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Abstract  

The electrolytes Ca(NO3)2(aq) and NaNO3(aq) are both extremely soluble but differ in 

several important respects.  Ca(NO3)2(aq) has complex behavior at low ionic strengths 

and forms several thermodynamically stable and metastable solid phases, whereas 

NaNO3(aq) forms only an anhydrous solid phase.  The thermodynamic properties of both 

have previously been modeled using extended Pitzer ion-interaction models that include 

higher-order virial terms, in addition to those of the standard Pitzer model. The 

parameters of the original Pitzer model, however, are often needed for thermodynamic 

modeling calculations.  In this paper we convert the parameters of the extended ion-

interaction models for Ca(NO3)2(aq) and NaNO3(aq) to the standard Pitzer model using 

an extension of the methodology previously described by Rard and Wijesinghe [J. Chem. 

Thermodynamics 35 (2003) 439–473].  In this variant, the exponential coefficient α1
P  of 

Pitzer’s model is also optimized to yield the most accurate overall representation of the 

osmotic coefficients φ over the ionic strength and temperature ranges of interest. The 

optimal values of α1
P  = 0.87 kg1/2·mol–1/2 for Ca(NO3)2(aq) and α1

P  = 1.43 kg1/2·mol–1/2 

for NaNO3(aq) are smaller than the value α1
P  = 2.00 kg1/2·mol–1/2 normally used for 

electrolytes of these valence types. In both cases, the accuracy of the osmotic coefficients 

predicted by the standard Pitzer model was nearly equal to that of the extended Pitzer 

model up to the solubility limit for T = (298.15 to 423.15) K. This result is consistent 

with the findings of Rard, Wijesinghe, and Wolery [J. Chem. Eng. Data 49 (2004) 1127–

1140] who obtained a substantial improvement in model accuracy for Mg(NO3)2(aq) at T 

= 298.15 K by optimizing this parameter.  The use of a temperature dependent α1
P  that is 

optimal at each temperature did not yield a significant improvement in accuracy over 



 

 

3 

using a constant optimal value. We also investigated the impact of choosing different 

temperature functions to develop temperature correlations for the Pitzer parameters. 

Higher-order temperature functions were needed for evaluations with solubility limited 

maximum ionic strength compared to evaluations performed at constant maximum ionic 

strength over the temperature range, especially for Ca(NO3)2(aq) because of its more 

complex thermodynamic behavior. Accurate temperature correlations are presented for 

both Ca(NO3)2(aq) and NaNO3(aq). 

 

KEYWORDS: Pitzer’s model, Archer’s model, ion-interaction model, aqueous 

electrolyte, calcium nitrate, sodium nitrate, parameter optimization, parameter 

correlations 



 

 

4 

1. Introduction 

 

The standard form of Pitzer's ion-interaction model for electrolyte solutions [1,2], which 

contains three empirically determined parameters βM,X
(0) , βM,X

(1) , and CM,X
φ , has been used 

extensively for representing the thermodynamic properties of aqueous electrolytes, with 

an additional term containing the βM,X
(2)  parameter for aqueous divalent metal sulfates and 

other higher-valence electrolytes that have significant ionic association at low molalities 

followed by redissociation at higher molalities [2–4].  

Weare and co-workers [5,6] showed that Pitzer's model could be used to reliably 

model the solubilities of solutes present in complex, highly concentrated, natural brines 

and their precipitation sequences as solvent is evaporated. Pitzer's ion-interaction model 

is included in several geochemical modeling codes [7–9]. Extended forms of Pitzer's 

model with ionic-strength dependent third virial terms [10–13] have been used to 

represent thermodynamic data for highly soluble electrolytes, when the standard (three 

parameter) Pitzer model is not able to represent these data with sufficient accuracy. Rard 

and Wijesinghe [14] listed studies published up to 2002 that reported parameters for these 

extended models.  Many of these studies used the extended ion-interaction model 

described by Archer [10,11]. Parameters for the Archer model were subsequently 

evaluated for Na2SO4(aq) [15], NdCl3(aq) [16], and Mg(NO3)2(aq) [17].  

Databases are available [2,5,6,18–21] for the parameters of the original or standard 

Pitzer model [1–4]. However, the equations of the extended models [10–13] have not 

been incorporated in most geochemical modeling codes, and thus there is a continuing 

need for expanding the parameter databases for the standard Pitzer model. 
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The electrolyte Ca(NO3)2 is soluble in H2O to about m = 8.4 mol·kg–1 at T = 298.15 K, 

but the solubility increases rapidly with temperature reaching values of m ≈ (22 to 23) 

mol·kg–1 for the temperature range T = (348.15 to 423.15) K where anhydrous 

Ca(NO3)2(cr) is the thermodynamically stable solid phase [22]. However, as observed by 

Stokes and Robinson at T = 298.15 K [23], Ca(NO3)2(aq) solutions readily supersaturate 

when evaporated isothermally. When the solution is concentrated sufficiently, the 

supersaturated solution transforms into a semi-solid gel. Stokes and Robinson further 

noted that the curve of vapor pressures against molality is continuous for both the fluid 

and gel phases. They also reported isopiestic molalities at T = 298.15 K for 

supersaturated solutions ranging up to m = 21.58 mol·kg–1. Oakes et al. [13] summarized 

published thermodynamic studies for Ca(NO3)2(aq) in their table 2, which includes 

isopiestic results at T = (373 to 423) K extending nearly to the saturated solution 

molalities [24]. 

A molality of m = 21.58 mol·kg–1 corresponds to an ionic molality of 3m = 3(21.58 

mol·kg–1) = 64.74 mol·kg–1, or 0.857 water molecules per ion. Clearly, at this very high 

molality there is insufficient water present to fulfill the hydration requirements of the 

individual ions, extensive ion pairing or complex formation must be present, and the 

basic assumptions of Debye-Hückel type electrostatic models are no longer valid. The 

Brunauer-Emmett-Teller (BET) absorption model [25] has been used to represent the 

water activities of such highly concentrated solutions. Although the BET model generally 

represents the water activities fairly well at very high molalities, the quality of 

representation at low molalities is significantly poorer than at higher molalities. This 

failure to accurately represent the low molality behavior can result in large systematic 

errors in the derived mean activity coefficients for electrolytes with large but finite 
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solubilities, because the mean activity coefficients are based on the infinite dilution 

reference state by way of a standard state defined in terms of Henry’s law.  

Clegg et al. [26] represented the osmotic coefficients of Ca(NO3)2(aq) at T = 298.15 K 

with a mole-fraction based thermodynamic model. The mole-fraction composition scale 

is a more appropriate composition scale than molality for thermodynamic models at very 

high concentrations, where the molality varies rapidly with the amount of solvent and can 

become infinite for completely miscible systems. They were able to represent the 

available osmotic coefficients of Ca(NO3)2(aq) fairly accurately to m ≈ 15 mol·kg–1 with 

four model parameters. However, their model is restricted to T = 298.15 K. 

In Archer’s model [10,11] the constant CM,X
φ  term of Pitzer’s standard model is 

replaced by a two-parameter ionic strength-dependent function, and this extended model 

is able to accurately represent the thermodynamic properties of most soluble electrolytes 

over wide ranges of molality and temperature. However, the thermodynamic data for 

Ca(NO3)2(aq) extend to such high molalities that Oakes et al. [13] found it was necessary 

to extend the Archer model by adding a second ionic-strength dependent third virial term. 

Oakes et al. were able to represent the available thermodynamic data for Ca(NO3)2(aq) to 

m ≈ 20 mol·kg–1 for T ≈ (298 to 373) K without explicitly considering ionic association. 

However, it is likely that the additional third virial terms, in part, are indirectly 

representing the effects both this ionic association and the breakdown of the assumptions 

of the Debye-Hückel model. Their parameterized model represents the available osmotic 

coefficients φ fairly accurately up to m ≈ 10 mol·kg–1, and to ∆φ ≈ 0.03 at the highest 

molalities. 

The most rigorous way to obtain the parameters of Pitzer’s standard model is to 

evaluate the parameters using the same critically-assessed database that was used for 
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evaluating the parameters of the extended ion-interaction model.  However, the original, 

critically-assessed database is not always available. Rard and Wijesinghe [14] proposed 

an alternative approach in which the available model parameters for the extended ion-

interaction model are directly converted to those of the standard Pitzer model. They 

reported the Pitzer model parameters for four aqueous electrolytes, including 

Ca(NO3)2(aq) and NaNO3(aq), that were derived by this method. Unfortunately, there 

was a significant degradation of the quality of representation of the thermodynamic 

behavior for Ca(NO3)2(aq), and to a lesser extent for NaNO3(aq), when the 5-parameter 

and 4-parameter extended models were transformed into 3-parameter standard Pitzer 

models. 

