}, {b1})
has a low distance value since each portion of the segmentb1 is near one of the seg-
mentsai. On the contrary, the distanceHS({a1, . . . , a5}, {b1}) has higher value
since there is no single segmentai with low distance fromb1. Thus the informa-
tion provided byHS is more accurate than the information provided byH.

To simplify the computation we introduce an equivalent, within a given error
factor, simplified distance function.

Def. 3 (Simplified Segment Hausdorff distance)
The Simplified Segment Hausdorff distanceHSS(A,B) betweenA andB is:

HSS(A, B) = max(hSS(A,B), hSS(B,A))),

wherehSS(A,B) is the one-way Simplified Segment Hausdorff distance given by:

hSS(A,B)=max
ai∈A

(
min
bj∈B

H({as
i , a

e
i}, {bs

j , b
e
j})
)

(1)

1Recall that a distance functiond(a, b) defines a metric if: (i)d(a, b) ≥ 0; (ii) d(a, b) = 0 ⇔
a ≡ b; (iii) d(a, b) = d(b, a); (iv) d(a, b) ≤ d(a, c) + d(c, b).
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a low distance value. The metric function HS({a1, . . . , a5}, {b1}) has a higher
value providing a more accurate similarity information.

Since hS(A, B) = maxai∈A (minbi∈B H({ai}, {bj})) where H({ai}, {bj}) is
the the Hausdorff distance (under definition 1) between two single segments,
one can easily show that HS(A, B) defines a metric1.
Consider the case of Figure 1. The standard Hausdorff metric function
H({a1, . . . , a5}, {b1}) has a low distance value since each portion of the
segment b1 is near one of the segments ai. On the contrary, the distance
HS({a1, . . . , a5}, {b1}) has higher value since there is no single segment ai

with low distance from b1. Thus the information provided by HS is more
accurate than the information provided by H.

To simplify the computation we introduce an equivalent, within a given
error factor, simplified distance function.

Def. 3 (Simplified Segment Hausdorff distance)
The Simplified Segment Hausdorff distance HSS(A,B) between A and B is:

HSS(A,B) = max(hSS(A,B), hSS(B,A))),

where hSS(A,B) is the one-way Simplified Segment Hausdorff distance given by:

hSS(A,B)=max
ai∈A

(
min
bj∈B

H({as
i , a

e
i}, {bs

j , b
e
j})
)

(1)

HSS(A, B) is a metric. We show that it is equivalent to HS(A, B) in the
sense that:

HS(A, B) ≤ HSS(A, B) ≤
√

2HS(A, B). (2)

The advantage of this simplified distance function is not only the ease of
computation but the fact that it can be also modified to take into account

1Recall that a distance function d(a, b) defines a metric if: (i) d(a, b) ≥ 0; (ii) d(a, b) =
0 ⇔ a ≡ b; (iii) d(a, b) = d(b, a); (iv) d(a, b) ≤ d(a, c) + d(c, b).
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the orientations of the segments. All the distance functions defined above
fail to carry this notion since:

HSS({asae}, {aeas}) = HS({asae}, {aeas}) = H({asae}, {aeas}) = 0

Def. 4 (Oriented Segment Hausdorff distance)
The Oriented Segment Hausdorff distance HOS(A,B) between A and B is:

HOS(A,B) = max(hOS(A,B), hOS(B,A))),

where hOS(A,B) is the one-way Simplified Segment Hausdorff distance given by
(remember that as and ae are the endpoints of a):

hOS(A,B) = max
ai∈A

(
min
bj∈B

(
max

(
d(as

i , b
s
j), d(ae

i , b
e
j)
)))

(3)

It is easy to show that HOS is a metric.