Rard et al. [17] subsequently modeled the thermodynamic properties for the 

Mg(NO3)2(aq) system with Pitzer’s standard model [1,2] and with Archer’s model 

[10,11]. Isopiestic data for this system extend to m = 5.123 mol·kg–1 but are restricted to 

T = 298.15 K. Rard et al. found that optimizing the α1 exponential coefficient to α1 = 

1.55 kg1/2·mol–1/2 for the βM,X
(1)  term of Pitzer’s standard model improved the standard 

deviation of the model fit by more than a factor of two relative to the fit with the usual 

value of α1 = 2.0 kg1/2·mol–1/2, and gave an excellent representation of the available 

thermodynamic data that was essentially equal in quality to the fit with Archer’s model. 

They suggested that a significant improvement might also be achieved for the standard 

Pitzer model for Ca(NO3)2(aq) if the α1 exponential coefficient was similarly optimized. 

The method of Rard and Wijesinghe [14] is based on determining the integral over the 

ionic strength range of the square of the differences between osmotic coefficients 

evaluated from two different ion-interaction models.  Simultaneously setting equal to 

zero the partial derivatives of this cumulative square difference function with respect to 
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each of the parameters of standard Pitzer model {βM,X
(0) , βM,X

(1) , βM,X
(2) , and CM,X

φ } yields the 

conditions necessary to obtain the optimum values of these parameters.  However, they 

assumed that the exponential coefficients α1 and α2 of the βM,X
(1)  and βM,X

(2)  terms, 

respectively, were the same for both standard and extended ion-interaction models. In the 

present report we extend this method to the more general case where 1
Pα  ≠ 1

EAα  and 2
Pα  ≠ 

2
EAα , where the superscripts P denote Pitzer and EA denote extended Archer models, and 

apply it to improving the representation of the Ca(NO3)2(aq) and NaNO3(aq) systems 

with the standard Pitzer model.   

 

2. The standard and extended ion-interaction models for strong electrolytes 

 

Pitzer's original ion-interaction equation [1–4] for the molality-based osmotic coefficient 

φ of a binary solution of a dissociated electrolyte of stoichiometry MνMXνX in a single 

solvent may be written as:  

 

φP = 1 – |zMzX|Aφ·I1/2/(1 + bI1/2) + (2νMνX/ν)m{ P)(0,
XM,β  + βM,X

(1,P) ·exp(– 1
Pα I1/2) +  

       βM,X
(2,P) ·exp(– 2

Pα I1/2)} + {2(νMνX)3/2/ν}m2· M,X
(φ,P)C ,      (1) 

 

where M denotes the cation and X the anion; m is the stoichiometric molality; b = 1.2 

kg1/2·mol–1/2; Aφ is the Debye-Hückel limiting law slope for φ; I is the stoichiometric, 

molality-based, ionic strength; zM and zX are the valences (with sign) of ions M and X; 

νM and νX are the number of M and X ions formed by complete dissociation of one 

molecule of MνMXνX; and ν = νM + νX is the stoichiometric ionization number of the total 
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electrolyte.  The exponential coefficient 1
Pα  is usually fixed at 1

Pα  = 2.0 kg1/2·mol–1/2, 

except for the divalent metal sulfates and for other higher-charge-type electrolytes with 

both ions having valences |zi| ≥ 2, where 1
Pα  = 1.4 kg1/2·mol–1/2 is the usual choice [2,3]. 

The βM,X
(2,P)  term is normally included only for higher charge type electrolytes, and thus 

would not be used for electrolytes such as Ca(NO3)2(aq) and NaNO3(aq).  

For Pitzer’s model, mean activity coefficients γ± of a single electrolyte are given by 

 

ln γ±
P = –|zMzX|Aφ{I1/2/(1 + bI1/2) + (2/b)ln(1 + bI1/2)} + (2νMνX/ν)m[2 P)(0,

XM,β  + 

           2{βM,X
(1,P) /( 1

Pα )2I}{1 – {1 + ( 1
Pα )I1/2 – ( 1

Pα )2I/2}exp(– 1
Pα I1/2)} +  

      2{βM,X
(2,P) /( 2

Pα )2I}{1 – {1 + ( 2
Pα )I1/2 – ( 2

Pα )2I/2}exp(– 2
Pα I1/2)}] +  

          {3(νMνX)3/2/ν}m2· M,X
(φ,P)C .       

 (2) 

 

We now recast these two equations solely in terms of the stoichiometric ionic strength 

I, rather than using both ionic strength and molality.  For a single electrolyte, that is either 

completely or partially associated, the stoichiometric ionic strength is related to the 

molality by equation (11) of Rard and Wijesinghe [14]: 

 

 m = 2I/{ν|zMzX|}.        (3) 

 

Using this relationship to eliminate the molality m in favor of the ionic strength I in 

equations (1) and (2) we obtain the expressions: 
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φP = 1 – |zMzX|Aφ·I1/2/(1 + bI1/2) + λ3I{ P)(0,
XM,β  + βM,X

(1,P) ·exp(– 1
Pα I1/2) +  

       βM,X
(2,P) ·exp(– 2

Pα I1/2) + λ1 I M,X
(φ,P)C }       (4) 

and  

ln γ±
P = –|zMzX|Aφ{I1/2/(1 + bI1/2) + (2/b)ln(1 + bI1/2)} + 2λ3 I [ P)(0,

XM,β  + 

           {βM,X
(1,P) /( 1

Pα )2I}{1 – {1 + ( 1
Pα )I1/2 – ( 1

Pα )2I/2}exp(– 1
Pα I1/2)} +  

      {βM,X
(2,P) /( 2

Pα )2I}{1 – {1 + ( 2
Pα )I1/2 – ( 2

Pα )2I/2}exp(– 2
Pα I1/2)} +  

          (3/4)λ1 I M,X
(φ,P)C ],         (5) 

where the charge-type dependent constants λ1 and λ3 are defined by 

 

λ1 ≡ 2(νMνX )1/2/(ν|zMzX|)        (6) 

and 

λ3 ≡ (4νMνX )/(ν2|zMzX|).         (7) 

 

The Oakes et al. [13] equation for φ will first be converted to a form analogous to 

equation (1) by recognizing that their anion molality ma and cation molality mc are related 

to the stoichiometric molality by ma = νX·m and mc = νM·m, and by making the following 

composition scale transformations: 

 

(2I/
i

∑ mi) = |zMzX|         (8) 

 

and 
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(2mamc/
i

∑ mi) = (2νMνX/ν)m.       (9) 

 

The equations of Oakes et al. [13] for the osmotic and mean activity coefficients then 

become: 

 

φEA = 1 – |zMzX|Aφ·I1/2/(1 + bI1/2) + (2νMνX/ν)m{βM,X
(0,EA)  +  

   βM,X
(1,EA) ·exp(– 1

EAα I1/2) + βM,X
(2,EA) ·exp(– 2

EAα I1/2)} +  

          (4νM
2νXzM/ν)m2{ M,X

(0,EA)C  + M,X
(1,EA)C ·exp(– 1

EAω I1/2) + M,X
(2,EA)C ·exp(– 2

EAω I1/2)} (10) 

and 

ln γ±
EA = –|zMzX|Aφ{I1/2/(1 + bI1/2) + (2/b)ln(1 + bI1/2)} + (2νMνX/ν)m[2βM,X

(0,EA)  + 

                2{βM,X
(1,EA) /( 1

EAα )2I}{1 – {1 + ( 1
EAα )I1/2 – ( 1

EAα )2I/2}exp(– 1
EAα I1/2)} +  

                2{βM,X
(2,EA) /( 2

EAα )2I}{1 – {1 + ( 2
EAα )I1/2 – ( 2

EAα )2I/2}exp(– 2
EAα I1/2)}] +  

               (2νM
2νXzM/ν)m2[3 M,X

(0,EA)C  + 4{ M,X
(1,EA)C /( 1

EAω )4I2}{6 – {6 + 6( 1
EAω )I1/2 +  

               3( 1
EAω )2I + ( 1

EAω )3I3/2  – ( 1
EAω )4I2/2}exp(– 1

EAω I1/2)} + 

               4{ M,X
(2,EA)C /( 2

EAω )4I2}{6 – {6 + 6( 2
EAω )I1/2 + 3( 2

EAω )2I + ( 2
EAω )3I3/2  –  

         ( 2
EAω )4I2/2}exp(– 2

EAω I1/2)}].      (11) 

 

When these equations for the extended Archer model are recast solely in terms of the 

ionic strength I, as was done for the standard Pitzer model, we obtain 

 

φEA = 1 – |zMzX|Aφ·I1/2/(1 + bI1/2) + λ3 I [βM,X
(0,EA)  +  
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   βM,X
(1,EA) ·exp(– 1

EAα I1/2) + βM,X
(2,EA) ·exp(– 2

EAα I1/2)} +  

          λ1λ2 I{ M,X
(0,EA)C  + M,X

(1,EA)C ·exp(– 1
EAω I1/2) + M,X

(2,EA)C ·exp(– 2
EAω I1/2)}]             (12) 

 

and 

ln γ±
EA = –|zMzX|Aφ{I1/2/(1 + bI1/2) + (2/b)ln(1 + bI1/2)} + 2λ3 I [βM,X

(0,EA)  + 

                {βM,X
(1,EA) /( 1

EAα )2I}{1 – {1 + ( 1
EAα )I1/2 – ( 1

EAα )2I/2}exp(– 1
EAα I1/2)} +  

                {βM,X
(2,EA) /( 2

EAα )2I}{1 – {1 + ( 2
EAα )I1/2 – ( 2

EAα )2I/2}exp(– 2
EAα I1/2)}] +  

                2λ1λ2λ3 I2[(3/4) M,X
(0,EA)C  + { M,X

(1,EA)C /( 1
EAω )4I2}{6 – {6 + 6( 1

EAω )I1/2 +  

         3( 1
EAω )2I + ( 1

EAω )3I3/2  – ( 1
EAω )4I2/2}exp(– 1

EAω I1/2)} + 

       { M,X
(2,EA)C /( 2

EAω )4I2}{6 – {6 + 6( 2
EAω )I1/2 + 3( 2

EAω )2I + ( 2
EAω )3I3/2  –  

   ( 2
EAω )4I2/2}exp(– 2

EAω I1/2)}],      (13) 

  

where  

 

λ2 ≡ 2(|zMzX|)1/2.          (14) 

 

The βM,X
(0)  and βM,X

(1)  parameters are intended to represent exactly the same two-ion 

interactions in the Pitzer [1–4], Archer [10,11], and Oakes et al. [13] models, and thus, in 

principle, the numerical values of each of these equivalent parameters should be the same 

in the two formulations.  Similarly, the parameter M,X
(φ,P)C  of Pitzer's equation is equivalent 

to Archer's M,X
(0,EA)C  parameter, because CM,X

(φ ,P)  = 2zM(νM/νX)1/2CM,X
(0,A)  when M,X

(1,EA)C  = M,X
(2,EA)C  = 

0.  However, the numerical values of the equivalent parameters will not be identical 
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unless the M,X
(1,EA)C  and M,X

(2,EA)C  parameters are set equal to zero and 1
Pα  = 1

EAα  and 2
Pα  = 

2
EAα .  In the present paper we consider the more general case where 1

Pα  and 2
Pα , 

respectively, may differ from 1
EAα  and 2

EAα . Thus, the model parameters, osmotic 

coefficients, and mean activity coefficients are identified by either a superscript "P" for 

Pitzer or superscript "EA" for extended Archer, in order to distinguish between the two 

source model equations. 

 
3. Methods of Analysis:  Conversion of the model parameters of the extended ion-

interaction model of Oakes et al. to those of the standard Pitzer model with the 

simultaneous optimization of βM,X
(0,P) , βM,X

(1,P) , βM,X
(2,P) , M,X

(φ,P)C , 1
Pα , and 2

Pα  

 
The general method we use for converting parameters from the extended ion-interaction 

model of Oakes et al. [13] to those of the standard Pitzer model [1-4], is based on 

minimizing, in a least-squares sense, the difference (or “error”) between the osmotic 

coefficients predicted by these two models.  The equations of Oakes et al. [13] reduce to 

the equations of Archer [10,11] when M,X
(2,EA)C  = 0, and consequently the methodology 

described below is applicable to Archer’s model by setting M,X
(2,EA)C  and its derivatives 

equal to zero. 

For simplicity, we shall assume that identical values of the Debye-Hückel model 

limiting law slopes Aφ, and their temperature and pressure derivatives, are to be used in 

both the Pitzer and the extended Archer forms of the ion-interaction model. Archer [27] 

described how to adjust the Pitzer model parameters if the value of Aφ is changed. We 

use the same value of the constant b = 1.2 kg1/2·mol–1/2 in both forms of the ion-

interaction model, following Pitzer's recommendation [1].  

We minimize the mean square difference function EI
2{XP(T, p)} defined by: 
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                               EI
2 ≡  { ∫

=

(T)max  

min 0

I

I

(φP − φEA)2 dI }/ ∫
=

(T)max  

min 0

I

I

dI },   (15a) 

                                                = {1/ Imax(T)}{ ∫
=

(T)max  

min 0

I

I

(φP − φEA)2 dI },             (15b) 

over the ionic-strength range of interest {Imin = 0 to Imax(T)}.   

Examination of equations (4) and (12 ), and (5) and (13), indicates that the Debye-

Hückel terms are identical for φEA and φP, and also for ln γ±
EA and ln γ±

P, and thus they 

will cancel exactly when the differences (φP – φEA) and (ln γ±
P – ln γ±

EA), are taken.  The 

choice of one difference function over the other will not influence the results that follow.   

The parameters and exponential coefficients of the extended Archer ion-interaction 

model {i.e, βMX
(0,EA) , βMX

(1,EA) , βMX
(2,EA) , M,X

(0,EA)C , M,X
(1,EA)C , M,X

(2,EA)C , 1
EAα , and 2

EAα } are assumed to be 

known, and those of Pitzer's standard model {βM,X
(0,P) , βM,X

(1,P) , βM,X
(2,P) , M,X

(φ,P)C , 1
Pα , and 2

Pα } are 

unknown quantities whose values are to be determined from the parameters of the 

extended ion-interaction model. 

The method that we will use, as described by Rard and Wijesinghe [14], is to evaluate 

the optimum values of the parameters of the original Pitzer model [1–4] from those of 

extended Archer model [13], by determining the unknown standard Pitzer parameter set 

XP(T, p) that minimizes the values of the difference function (φP – φEA) over the full 

ionic-strength range Imin = 0 to some maximum value Imax(T).  The selected Pitzer model 

parameter set is denoted by XP(T, p) ≡ {βM,X
(0,P) , βM,X

(1,P) , βM,X
(2,P) , M,X

(φ,P)C , 1
Pα , and 2

Pα }, and an 

element of this parameter set is denoted by i
PX (i = 1, 2,..., 6).  Similarly, we define the 

extended Archer model parameter set as XEA(T, p) ≡ {βMX
(0,EA) , βMX

(1,EA) , βMX
(2,EA) , M,X

(0,EA)C , 

M,X
(1,EA)C , M,X

(2,EA)C , 1
EAα , 2

EAα , 1
EAω , and 2

EAω }, where XEA
i (i = 1, 2,..., 10) is an element of the 
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extended Archer model parameter set.  Therefore, the mean square error EI
2 defined by 

equation (15) can be viewed as a function EI
2{ i

PX  (T, p)} of the unknown temperature 

and pressure dependent standard Pitzer parameters i
PX (T, p). 

The advantages of using EI
2{XP(T, p)} as the measure of “goodness of fit” is that its 

values will be identically zero only if (φP – φEA) is identically zero at all values of I, and it 

has positive values for all finite positive or negative differences (φP – φEA). More 

specifically, EI
2{XP(T, p)} is a positive definite function with a quadratic form in the 

unknown {βM,X
(0,P) , βM,X

(1,P) , βM,X
(2,P) ,  and M,X

(φ,P)C } parameters because (φP – φEA) is a continuous 

linear function of these four parameters, although it is nonlinear in the two exponential 

coefficients { 1
Pα , 2

Pα }. Our approach, applied here to continuous functions, is analogous 

to the traditional least-squares method applied to sets of discrete experimental 

information.  

The upper integration limit Imax(T) may be the same as the maximum ionic strength 

used for evaluation of the parameters for the extended Archer model at the temperature 

under consideration.  Alternatively, if the extended Archer model parameters are based in 

part on thermodynamic measurements for highly supersaturated solutions, it may be 

desirable to restrict Imax to the ionic strength of the saturated solutions Isat, in order to 

optimize the representation for solubility calculations. The minimum ionic strength Imin 

has been set equal to zero, to simplify the analysis and because this is the reference state 

for mean activity coefficients. 