Def. 5 (Minimal Segment Hausdorff distance)
The Minimal Segment Hausdorff distance HMS(A,B) between A and B is:

HMS(A,B) = max(hMS(A,B), hMS(B,A))),

where hMS(A,B) is the one-way Minimal Segment Hausdorff distance given by:

hMS(A,B)=max
ai∈A

(
min
bj∈B

D(ai, bj))

)
(4)

where D(ai, bj) is the minimal distance between two segments defined as
follows. Let r and l be the lines that each contain one segment. Assume that
the two lines are non intersecting. Then the minimum distance d between r
and l is given by:

d = λ(x1 − x2) + µ(y1 − y2) + ν(z1 − z2)

where P1 = (x1, y1, z1) is a point of r, P2 = (x2, y2, z2) is a point of l, and
λ, µ, ν are the direction cosines of the perpendicular to both the given lines.
If the lines intersect their minimal distance is zero. If the points separated
by the distance d are within the two segments ai and bj, then D(ai, bj) = d;
otherwise, the minimum distance will involve endpoints of one or both of the
segments, as in the previous definition. Clearly, HMS(A, B) ≤ HSS(A, B).
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HMS(A, B) is easy to compute, however it may not be a good metric for
matching segments in computer vision, because, for instance, segments that
differ significantly in orientation and length may have a very small minimal
distance value.

All the above definitions are based on the computation of a max value
in a given set of computed values. Often, in computer vision substituting
the max function by the average of all the values in the set may lead to
better results. In [14] 24 variations of the Hausdorff distance are compared
for 2D pointsets in the presence of noise. Of all of them, the one based on
the average distance between the points of one set to the other set is shown
to give the best results for object recognition.

In our tests, we have experimented with all the above definitions using
both the max and the average function to find the best matching.

3 Properties of the Segment Hausdorff dis-

tance

In this section we present a property of the distance function HSS that is
crucial to the computational efficiency of the method. We prove that using
this norm, we can reduce the problem of nearest neighbor among segments
to a query for a nearest neighbor among points. We first concentrate on the
Oriented Distance HOS(A, B) then we show how to reformulate HSS(A, B)
so that we can apply to it the same technique used for HOS(A, B).

Consider equation (3) and assume that A is a set of m segments and B is a
set of n segments. The explicit computation of the maximization/minimization

maxai∈A

(
minbj∈B(·)

)
would require O(mn) time complexity.

We consider an approximate solution that achieves a O(m log n) time
complexity by reducing the problem to a nearest neighbor query among
points in <6 under the mapping M defined below. Consider the segment
a = as, ae, with as = {xs, ys, zs} and ae = {xe, ye, ze}, then M(a) is the
point {xs, ys, zs, xe, ye, ze}. Formally:

M(<3 ×<3 → <6) :

({xs, ys, zs}, {xe, ye, ze}) 7→ {xs, ys, zs, xe, ye, ze}

The following theorem states that max
(
d(as

i , b
s
j), d(ae

i , b
e
j)
)

is a Minkowski
metric in the range of the mapping M.
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Theorem 1 Consider a Minkowski norm ‖·‖M in <3. The function ‖·‖∗M
defined as:

‖{x1, x2, x3, x4, x5, x6}‖∗M= (5)

= max (‖{x1, x2, x3}‖M , ‖{x4, x5, x6}‖M)

is a Minkowski norm in <6.

Proof: To prove the theorem we just need to show that the unit ball
B∗ = {X :‖X ‖∗M≤ 1} is a symmetric convex set (see Proposition 1.1.8
in [34]).

From equation (5) it follows that the unit ball B∗ is the pointwise Carte-
sian product of the two unit balls B1 and B2 defined by the norm ‖·‖M and
properly embedded in the coordinate subspaces (x1, x2, x3) and (x4, x5, x6).
That is iff (x1, x2, x3) ∈ B1 and (x4, x5, x6) ∈ B2 then (x1, x2, x3, x4, x5, x6) ∈
B∗.

Now observe that, being ‖·‖M a Minkowski norm, both B1 and B2 are
symmetric convex sets. It follows that:

B∗ = B1 ×B2

is in turn a symmetric convex set. Hence ‖·‖∗M is a Minkowski norm. �

Theorem 1 allows us rewrite the min term of expression (3) as:

min
bj∈B

(‖b− a‖∗M) .