The values of the i
PX  parameters that minimize the values of EI

2{XP(T, p)} can be 

found by simultaneously setting equal to zero the derivatives of this function with respect 

to all of the Pitzer model parameters i
PX .  Integration of the complicated expression 

resulting from direct evaluation of the (φP – φEA)2 term in equation (15) can be avoided 
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and simplified by first differentiating the integrand under the integral sign, and then 

analytically integrating the resulting simpler integrands: 

∂EI
2/∂ i

PX   = (2/ Imax) { ∫
=

(T)max  

min 0

I

I

(φP − φEA)(∂φP/∂ i
PX ) dI } =  0,                (16) 

The subsequent mathematical development can be considerably simplified and 

streamlined by recasting equations (4) and (12) for the osmotic coefficient of the standard 

Pitzer and extended Archer models in forms that exploit the linearity of these expressions 

in the coefficients Xi
P (i = 1, .., 4) = { P)(0,

XM,β , βM,X
(1,P) , βM,X

(2,P) , and M,X
(φ,P)C } of the standard Pitzer 

model, and in the coefficients Xi
EA (i  = 1, …, 6) = {βM,X

(0,EA) , βM,X
(1,EA) , βM,X

(2,EA), M,X
(0,EA)C , M,X

(1,EA)C , 

and M,X
(2,EA)C } of the extended Archer model: 

 

φP = DH
Pφ  + 

j=1

4
∑  (∂φP/∂Xj

P) Xj
P                                                         (17) 

φEA = DH
EAφ  + 

j=1

6
∑  (∂φEA/∂Xj

EA) Xj
EA                                               (18) 

where: 

DH
Pφ  = 1 – |zMzX|Aφ·I1/2/(1 + bI1/2)                                                                      (19) 

∂φP/∂ P)(0,
XM,β  = λ3I                                                                                             (20) 

∂φP/∂βM,X
(1,P)  = λ3I·exp(– 1

Pα I1/2)                                                                       (21) 

∂φP/∂βM,X
(2,P)  = λ3I·exp(– 2

Pα I1/2)                                                                        (22) 

∂φP/∂ M,X
(φ,P)C  = λ1λ3 I2                                                                                        (23) 

DH
EAφ  = 1 – |zMzX|Aφ·I1/2/(1 + bI1/2)                                                                      (24) 

∂φEA/∂βM,X
(0,EA)  = λ3I                                                                                             (25) 
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∂φEA/∂βM,X
(1,EA)  = λ3I ·exp(– 1

EAα I1/2)                                                                      (26) 

∂φEA/∂βMX
(2,EA)  = λ3I·exp(– 2

EAα I1/2)                                                                      (27) 

∂φEA/∂ M,X
(0,EA)C  = λ1λ2λ3I2                                                                                       (28) 

∂φEA/∂ M,X
(1,EA)C  = λ1λ2λ3I2·exp(– 1

EAω I1/2)                                                           (29) 

∂φEA/∂ M,X
(2,EA)C  = λ1λ2λ3I2·exp(– 2

EAω I1/2)}.                                                         

 (30) 

 

All of the extended Archer model parameters, the ionic strength, the temperature, and the 

pressure are held constant when these partial derivatives are evaluated. 

Inserting expressions (17) and (18) into equation (16), and rearranging the terms and 

defining new matrix arrays, we obtain 

 

j=1

4
∑  Aij· j

PX   = Bi                i = 1,..., 4                 (31) 

where 

 

Bi = 
k=1

6
∑  Cik· k

EAX   – Di                                  i  = 1, …, 4                   (32) 

The coefficient matrices Aij, Cik, and the Debye-Hückel vector Di are given by 

Aij ≡ ∫
=

(T)max  

min 0

I

I

(∂φP/∂ i
PX )(∂φP/∂ j

PX ) dI              i, j = 1,…,4                            (33) 

Cik ≡ ∫
=

(T)max  

min 0

I

I

(∂φP/∂ i
PX )(∂φEA/∂ k

EAX ) dI            i = 1,…,4 ;  k = 1,…6     (34)        
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Di ≡ ∫
=

(T)max  

min 0

I

I

(∂φP/∂ i
PX )( DH

Pφ  – DH
EAφ ) dI                   i = 1, …, 4     (35)    

It can be seen from equation (33) that the coefficient matrix Aij is a symmetric (i.e, Aij 

= Aji) square (i, j = 1,…,4) matrix whose size is determined by the number of unknown 

Pitzer parameters (excluding the 1
Pα  and 2

Pα  exponential coefficients), and it depends 

solely on the properties of the standard Pitzer model and the maximum ionic strength 

Imax(T). In contrast, the coefficient matrix Cik is, in general, neither square nor symmetric. 

The number of rows of this matrix is equal to the number of unknown parameters of the 

standard Pitzer model (excluding its 1
Pα  and 2

Pα  exponential coefficients) and the number 

of columns is equal to the number of extended Archer model parameters (excluding the 

1
EAα  and 2

EAα  exponential coefficients), and it is a function of the properties of both the 

standard Pitzer and the extended Archer models. The Debye-Hückel vector Di will be set 

equal to zero because the Debye-Hückel limiting-law slope Aφ and b were assumed to be 

the same for the standard Pitzer and extended Archer models, so that DH
Pφ  = DH

EAφ . The 

integrations required to evaluate the coefficient matrix Aij and the right hand side vector 

Bi can be performed analytically, and the results are given in Appendix A. The values of 

the resulting expressions for Aij and Bi can be evaluated numerically if the values of the 

exponents { 1
Pα , 2

Pα } are specified, and all of the extended Archer model parameters 

XEA(T, p) ≡ {βMX
(0,EA) , βMX

(1,EA) , βMX
(2,EA) , M,X

(0,EA)C , M,X
(1,EA)C , M,X

(2,EA)C , 1
EAα , 2

EAα , 1
EAω , and 2

EAω } are 

known. The matrix equation (31), which is linear in the parameters i
PX (i = 1,.., 4 ) = 

{ P)(0,
XM,β , βM,X

(1,P) ,  βM,X
(2,P) , and M,X

(φ,P)C }, can then be easily solved for these parameters by 

standard matrix solution methods. 
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The condition expressed by equation (16) is a necessary condition for the solution 

XP(T, p) of the matrix equation (31) to be a local extremum of the function EI
2{XP(T, p)}.  

However, equation (16) alone is not sufficient to ensure that the resulting solution XP(T, 

p) represents a minimum, rather than a maximum or a point of inflection.  Therefore, the 

goodness of fit of the model representation obtained by this approach should be evaluated 

by directly calculating, and then comparing the φ values obtained by using the original 

extended Archer model parameters to those calculated using the derived Pitzer 

parameters. 

 

Determination of the optimum exponents 1
Pα , 2

Pα  

The two equations that determine the optimum values of the exponential coefficients 1
Pα , 

2
Pα  that minimize the mean square error EI

2 can be formulated in a similar fashion by 

setting the derivatives of EI
2 with respect to each exponential coefficient equal to zero: 

∂EI
2/∂ n

Pα   = (2/Imax){ ∫
=

(T)max  

min 0

I

I

(φP − φEA)(∂φP/∂ n
Pα )  dI } =  0,               (36) 

where n
Pα  = { 1

Pα , 2
Pα } for n = 1,2 and  

∂φP/∂ 1
Pα  = – λ3 βM,X

(1,P) ·I3/2·exp(– 1
Pα I1/2)                                                        (37) 

∂φP/∂ 2
Pα  = – λ 3 βM,X

(2,P) ·I3/2·exp(– 2
Pα I1/2).                                                        (38) 

 

Inserting the expressions (17) and (18) for the osmotic coefficients φP and φEA into 

equation (36) and rearranging the terms and defining new variables, we obtain  

                            
j=1

4
∑ nj

αA · j
PX  = n

αB ,   n = 1,2                                                  (39) 
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where, 

n
αB  = 

k=1

6
∑ nk

αC · k
EAX   – n

αD ,           n = 1,…4                                  (40) 

The exponential coefficient matrices nj
αA , nk

αC , and the Debye-Hückel vector n
αD  are 

given by 

nj
αA  ≡ –(1/ M,X

(n,P)β ) ∫
=

(T)max  

min 0

I

I

(∂φP/∂ n
Pα )(∂φP/∂ j

PX ) dI,           n = 1,2; j = 1,…4        (41) 

nk
αC  ≡ –(1/ M,X

(n,P)β ) ∫
=

(T)max  

min 0

I

I

(∂φP/∂ n
Pα )(∂φEA/∂ k

EAX ) dI,       n = 1,2 ; k = 1,…6      (42)        

n
αD  ≡ –(1/ M,X

(n,P)β ) ∫
=

(T)max  

min 0

I

I

(∂φP/∂ n
Pα )( DH

Pφ  – DH
EAφ ) dI,       n = 1,2                        (43)    

The integrations required to evaluate the exponential coefficient matrices nj
αA  and nk

αC  

can be performed analytically, and the results are given in Appendix A. As before, the 

associated Debye-Hückel vector n
αD  vanishes because the Debye-Hückel limiting-law 

slope Aφ and b were assumed to be the same for the standard Pitzer and extended Archer 

models. The factor of M,X
(n,P)β  that is common to all terms of equation (39) has been 

eliminated from the definitions given by equations (41)–(43). 