This expression can be evaluated in optimal O(log n), within an approx-
imation factor of 1 + ε, using the search technique presented in [4]. It
follows that hOS(A, B) can be determined in O(m log n) (after a prepro-
cessing of O(n log n)). HOS(A, B) can be computed within the same 1 + ε
approximation factor in time O(m log n + n log m) (after a preprocessing of
O(m log m + n log n)).

To extend the above result to the case of Simplified Distance HSS(A, B)
we introduce a reduced formula for its computation.

Theorem 2 The Simplified Segment Hausdorff distance between two seg-
ments is given by the expression:

HSS({a}, {b}) = min (max (d(as, bs), d(ae, be)) , max (d(as, be), d(ae, bs)))
(6)
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Proof: From Definition 3 we have:

HSS({a}, {b}) = max( max (min (d(as, bs), d(as, be)) , min (d(ae, bs), d(ae, be))) ,

max (min (d(bs, as), d(bs, ae)) , min (d(be, as), d(be, ae))))

= max( min (d(as, bs), d(as, be)) , min (d(ae, bs), d(ae, be)) , (7)

min (d(bs, as), d(bs, ae)) , min (d(be, as), d(be, ae)))

Among all the 24 permutation of the d(ai, bj), i, j ∈ s, e we only need to
consider three groups the remaining being obtained by symmetry.

Observe that being d(as, bs) = d(bs, as), d(as, be) = d(be, as), d(ae, bs) =
d(bs, ae) and d(ae, be) = d(be, ae), the min(·, ·) comparisons in expression (7)
involve only four values. Call the four distinct distance values µ1, µ2, µ3, µ4

and assume that µ1 ≥ µ2 ≥ µ3 ≥ µ4. In the expression (7) only four
min(µi, µj) pairwise comparisons are considered out of all the six non-symmetric
ones. Only the remaining two comparisons are present in equation (6) as
max(µi, µj) instead of min(µi, µj). Furthermore, if µ is present in (7) then
it appears twice in it.

Observe also that HSS({a}, {b}) is either µ2 or µ3 because in expres-
sion (7) one of the three comparisons min(µ1, µ2),min(µ2, µ3) and min(µ1, µ3)
must be present.

In particular if expression (7) contains min(µ1, µ2) = µ2 then HSS(a, b) =
µ2 because the outer max(·, ·, ·, ·) comparison will give as result µ2. In this
case expression (6) will not contain the max(µ1, µ2) but will instead con-
tain either max(µ2, µ3) = µ2 or max(µ2, µ4) = µ2. In both cases the outer
min(·, ·) of expression (6) will return the value µ2 like expression (7). Other-
wise, if expression (7) does not contain min(µ1, µ2) then HSS(a, b) = µ3. be-
cause either the comparison min(µ1, µ3) = µ3 or the comparison min(µ2, µ3) = µ3

must be present. In this case expression (6) must involve max(µ1, µ2) = µ1.
The second comparison will be max(µ3, µ4) = µ3 thus the outer min(·, ·)
comparison returns µ3.

In conclusion expressions (7) and (6) have the same value. �

Plugging equation (6) into (1) allows us to compute HSS with exactly
the same technique used to compute HOS. The only difference is that ex-
pression (6) replaces the norm max

(
d(as

i , b
s
j), d(ae

i , b
e
j)
)
. This can be easily

fixed by observing that the outer min(·) of the (6) will be evaluated by the
nearest neighbor query. Hence we just need to modify the map M so that
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the segment b is not mapped only to the point {xs, ys, zs, xe, ye, ze} but also
to the point {xe, ye, ze, xs, ys, zs}. Hence we apply the same O(logn) search
algorithm but on a set of points in <6 of cardinality double the cardinal-
ity of B. The overall time complexity for the computation of HSS(A, B) is
O(n log m + m log n).

4 The Matching algorithm

In this section we describe an algorithm for approximate matching of sets of
segments under rigid body transformations. The problem can be formulated
as follows. Given two sets of line segments, the pattern set A and the model
set B, and given a similarity measure d, find the rigid transformation g that
minimizes the distance d(g(A), B).

The algorithm proposed has been applied with the metricsHS, HSS and
HOS between sets of segments. It is based on ideas first developed in [20]
for pointset pattern matching here extended to the case of sets of segments.
Conceptually the algorithm can be divided in three main stages:

• determine a translation t;

• determine a rotation r;

• evaluate the distance between g(A) and B, where g is the combined
transformation.

For the determination of an appropriate translation and rotation we select
three “representatives” segments for each of the two sets A and B. The
representatives must be affinely independent.

In the first step we randomly pick one representative segment a for A.
Then we choose one representative b for B. Since, for any matching, a
must be paired with an element of B then we keep a fixed and try all its
possible pairings with the n elements of B. The translation t is defined
by taking the mid-point am of a into the mid-point bm of b. This choice
of the translation minimizes the distance between the transformed segment
t(a) and b for any fixed orientation. In many existing pattern matching
algorithms, the translation component of the geometric transformation is
computed separately by aligning the centroids of the two patterns. This
reduces the degrees of freedom thus making the entire computation of the
transform more efficient. There are however often problems associated with
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this heuristic especially when large portions of an object may be occluded.
The method we use here, even though more computationally intensive, is
more reliable in presence of occlusion.

To define the rotation we need two additional independent elements of qA.
They are selected so that the error due to the approximation is maintained
within a guaranteed bound. In particular the second representative a′ is the
segment containing the point a′

f farthest from am. The third representative

a′′ contains the point a′′
d at maximum distance from the line ama′

f . It is easy
to see that the points a′

f and a′′
d must each be an endpoint of some segment.

Note that the segment a′′ does not need to be distinct from the segments a
and a′. The condition that we enforce is instead the affine independence of
the three points am, a′

f and a′′
d.

The next step of the algorithm is to choose the segments b′ and b′′ of B
in all the m2 possible ways. For each b′ and each endpoint of b′, consider the
rotation that has origin in am and that makes a′

f and am to become collinear
with the endpoint of b′. Define r′ as the one of the above rotations that
minimizes the distance between a′

f and an endpoint of b′. Then define r′′ to
be the rotation about the axis ama′

f that brings a′′
d closest to an endpoint of b′′.

Apply the transformations r′′(r′(t(A)). Finally choose over all the triplets
b, b′ and b′′ the combined transformation g that resulted in the smallest
distance.

We show the following:

Theorem 3 The proposed matching algorithm generates a rigid transforma-
tion that results in a directed HSS distance that is the at most eight times
larger than the optimal.

Proof: Let go be the optimal rigid transformation, i.e. the one that min-
imizes the HSS distance between the transformed pattern and the model.
Furthermore, let Ho

SS its corresponding optimal distance value. For each
segment a of go(A) there is a corresponding segment of B that is within Ho

SS

distance from a. Translate the pattern go(A) so that the midpoint am of a
becomes coincident with the midpoint of its corresponding segment in B, call
it bm. Since

d(am, bm) ≤ min(max{d(as, bs), d(ae, be)}max{d(as, be), d(ae, bs)} = HSS({a}, {b} ≤ Ho
SS

(8)
every other segment of the pattern is moved by this translation by a distance
of at most Ho

SS. Consider now a′
f and the closest endpoint of its correspond-
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ing segment of B, say b′e. a′
f and b′e are at a distance at most Ho

SS. Thus the
rotation with origin in am that causes am, a′

f and b′e to be collinear, moves a′
f

by at most 2Ho
SS. Since any other point of the pattern is closer to am than a′

f ,
it will be moved by a smaller amount. Finally, consider the segment b′′ of B
corresponding to a′′. The rotation about the axis ama′

f that brings a′′
d closest

to an endpoint of b′′ moves any other point of the pattern by at most 4Ho
SS.