Upon examining equation (39) for the unknown exponents { 1
Pα , 2

Pα } and the 

previously obtained equation (31) for the parameters {βM,X
(0,P) , βM,X

(1,P) , βM,X
(2,P) , and M,X

(φ,P)C } of 

the standard Pitzer model, we see that coefficient matrices of these two equations are 

themselves functions of the unknown exponential coefficients, yielding a system of 

matrix equations that is non-linear with respect to 1
Pα  and 2

Pα .  This non-linear system of 

six simultaneous equations can be solved by non-linear iterative matrix solution methods 
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such as the Newton-Raphson iterative technique, but this is usually much more difficult 

than solving the system of linear simultaneous equations, given by equation (31), for the 

parameter sub-set {βM,X
(0,P) , βM,X

(1,P) , βM,X
(2,P) , and M,X

(φ,P)C } for given values of 1
Pα  and 2

Pα . 

 

4. Methods of Analysis: Alternative approach for conversion of the model 

parameters for model equations with only one non-linear exponent coefficient 

 

In the previous section, a general non-linear procedure for determining all parameters of 

the standard Pitzer model, including the exponential coefficients, was presented.  There 

is, however, a more direct alternative approach that is more convenient when there is only 

one exponential coefficient with respect to which the problem is non-linear.  For 

Ca(NO3)2(aq) and NaNO3(aq) the terms involving βMX
(2,EA)  and 2

EAα , and thus βM,X
(2,P)  and 2

Pα , 

are absent, so that there is only one non-linear unknown 1
Pα . Therefore, instead of 

simultaneously solving the full non-linear set of equations (31) and (39) for the optimal 

values of all five unknowns, it is more convenient to only solve the linear matrix equation 

(31) for the four unknowns,  (βM,X
(0,P) , βM,X

(1,P) , βM,X
(2,P) , and M,X

(φ,P)C ) while keeping the value of 1
Pα  

fixed, and then to numerically evaluate the mean square difference function EI
2 given by 

equation (15) at each temperature T  for a series of assumed values of 1
Pα . The optimum 

value of 1
Pα  that minimizes EI

2 may then be determined at a particular temperature by 

examining the tabulated values of EI
2. This procedure yields a different value of 1

Pα  that 

is optimum at each different temperature. Thus, in effect, we have replaced the non-linear 

least-squares parameter evaluation with a series of linear least-squares parameter 

evaluations. 
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The determination of an “average” optimal value of 1
Pα  that is constant for all ionic 

strength and temperature ranges is also of great interest because it can be used directly in 

the standard Pitzer model, which has traditionally employed a temperature independent 

value of 1
Pα . For determining this temperature-average optimum value of 1

Pα , we define 

the temperature averaged mean square error EI,T
2 resulting from converting the extended 

Archer model to the standard Pitzer model by  

EI,T
2 ≡ { ∫

max  

min

T

T
∫

=

(T)max  

min 0

I

I

(φP − φEA)2 dI dT }/ { ∫
max  

min

T

T
∫

=

(T)max  

min 0

I

I

dI dT}           (46a) 

       = [ ∫
max  

min

T

T

Imax(T)·{EI(T)}2 dT ]/ [ ∫
max  

min

T

T

Imax(T) dT]            (46b) 

The optimal average value of 1
Pα  over the entire ionic strength range {Imin, Imax(T)} and 

temperature range (Tmin, Tmax) is determined by examining calculated values of the root 

mean square error (RMSE) measure EI,T for a series of fixed (temperature-independent) 

values of 1
Pα , and then selecting the value of 1

Pα  for which EI,T is a minimum. 

Rard et al. [17] found that optimizing the Archer model parameters for 

Mg(NO3)2(aq), by a least-squares fitting method applied to experimentally determined 

values of φ,  resulted in three minima (two local, one absolute) in the RMSE EI,T 

evaluated as a function of α1 and ω1.  Similarly, Albright et al. [28] found three minima 

(two local, one absolute) in the RMSE for an extended Archer model for ZnSO4(aq). It is 

possible that even more local minima may be encountered if we attempted to 

simultaneously optimize the values of {βM,X
(0,P) , βM,X

(1,P) , βM,X
(2,P) , M,X

(φ,P)C , 1
Pα , and 2

Pα }. 

Our parameter conversion procedure is based on minimizing the difference (or 

“error”) between the osmotic coefficients predicted by the two models.  This choice was 
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motivated by the simpler form of the difference function for the osmotic coefficient 

compared to those of the activity coefficients or the excess Gibbs free energies, and 

because all of the input activity data for the Ca(NO3)2(aq) source model [13] are osmotic 

coefficients. There are other electrolyte systems where the majority of the 

thermodynamic data are values of mean activity coefficients from e.m.f. measurements 

using reversible electrochemical cells. For these systems the use of conversion equations 

based on minimizing the difference between activity coefficients calculated from the 

different models may be more appropriate. 

The values of the RMSE measure EI over the ionic strength range {Imin, Imax(T)}, and 

the overall RMSE measure EI,T over the combined ionic strength and temperature range 

{Imin to Imax(T) and Tmin to Tmax} are necessary both for determining the optimum 

exponential coefficients by inspection and for subsequent evaluation of the accuracy of 

the optimized results. The values of the Pitzer parameters i
PX (T) were computed at 

regularly spaced temperature values from equations (31) and (39) for iteratively 

determined values of the exponential coefficients. In the case of one exponential term, the 

value of 1
Pα  that minimizes the error EI,T  was determined by inspection of the results 

from these fits as described previously. The integrals over ionic strength of the osmotic 

coefficient in the definitions of the square error measure EI
2(T), given by equation (15), 

was numerically evaluated by dividing the ionic-strength range of integration at each 

temperature into equal intervals and approximating the integrals using the trapezoidal 

integration rule [i.e., 
x1

x 2 

∫  y(x) dx ≈ (1/2){y(x1) + y(x2)}(x2 – x1)] within each ionic-

strength interval. The RMSE measure EI,T was next computed in a similar manner from 
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equation (46b) by using these values of EI
2(T) and the trapezoidal integration rule within 

each temperature interval. 

 

5. Methods of Analysis:  Fitting of temperature functions to the standard Pitzer 

model parameters βM,X
(0,P) , βM,X

(1,P) , βM,X
(2,P) , M,X

(φ,P)C , 1
Pα , and 2

Pα  obtained by converting the 

parameters of the extended ion-interaction model 

 

The method of determining the parameters XP(T) = {βM,X
(0,P) (Τ), βM,X

(1,P) (Τ), βM,X
(2,P) (Τ), M,X

(φ,P)C (T), 

1
Pα (Τ), and 2

Pα (T)} of the standard Pitzer model at a given value of the temperature T, and 

of determining optimal constant average values for 1
Pα  and 2

Pα  over the entire temperature 

range, was described previously in Sections 3 and 4. In this section we present the method 

that we used to fit standard temperature functions to the values of these parameters 

computed over the desired range of temperatures, so that they can be described over this 

temperature range with a small number of constant temperature coefficients. To this end, 

we represent each Pitzer parameter i
PX (T) by the linear sum of a finite series of terms of 

the form 

i
PX (T) = 

j=1

8
∑ aij·gj(T),     i = 1,.., 4; j = 1,…, 8                                            (47) 

where the gj(T) (j = 1,…,8) are a standard set of pre-defined temperature basis functions, 

and the aij are the constant temperature coefficients corresponding to each Pitzer 

parameter i
PX (T) and temperature basis function gj(T).  

 We selected the temperature basis functions to represent all integer powers T n of the 

absolute temperature T, where n ranged from –3 to +3. The natural logarithm ln(T) was 

also included as a term in this series because it is intermediate in power law behavior 
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between T and T –1.  This choice of basis functions allows the temperature dependencies 

typical of thermodynamic properties of electrolytes to be accommodated. Thus, we 

adopted the set of temperature basis functions given by 

g1(T) = 1          (48) 

g2(T) = T – Tref          (49) 

g3(T) = T 2 – Tref
2         (50) 

g4(T) = T –1 – Tref
–1                                               (51) 

g5(T) = ln(T/Tref)         (52) 

g6(T) = T 3 – Tref
3         (53) 

g7(T) = T –2 – Tref
–2                                            (54) 

g8(T) = T –3 – Tref
–3         (55) 

where each basis function gj≠1(Tref ) = 0 to yield ai1 = i
PX (Tref). Therefore, the first 

temperature coefficient ai1 is equal to the value of the Pitzer parameter at the reference 

temperature Tref, which we fix at Tref = 298.15 K.  