In conclusion, after applying all three transformations any point of A will be
moved by at most 7Ho

SS and therefore will be at a distance from its closest
point in B of at most 8Ho

SS. Since our algorithm will have considered the
above transformation among all others, it would have generated a solution
that is at most 8 times worse than the best one. �

If we take into account the error factor ε due to the approximation of the
nearest neighbor computation, we obtain an error factor of 8ε. Similarly, for
the HS we have the following:

Theorem 4 The proposed matching algorithm based on the HS metric gen-
erates a rigid transformation that results in a directed HS distance that is a
factor of (7 +

√
2) larger than the optimal.

Proof: The proof is similar to the previous one and uses the relation (2).
It is omitted. �

The time complexity of the algorithm is O(mn3NearestSegment(n)),
assuming m segments in the image and n segments in the model, where
NearestSegment(n) is the time to determine the closest segment in a set of
n segments.

As we have seen in the previous section, using the Hausdorff metric HSS

(or HOS) the nearest neighbor query in a set of segments ( to identify the
segment of the model segment “closest” to a segment of the image), reduces
to a nearest neighbor query among points in R6 that can be performed in
optimal O(log n) time within a known error bound. Then, the overall worst
case time complexity for the matching algorithm with the HSS distance is
O(mn3 log n).

Note that, to the best of our knowledge, no algorithm is known for the
exact computation of the Hausdorff distance in 3D space under rigid trans-
formations. For a review and analysis of the exact Hausdorff distance com-
putation in 2D for rigid transformations and in 3D, for translations only, see
[20].
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5 Experimental results

The program PM written in C++ that implements the proposed matching
strategy can use various definitions of distance between sets of segments. The
inputs to PM are two lists of segments A and B, the output consists of a list
of corresponding segments of the two input sets, a distance value for each
corresponding pair and a global distance value. This latter value may be the
maximum over all distance values, as in the standard Hausdorff distance, or
the average.

Here we report on the results obtained using the one-way segment Haus-
dorff distance hSS on two types of input data: range images and protein
secondary structures.

5.1 Range images

Line and Segment extraction
We first shortly describe how the segments are extracted from the images.
We have implemented two strategies to extract line segments from range data
[22]. The strategies generate the set of 3-dimensional lines that best fit the
data based on random sampling. Methods that are very common for line
detection in 2D, like the Hough transform [15, 30], have been not considered
because of their high memory requirements when extended to 3D. The two
strategies are applied to the set of edge points detected in a range image using
the scanline approximation approach of [25]. We have also used as input to
the line extraction procedure, to be described below, the set of boundary
points derived from range image segmented into planar regions [6, 24].

The simplest line detection approach finds the best line among the lines
defined by pairs of input edge points. For each such line, it counts the number
of edge points within ε distance from it, where ε is a given tolerance threshold;
the best line is the one that produces the maximum value. RANSAC [7]
restricts the search for the best line to a random selected subset of pairs
of edge points, thus keeping the computational complexity of the approach
reasonably low. For the detection of multiple lines, the above procedure is
applied repeatedly after the removal from the set of edge points of all points
within 2 ∗ ε from the best line.

The second strategy we have implemented is a robust optimization tech-
nique based on tabu search that explores a larger set of candidate lines. Tabu
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Figure 2:Comparison of the two matching strategies. The distance values are represented
on the y axis for 18 datasets. The solid line gives the distance values obtained by our fast
algorithm; the dashed line by the exhaustive search. The 18 experiments are sorted by
increasing value of the distances obtained by our fast algorithm.

image segmentation, the output of the matching procedure is good. The obtained
distance value (average) is 8.4. The rotational matrix is :

0.99 -0.06 0.05
0.07 0.99 -0.07
-0.05 0.07 0.99

while the parameters of the translation are: [-66.64, -7.45, 57.38].
Figure 5 shows the results obtained when matching a portion of a cube (black

lines) with three different polyhedral objects (grey lines).