The temperature coefficients aij of each Pitzer parameter i
PX (T) are determined by 

minimizing the mean square error between the values of i
PX (T) determined from the 

model conversion step described in Sections 3 and 4, and its value calculated using 

equation (47). That is, we minimize the mean square error 

                     ET
2 ≡ [ ∫

max  

min

T

T

{ i
PX (T) − 

j=1

8
∑ aij·gj(T)}2 dT ]/[ ∫

max  

min

T

T

dT],   (56a) 

                           = [1/(Tmax – Tmin)][ ∫
max  

min

T

T

{ i
PX (T) − 

j=1

8
∑ aij·gj(T)}2 dT],   (56b) 

over the temperature range of interest (Tmin, Tmax)  by setting its derivatives with respect to 

the unknown temperature coefficients aij equal to zero. Thus, we have 
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∂ET
2/∂aij

  = [2/(Tmax – Tmin)] [ ∫
=

(T)max  

min 0

I

I

{ i
PX (T) − 

k=1

8
∑ aik·gk(T)}gj(T) dT ] =  0,       (57) 

Rearranging equation (57) and defining new matrix arrays, we obtain the matrix equation 

 

k=1

8
∑ jk

τA ·aik  = ij
τB                            i = 1,…,4; j = 1,…,8   (58) 

where 

jk
τA  ≡ ∫

=

(T)max  

min 0

I

I

gj(T)·gk(T) dT     j, k = 1,…,8   (59) 

ij
τB  ≡ ∫

=

(T)max  

min 0

I

I

 i
PX (T)·gj(T) dT    i = 1,...,4; j = 1,…,8   (60)    

Note that the index i of the generic Pitzer parameters i
PX (T), of the temperature 

coefficients aij, and of the vector ij
τB  is effectively a dummy index that can be ignored 

when solving the linear matrix equation (58) for the temperature coefficient vector, 

because each Pitzer parameter is fitted to the temperature functions independently of the 

other Pitzer parameters.  

The values of the Pitzer parameters i
PX (T) were obtained from the model conversion 

step in Section 3 at regularly spaced temperature values. Therefore, the integrals in the 

definitions (59) and (60) of the matrix coefficients jk
τA  and the right-hand side vector ij

τB  

were numerically evaluated by dividing the range of integration into equal intervals and 

approximating the integral within each temperature interval using the trapezoidal 

integration rule for a linear variation of the integrand within that interval. The linear 

matrix equation (58) is then solved for the temperature coefficients aik by Gaussian 

elimination.  
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The impact of the overall error incurred, including both the error due model 

conversion and the error due to fitting the temperature functions, is evaluated through the 

difference between the osmotic coefficients calculated using the fitted temperature 

coefficients for the standard Pitzer model and the osmotic coefficient calculated using the 

input temperature dependent parameters of the extended Archer model. This is compared 

against the error in the osmotic coefficient due to model conversion only through the 

difference between the osmotic coefficient from the standard Pitzer model computed 

using the parameters calculated from the model conversion step only, and the osmotic 

coefficient calculated using the input temperature dependent parameters of the extended 

Archer model. 

 

Temperature function representations 

In this paper we present the results for two different choices of the temperature basis 

functions for representing the temperature dependence of the standard Pitzer model. 

 

Four-term temperature function representation: This 4-term choice of temperature 

basis functions was selected by evaluating the accuracy of test calculations made using 

several different thermodynamic properties. The set consists of constant, linear, inverse 

temperature and logarithmic basis functions {i.e., 1, T, T –1, ln(T)}. Thus, the standard 

Pitzer model parameters i
PX (i = 1,..,4) = { P)(0,

XM,β , βM,X
(1,P) , βM,X

(2,P) , and M,X
(φ,P)C } are represented 

by 4-term temperature functions of the form 

 

        Xi(T) = ai1 + ai2 (T – Tref) + ai4 (T –1 – Tref
–1) + ai5 ln(T/Tref)                          (61a) 

    = ai1 + ai2·g2(T) + ai4·g4(T) + ai5·g5(T)      (61b) 
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Seven-term temperature function representation: This set of temperature basis 

functions supplements the basis functions of the 4-term set with four more basis functions 

to overcome observed deficiencies in the performance of the 4-term basis function set. 

This selection was made on the basis of exploratory evaluations of the temperature 

function fitting error in the osmotic coefficient for Ca(NO3)2(aq) with solubility 

constrained maximum ionic strength, and represents an optimal choice for this electrolyte 

under these conditions. It consists of the basis functions given by equations (48)–(54), 

excluding the the g8(T) term that was not required. Thus, the standard Pitzer parameters 

i
PX (i = 1,..,4) = {βM,X

(0,P) (Τ), βM,X
(1,P) (Τ), βM,X

(2,P) (T),  and M,X
(φ,P)C (T)} are represented by 7-term 

temperature functions of the form, 

 

i
PX  (T) = ai1 + ai2 (T – Tref) + ai3 (T 2 – Tref

2) + ai4 (T –1 – Tref
–1) + ai5 ln(T/Tref) + 

              ai6 (T 3 – Tref
3) + ai7 (T –2 – Tref

–2)                                           (62a) 

      = ai1 + ai2·g2(T) + ai3·g3(T) + ai4·g4(T) + ai5·g5(T) + ai6·g6(T) + ai7·g7(T)    (62b) 

 

6. Activity of water and solubility product 

The activity of water in aqueous electrolyte solutions and the solubility products for solid 

phases in equilibrium with the saturated solutions are often needed to calculate the 

saturated solution molalities. The activity of water aw may be computed from the osmotic 

coefficient φ using the equation 

 

  aw ≡ exp (–ν·Mw·m·φ )                                                  

 (63)  
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where Mw is the molar mass of water (0.0180153 kg·mol–1).   

The dissolution reaction describing the equilibrium between a solid phase 

MνMXνX·nH2O(s) that has n waters of hydration and its saturated solution is 

 

MνMXνX ·nH2O(s) = νMMzM+(aq) + νXXzX–(aq) + n H2O(l)     (64) 

 

Therefore, the standard (thermodynamic) solubility product Ksp can be computed from 

the activity of water aw and the mean activity coefficient γ±  of the saturated solution using 

the equation 

 

  Ksp ≡ {m(MzM+, sat)νM·m(XzX–, sat)νX/(m°)ν}·γ(MzM+, sat)νM·γ(XzX–, sat)νX·aw(sat)n

 (65a)                  

        = νM
νM·νX

νX·{m(sat)/m°}ν·γ±(sat)ν·aw(sat)n      (65b) 

 

where the stoichiometric coefficients νM, νX, and ν have been introduced previously, and 

m° = 1 mol·kg–1.  The molality m(sat) and the corresponding ionic strength Isat used in 

computing the solubility product from equation (65) correspond to those of the saturated 

solution. 

 

7. Computer code for model conversion and fitting temperature functions 

 

A Microsoft ExcelTM spreadsheet was programmed, using both cell formulae and macros 

written in the Visual Basic language, to compute the parameter conversion and 
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exponential coefficient optimization procedures described in Sections 3 and 4, the 

temperature function fitting procedure described in Section 5, and the water activity, 

mean activity coefficient, and solubility product calculations described in Section 6.  

The parameter conversion part of the program was developed to permit different 

combinations of unknown model parameters to be activated and determined by deleting 

the unneeded equations from the full set of matrix equations and function evaluations, 

and renumbering the remaining equations and variables. For example, the βM,X
(2,P) , 2

Pα , 

βMX
(2,EA) , and 2

EAα  parameters are not used in the standard Pitzer and extended Archer 

models of the aqueous Ca(NO3)2(aq) and NaNO3(aq) electrolyte systems presented in this 

paper, and removing these terms reduces the number of equations in matrix equation (31) 

from 4 to 3, and in the exponential matrix equation (39) from 2 to 1.  

Similarly, the temperature function fitting part of the program was developed to permit 

any sub-set of the full suite of temperature basis functions to be activated, and the 

temperature coefficients for only that particular sub-set to be calculated from equation 

(58). As a result, it was possible to easily examine the impact of different choices of the 

temperature basis functions on the accuracy of evaluation of any thermodynamic property 

(e.g, osmotic coefficient, activity coefficients, water activity, or solubility product) based 

on the standard Pitzer model.  

 

8. Results: Pitzer parameters for the standard Pitzer model for Ca(NO3)2(aq) and 

NaNO3(aq) 

In this section we present values of the βM,X
(0,P) , βM,X

(1,P) , and M,X
(φ,P)C  parameters of the standard 

Pitzer model derived from the extended Archer-type model parameters given by Oakes et 

al. [13] for Ca(NO3)2(aq) and by Archer [29] for NaNO3(aq), and examine the impact of 
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optimizing the selection of the exponential coefficient 1
Pα  on the accuracy of the derived 

standard Pitzer model.  