The execution time for the range images of figures 3-4 was approx 5 minutes.
For very large datasets, clever pruning strategies may reduce the computation time
by trying to eliminate candidate associations from further examination early in the
process.

5.2 Protein secondary structure

PM was used for pairwise comparison of protein structures and tested with many
different proteins from the Protein Data Bank (PDB) [1]. The protein structural
comparison has received a lot of attention in recent years for its relevance in bioin-
formatics and functional genomics. There are many reasons why protein structure

15

Figure 2: Comparison of the two matching strategies. The distance values are
represented on the y axis for 18 datasets. The solid line gives the distance values
obtained by our fast algorithm; the dashed line by the exhaustive search. The 18
experiments are sorted by increasing value of the distances obtained by our fast
algorithm.

search (TS) [19] is a powerful optimization technique that has been used to
solve a variety of complex combinatorial problems. One of the main compo-
nents of TS is the use of adaptive memory: during the search, local choices
are guided by the past history of the search. Restrictions are imposed by
making reference to the memory structures storing the tabu or forbidden al-
ternatives. This prevents solutions from the recent past from being revisited.
We have applied the basic TS paradigm to the line detection problem and
obtained results of better quality than using the above simple approach. The
quality of a line is defined as number of edge points within ε distance from
the line. The method does not restrict the lines to pass through pairs of edge
points and therefore may find a better fit of lines to points especially for long
line segments.

Matching
The inputs to PM are two lists of segments A and B of two images or of
an image and a model. The output of the algorithm also includes the rigid
transformation (rotation and translation) that maps one set of segments into
the other.

To evaluate our matching method we have compared it against a more
extensive search that examines a larger transformation space. This second
method examines all triples of segments of the set A and finds the best
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(a) (b)

Figure 3: The range images abw.train.3 (a) and abw.test.27 (b)

transformation among those obtained by associating each triple of A with all
triples of segments of B. The time complexity of this more extensive search is
very high (O(n6 log n) ) and unacceptable in practice. There is no guarantee
that this new method produces the optimal Hausdorff distance; however, it
may be closer to that value. A comparison of the distance values obtained
by the two search methods applied to several pairs of images is displayed in
Figure 2. The distance values in the figure represent max values as in the
standard Hausdorff definition. The figure shows that the distances computed
by the more extensive search are only marginally better.

We have run the program on several pairs of range images of polyhedral
objects acquired by an ABW structures light scanner. 2 In our experiments
we have computed the average Hausdorff value because it is less sensitive
to errors due to spurious elements and thus generally gives more reliable
results in model-based object recognition. This is in accordance with other
experiments based on the Hausdorff distance for pointsets in computer vision
[14], [35]. We report here on the results on a pair of images for which the line
segmentation process generates several line segments that do not correspond
to actual edges of the images and are due to noise. This makes the matching
process more difficult. Consider the two images abw.test.27 and abw.train.3
shown in Fig. 3, and match the first against the second image. The segments
are extracted from the two range images by the Tabu Search. Figure 4
shows the segments of the two sets after the computed transformation is

2The images are available from http://marathon.csee.usf.edu/range/segcomp/SegComp.html.
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(Side view) (Top view)

Figure 4: Two different views of the sets of segments of abw.train.3 (black)
and abw.test.27 (red) after the computed transformation is applied to the
segments of abw.test.27

applied to the segments of abw.test.27. Despite the poor quality of the image
segmentation, the output of the matching procedure is good. The obtained
distance value (average) is 8.4. The rotational matrix is :

0.99 -0.06 0.05
0.07 0.99 -0.07
-0.05 0.07 0.99

while the parameters of the translation are: [-66.64, -7.45, 57.38].
Figure 5 shows the results obtained when matching a portion of a cube

(black lines) with three different polyhedral objects (grey lines).

The execution time for the range images of figures 3-4 was approx 5
minutes. For very large datasets, clever pruning strategies may reduce the
computation time by trying to eliminate candidate associations from further
examination early in the process.