 

Ca(NO3)2(aq) Pitzer parameters 

     Oakes et al. [13] have critically evaluated the thermodynamic properties of the 

Ca(NO3)2 + H2O system and provide evaluated parameters of a 5-parameter model 

{βMX
(0,EA) , βMX

(1,EA) , M,X
(0,EA)C , M,X

(1,EA)C ,  and M,X
(2,EA)C } valid for T = (298 to 373) K.  The molalities of 

saturated Ca(NO3)2(aq) solutions [22] are very high, e.g., Isat = 3·m ≈ 18.7 mol·kg–1 at T = 

273.15 K; Isat ≈ 51.5 mol·kg–1 at T = 323.15 K; Isat ≈ 66.5 mol·kg–1 at T = 373.15 K; and 

Isat ≈ 68.5 mol·kg–1 at T = 423.15 K. Oakes et al. [13] included some thermodynamic 

measurements for supersaturated solutions when evaluating the values of their model 

parameters. 

The variation of the average root mean square error (RMSE) EI,T  with the 

1
Pα  parameter for the solubility limited maximum ionic strength,  Imax = Isat(T), and a 

constant maximum ionic strength,  Imax = 68.5 mol·kg–1, are given in figures 1 and 2, 

respectively. The plot in figure 1 for the solubility limited maximum ionic strength case 

shows a minimum RMSE of 6.0964·10–3 at 1
Pα  = 0.87 kg1/2·mol–1/2 with the RMSE 

increasing to 7.2456·10–2 at 1
Pα  = 2.0 kg1/2·mol–1/2. Using the optimal value of 1

Pα  = 0.87 

kg1/2·mol–1/2 yields a factor of 11.9 improvement in the accuracy of the osmotic 

coefficient calculated by the standard Pitzer model, over that obtained when using the 

standard value of 1
Pα  = 2.0 kg1/2·mol–1/2. The optimal value of 1

Pα  for the evaluation with 

constant Imax = 68.5 mol·kg–1 is also 1
Pα  = 0.87 kg1/2·mol–1/2 and this model yields a factor 

of 11.5 improvement in accuracy over that obtained for 1
Pα  = 2.0 kg1/2·mol–1/2. 
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Tables 1 and 2 list the values of βM,X
(0,P) , βM,X

(1,P) , and M,X
(φ,P)C  for Ca(NO3)2(aq) that were 

obtained from the extended Archer model parameters by minimizing EI
2. Two sets of 

Pitzer parameter values, corresponding to the constant optimized value of 1
Pα  = 0.87 

kg1/2·mol–1/2 and the standard value of 1
Pα  = 2.0 kg1/2·mol–1/2, are presented in these 

tables. The maximum ionic strengths Imax used for these parameter evaluations in table 1 

were those of the saturated solutions, whereas a constant value of Imax = 68.5 mol·kg–1 

was used for table 2.  It was possible to evaluate these Pitzer model parameters for both 

constraints on Imax, because data for supersaturated solutions were included in the Oakes 

et al. model [13]. 

The quality of the osmotic coefficient predicted by the standard Pitzer model using the 

above parameter sets can be assessed from the plots of the osmotic coefficient as a 

function of ionic strength and temperature given in figures 3 to 5 for the solubility limited 

maximum ionic strength, and in figures 6 to 8 for constant maximum ionic strength, at 

values of 1
Pα  = (0.20, 0.87, and 2.0) kg1/2·mol–1/2, respectively.   It can be seen from these 

figures that the use of the optimal value 1
Pα  = 0.87 kg1/2·mol–1/2 gives a nearly perfect 

agreement between the standard and extended Pitzer models over most of the ionic 

strength range, whereas the standard value 1
Pα  = 2.0 kg1/2·mol–1/2 yields significantly 

poorer agreement, particularly at low ionic strengths and high temperatures.  Comparing 

the plots of figures 3 to 5 with those of figures 6 to 8 we see that there are no significant 

differences in accuracy between the results for solubility limited maximum ionic strength 

and those for constant maximum ionic strength. The Pitzer model fits with 1
Pα  = 2.0 

kg1/2·mol–1/2 have deviations from the extended Archer model [13] of ca. 10 per cent at 

certain ionic strengths and temperatures (see figure 9 of Rard and Wijesinghe [14]), 
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whereas those obtained with the optimized value 1
Pα  = 0.87 kg1/2·mol–1/2 have maximum 

deviations of ca. 1 per cent. 

 

NaNO3(aq) Pitzer parameters 

Archer [29] has critically evaluated the thermodynamic properties of the NaNO3 + H2O 

system and provided evaluated parameters of a 4-parameter model {βMX
(0,EA) , βMX

(1,EA) , M,X
(0,EA)C ,  

and M,X
(1,EA)C } valid for temperatures from T = (273 to 373) K.  The molalities of saturated 

NaNO3(aq) solutions [22] are high, e.g., Isat = m ≈ 8.59 mol·kg–1 at T = 273.15 K; Isat ≈ 

13.16 mol·kg–1 at T = 323.15 K; Isat ≈ 21.19 mol·kg–1 at T = 373.15 K; and Isat ≈ 33.07 

mol·kg–1 at T = 423.15 K, but are not as high on an ionic strength basis as in the case of 

Ca(NO3)2(aq). 

The variation of the average root mean square error (RMSE) EI,T  with the 

1
Pα  parameter for the solubility limited maximum ionic strength {i.e., Imax = Isat(T)} is 

given in figure 9. This plot shows a minimum RMSE of 2.0340·10–3 at 1
Pα  = 1.43 

kg1/2·mol–1/2 with the RMSE increasing to 7.9871·10–3 at 1
Pα  = 2.0 kg1/2·mol–1/2. 

Therefore, using the optimal value of 1
Pα  = 1.43 kg1/2·mol–1/2 yields a factor of 3.93 

increase in the accuracy of the osmotic coefficient calculated by the standard Pitzer 

model, over that obtained when using the standard value of 1
Pα  = 2.0 kg1/2·mol–1/2.  

Table 3 lists the values of βM,X
(0,P) , βM,X

(1,P) , and M,X
(φ,P)C  for NaNO3(aq) that were obtained 

from the Archer model parameters by minimizing EI
2. Two sets of parameter values, 

corresponding to the constant optimized value of 1
Pα  = 1.43 kg1/2·mol–1/2 and the standard 

value of 1
Pα  = 2.0 kg1/2·mol–1/2 are presented in this table at various temperatures. The 
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maximum ionic strength Imax used for these parameter evaluations in table 3 were those of 

the saturated solutions.   

The quality of the osmotic coefficient predicted by the standard Pitzer model using the 

above parameter set can be assessed from the plots of the osmotic coefficient as a 

function of ionic strength and temperature given in figures 10–12, for values of 1
Pα  = 

(0.20, 1.43, and 2.0) kg1/2·mol–1/2, respectively.   It can be seen from these figures that the 

use of the optimal value of 1
Pα  gives excellent agreement, whereas the standard value of 

1
Pα  = 2.0 kg1/2·mol–1/2 yields significantly poorer agreement, particularly at low ionic 

strengths and high temperatures.   

 

Pitzer parameters when 1
Pα (T) is optimized separately at each temperature 

Tables 4 and 5 give the corresponding values of βM,X
(0,P) , βM,X

(1,P) , and M,X
(φ,P)C  for Ca(NO3)2(aq) 

and NaNO3(aq), respectively, using values of 1
Pα (T) that have been optimized at each 

reported temperature. It can be seen that the values of 1
Pα (T) for Ca(NO3)2(aq) are nearly 

constant at T ≥ 353.15 K as are those for NaNO3(aq) at T ≥ 333.15 K. 

 

9. Results: temperature functions for parameters of the standard Pitzer model for 

Ca(NO3)2(aq) and NaNO3(aq) 

 

 Ca(NO3)2(aq) temperature functions 

The coefficients of the temperature functions were fitted to the standard Pitzer model 

parameters presented for Ca(NO3)2(aq) in tables 1 and 2 as described in Section 5. The 

accuracy of the 4-term temperature functions given by equation (61) and the extended 7-

term temperature functions given by equation (62) were evaluated. The average RMSE 
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between the osmotic coefficients calculated using the temperature functions for the 

temperature dependent Pitzer parameters and the input osmotic coefficients calculated 

from the extended Archer model of Oakes et al. [13] for the solubility limited maximum 

ionic strength and constant maximum ionic strength cases are given in figures 1 and 2, 

respectively. From figure 1, for the solubility limited maximum ionic strength case, it can 

be seen that the choice of the temperature functions fitted to the standard Pitzer model 

parameters has a very significant impact on the accuracy of the calculated osmotic 

coefficients. The accuracy of the fit is seen to be unacceptable in the case of the 4-term 

temperature functions, whereas the 7-term temperature functions yields accurate values 

of the osmotic coefficient, for 1
Pα  ≥ 0.75 kg1/2·mol–1/2.  