5.2 Protein secondary structure

PM was used for pairwise comparison of protein structures and tested with
many different proteins from the Protein Data Bank (PDB) [1]. The protein
structural comparison has received a lot of attention in recent years for its
relevance in bioinformatics and functional genomics. There are many reasons
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(a) (b) (c)

Figure 5: (a-c) Matching of a simple cube pattern (black lines) with three
different backgrounds of polyhedral objects (gray lines).

why protein structure comparison is important. First, since the structure of
a protein is intrinsically related to its function, structural comparison can
help to assign a function to a newly determined protein structure from its
similarity to a protein with known function. Second, it can be used for protein
classification to build a library of 3D shapes of proteins or folds. Third, it is
a valuable tool for evaluating and assessing the quality of various methods
for proteins structure prediction.

The protein structure comparison may involve different levels of repre-
sentations of the three dimensional structures, from the atomic level to the
level of secondary structures. The secondary structure of a protein is a rep-
resentation in terms of recurrent regular substructures, the α-helices and
the β-strands, that play an important role in the functional behavior of a
protein. Arrangements of the α-helices and β-strands are the basis for the
protein structural classification of SCOP [29]. For a survey of the protein
architecture see [8], [28].

Most methods presented in the literature for fold comparison deal with
a protein representation in terms of atomic coordinates. Approaches based
on secondary structures have been used mostly for fast retrieval of folds or
motifs from the PDB. Furthermore, the comparison of secondary structures
can be used as the first step in a comparison procedure that first identifies
possible candidate solutions in a fast way and then refines the solutions taking
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into consideration the more detailed atomic descriptions of proteins [13].
Extensive surveys on the subject of protein comparison exist focusing on
different aspects of the problem [9], [16], [27].

We have used our approach to segment matching to compare proteins at
the level of secondary structural elements, with the α-helices and β-strands
represented as linear segments. The segment associated to a β-strand is the
best fit line segment for the set of atoms comprising the strand. For an α-
helix, the associated segment is is its geometric axis. One major distinction
among the comparison approaches is whether they take into account the order
of the secondary structure elements along the protein chain as a constraint in
the correspondence process. Our matching procedure is order independent.
Moreover, it allows to associate only secondary structures of the same type,
i.e. helices to helices and strands to strands.

We have conducted experiments on several sets of segments of proteins
structures. The test proteins were of different fold classes, either all α-
structures, all β-structures, or α-β-structures combined. As already men-
tioned, the program PM provides as output a list of pairs of corresponding
segments and for each such pair a distance value. In addition, it outputs the
average (or the maximum) distance value over all pairs of segments and the
obtained rigid transformation.

The line segments associated to secondary structures were determined by
a line fitting procedure using either tabu search or a well-known technique
based on singular value decomposition [18]. Only Cα atoms of the protein
backbone were considered for the determination of the best fit segment. For
both procedures the outputs were very satisfactory. There were very few
exceptions corresponding to strands with a significant bent at the extremes.
The examples shown in this section have been obtained with tabu search.

The first set of tests dealt with pairwise comparison of whole proteins.
For proteins that are known to be structurally similar, the program success-
fully reported a large number of corresponding pairs of segments with small
distance values. Consider, for instance, the two proteins 1rpa and 1rpt (in
Figure 6(a-b)) that have very similar segments with only a small perturba-
tion. Each protein consists of 13 helices and 14 strands. The superposition
of the two sets of segments obtained by applying to one of the two proteins
the obtained rigid transformation can be seen in Figure 6(c). The maximum
Hausdorff distance value hSS returned by our practical method was 1.22Å
while the average Hausdorff value was 0.7Å. The more extensive search de-
scribed in the previous section obtained a maximum Hausdorff value of 0.98
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(a) (a) (c)

Figure 6: Segment based comparison of secondary structures. The secondary
structure of the input proteins 1rpa (a) and 1rpt (b). (c) Fitting of the
segments representing the two proteins (1rpa in green and 1rpt in red). The
fitting is computed by miniziming the distance HSS.

Å thus only slightly better.
The average value compares well with the results of the server PROuST

[13] (http://angela.dei.unipd.it/PROuST/) that gives an RMSD (Root Mean
Square Deviation) of 0.4Å between the corresponding atoms. PROuST uses
a more complex procedure that takes into account both the secondary struc-
tures and the atomic coordinates; it is based on a combination of indexing
techniques and dynamic programming.

A second set of experiments involved searching for protein substructures,
i.e. specific geometric arrangements of secondary structures or motifs in sets
of proteins. The β-barrel is a motif in which the secondary structures are
arranged to form the shape of a torus [32]. The experiment used the β-barrel
of some given protein, for instance the taka-amilase (PDB code:2taa), to
define the motif and then matched it against a set of proteins to determine
the ones containing a similar barrel. To validate our approach, the chosen
motif was sought in a set of proteins some of which are known from the PDB
to contain such a motif, as, for instance, hydrolase (2amg), triose phosphate
isomerase (1tim), carbon-oxygen lyase (3enl), pseudoazurins (1paz), etc. The
set was enlarged to include proteins without a barrel motif and with different
folds structure, among which the azurins (2aza, 1azu), plastocyanins (6pcy),
etc.
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(a) (b)

Figure 7: The secondary structure of proteins 6pca (a) and 2aza (b) for which
the best fitting line segments are determined.

Barrels present in proteins may differ both in the number of strands, their
length, and in general in their spatial arrangement. The β-barrel of 2taa
chosen as search pattern comprises 8 β-strands. The protein 2taa contains
a total of 9 α-helices and 19 β-strands. When matching the 8-stranded
barrel with each protein of the set, good similarity results were abtained
only for proteins known to contain a barrel. In such cases, the number
of corresponding pairs obtained within a given small distance value was a
considerably large fraction of the structures present in the motif. As an
example, consider protein hydrolase 2amg that contains a total of 13 β-
strands 8 of which forming a barrel. The pairwise comparison between the
search pattern of 2taa and all secondary structures of 2amg resulted in 7
pairs of corresponding segments with distance less than 7.4Å and an average
Hausdorff value of 4.9Å. The 7 segments of 2amg are indeed those of the
barrel.

Another example used as search pattern the β-sheets of the plastocyanin
structure 6pcy (in Figure 7) that are arranged to form a sandwich motif.
Figure 8 shows the match between the pattern of 6pcy and protein azurin
2aza that also contains a sandwich motif. The match resulted in 8 strands
being associated within a distance less than 8.1Å and an average Hausdorff
distance of 5.5Å.

When the entire structure of 6pcy, which also includes a short helix, was
compared with 2aza 9 pairs of corresponding segments were reported with
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Figure 8: The segments of the two sets 6pcy and 2aza, with different colors,
are shown after the computed transformation is applied to the segments of
one set. (a) Top view. (b) side view.

distance less than 10.5 Å
For all such comparisons the hSS metric was used.
The above tests performed on proteins of known families showed that

PM was successfull in locating matches of proteins sub-structures common
to members of a protein family.

The execution times for matching pairs of proteins are generally very
good. The average number of secondary structures in the roughly 27,000
proteins now present in Protein Data Bank is 13. For the examples presented
in this paper the execution time was of the order of seconds on a SUN Sparc
5 station.

6 Conclusions

In this paper, a method for matching 3D objects based on line segments and
on the Hausdorff distance and its many variants was presented. The proposed
method determines the rigid transformation that aligns one set of segments
with the other. We have conducted experiments on different datasets: poly-
hedral objects extracted from range images and protein structures. For the
range data, the preliminary line detection phase is a crucial and difficult
step especially in the presence of noise and occlusion. To improve the per-
formance of the method we have used tabu search for line detection and
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obtained generally good results. The matching algorithm is however robust
in the presence of errors in the segmentation process. To match protein struc-
tures, we have represented them in terms of secondary structures, i.e. helices
and strands. The proposed strategy was particularly effective in searching
for substructures in model databases.
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