From the corresponding results in figure 2 for the constant maximum ionic strength 

case, it can be seen that the choice between the 4- and 7-term temperature functions for 

the standard Pitzer model parameters has a much smaller impact on the accuracy of the 

calculated osmotic coefficients compared to the case of solubility limited maximum ionic 

strength. In this case, while the 7-term temperature functions give a nearly perfect 

representation for all values of 1
Pα , the 4-term temperature functions gives acceptable 

results for most values of 1
Pα  with the least accuracy occurring around the optimal value 

of 1
Pα  = 0.87 kg1/2·mol–1/2, where the 7-term functions perform much better. Clearly, the 

solubility limited maximum ionic strength fit requires more temperature functions to 

achieve acceptable accuracy, particularly if the solubility behavior is complicated by the 

many different solid phases that are formed in the case of Ca(NO3)2(aq). In both of these 

cases, the 7-term temperature functions yielded accurate values of the Pitzer parameters 

as a function of temperature for the optimal values of 1
Pα . 
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The quality of the temperature function fits to the standard Pitzer model parameters 

βM,X
(0,P) , βM,X

(1,P) , and M,X
(φ,P)C  for Ca(NO3)2(aq) can be assessed from the plots of these 

parameters against temperature given in figures 13–15 for the case of solubility limited 

maximum ionic strength. It can be seen from these figures that while both 4-term and 7-

term temperature functions represent βM,X
(1,P)  adequately, the 4-term functions have 

difficulty in representing both βM,X
(0,P)  and M,X

(φ,P)C  with sufficient accuracy. The temperature 

coefficients calculated for the 7-term temperature functions for the optimal and standard 

values of the exponential coefficient 1
Pα  are given for Ca(NO3)2(aq) in tables 6 and 7 for 

the cases of solubility limited maximum ionic strength and constant Imax = 68.5 mol·kg–1, 

respectively.  

The βM,X
(0,P)  and M,X

(φ,P)C  parameters for Ca(NO3)2(aq) are more difficult to represent as 

functions of temperature for the solubility limited maximum ionic strength model as a 

result of abrupt changes in slope around 327 K, and shown in figures 13 and 15. The 

thermodynamically stable solid phase is Ca(NO3)2·4H2O(s) from about 244 K to 321 K 

where it melts congruently to form a solution of the same composition, with 

Ca(NO3)2·3H2O(s) and Ca(NO3)2·2H2O(s) occurring up to ≈ 324 K [22]. The slope 

changes observed in figures 13 and 15 directly reflect slope changes in Isat as a function 

of temperature as the stable hydrate changes. 

 

NaNO3(aq) temperature functions 

Temperature functions were fitted to the standard Pitzer model parameters for NaNO3(aq) 

presented in table 3, and the accuracy of the 4-term temperature functions given by 

equation (61) and the 7-term temperature functions given by equation (62) were 

evaluated for NaNO3(aq) as in the case of Ca(NO3)2(aq). The average RMSE between the 
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osmotic coefficient calculated using the temperature functions for the standard Pitzer 

model parameters and the input osmotic coefficient values calculated from the extended 

model of Archer [29] for the solubility limited maximum ionic strength case are given for 

NaNO3(aq) in figure 9. It can be seen from this figure that the choice of the temperature 

functions fitted to the standard Pitzer parameters has a very significant impact on the 

accuracy of the calculated osmotic coefficient. In the case of the 4-term temperature 

functions, the accuracy of the fit is seen to be acceptable only over a limited range of 1
Pα  

= (0.8 to 1.2) kg1/2·mol–1/2, whereas the 7-term temperature functions yield accurate 

values of the osmotic coefficient for all values of 1
Pα , including its optimal value of 1

Pα  = 

1.43 kg1/2·mol–1/2.  

Figure 9 clearly indicates that the 4-term temperature functions perform better in the 

case of NaNO3(aq) that has lower solubility and only one stable solid phase, compared to 

Ca(NO3)2(aq) which is much more soluble and has a complex solubility behavior.  

The quality of the temperature function fits to the standard Pitzer model parameters 

βM,X
(0,P) , βM,X

(1,P) , and M,X
(φ,P)C  for NaNO3(aq) can be assessed from the plots of these parameters 

against temperature given in figures 16–18 for the case of solubility limited maximum 

ionic strength. It can be seen from these figures that while both 4-term and 7-term 

temperature functions represent all three parameters adequately, the 7-term function fit is 

more accurate at all temperatures. The temperature coefficients calculated for the 7-term 

temperature functions for the constant optimal and standard values of the exponential 

coefficient 1
Pα  for NaNO3(aq) are given in table 8 for calculations with the solubility 

limited maximum ionic strengths.  
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10. Results: temperature dependent optimal 1
Pα  for the standard Pitzer model for 

Ca(NO3)2(aq) and NaNO3(aq) 

 

In this study, we also investigated the potential benefit of using a temperature dependent 

1
Pα  that is optimal at each temperature, compared to the use of a temperature independent 

constant optimal value in minimizing the error in the osmotic coefficient calculated by 

the standard Pitzer model. To determine this value of 1
Pα (T), we computed the RMSE EI 

in the osmotic coefficient over the ionic strength range as defined by equation (15b), for a 

range of assumed values of 1
Pα , and determined the optimal value of 1

Pα  that minimized 

EI. The temperature dependent values of 1
Pα , and the corresponding minimum value of EI 

computed in this way, are listed in table 9 for each temperature T. It can be seen from 

table 9 that the optimal values of 1
Pα (T) for both Ca(NO3)2(aq) and NaNO3(aq) are quite 

close to the corresponding temperature-independent optimal values of 1
Pα  = (0.87 and 

1.43) kg1/2·mol–1/2, respectively, when T > ≈340 K. For comparison, the corresponding 

values of 1
Pα  and the RMSE are also given for Mg(NO3)2(aq) at T = 298.15 K [17].  

The accuracy of the osmotic coefficient computed using these values of 1
Pα (T) from 

the standard Pitzer model are compared against the input osmotic coefficients calculated 

from the extended Archer model of Oakes et al. [13] for Ca(NO3)2(aq) in figure 19 and 

for NaNO3(aq) in figure 20. It can be seen from these figures that the accuracy of this 

approach is comparable to that achieved previously for Ca(NO3)2(aq) in figure 4 using 

the constant optimal value of 1
Pα  = 0.87 kg1/2·mol–1/2, and for NaNO3(aq) in figure 11 

using the constant optimal value of 1
Pα  = 1.43 kg1/2·mol–1/2. Therefore, we recommend the 

use of the constant optimal values of this exponential coefficient instead of more 
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complicated temperature dependent values, which would also require re-derivation of the 

expressions for the temperature derivatives of the excess Gibbs energy such as the 

relative enthalpy and heat capacity. 

 

11. Results: Thermodynamic properties of saturated solutions of Ca(NO3)2(aq) and 

NaNO3(aq) 

In this section we use the previously determined standard Pitzer model parameters to 

calculate the osmotic coefficient, water activity, mean activity coefficient, and solubility 

product of saturated solutions of Ca(NO3)2(aq) and NaNO3(aq) as a function of 

temperature.  

The solubilities of Ca(NO3)2(aq) and NaNO3(aq), reported by Linke [22], are 

reproduced in tables 10 and 11, respectively, together the chemical composition of each 

solid phase that is in equilibrium with the saturated solution at each temperature. The 

osmotic coefficient and mean activity coefficient of each of these solutions were then 

computed from equations (4) and (5) using the standard Pitzer model parameters 

evaluated with the optimal constant exponential coefficients 1
Pα  and the solubility limited 

maximum ionic strengths Imax(T). The standard Pitzer model parameters were calculated 

as functions of temperature using the accurate 7-term temperature functions given in table 

6 for Ca(NO3)2(aq), and in table 8 for NaNO3(aq). The water activity and the solubility 

product were then evaluated at each temperature using equations (63) and (65), 

respectively. 

The osmotic coefficient, water activity, mean activity coefficient, and the solubility 

product calculated as described above for saturated solutions as a function of 

temperature, are summarized in table 10 and figures 21 and 22 for Ca(NO3)2(aq), and in 



 

 

40

table 11 and figures 23 and 24 for NaNO3(aq).  The results for Ca(NO3)2(aq) are plotted 

in three discontinuous segments for the thermodynamically stable single-hydrate solid 

phases of Ca(NO3)2·4H2O(s), Ca(NO3)2·3H2O(s), and Ca(NO3)2(s) with increasing 

temperature, excluding the metastable solid phases included by Linke [22]. The results 

for NaNO3(aq) are much simpler and consist of a single continuous segment, because it 

forms only the anhydrous solid phase over this temperature range. 

 

12. Conclusions 
 
A general error minimization method was presented for converting the temperature 

dependent parameters of extended forms of Pitzer’s ion-interaction model to those of the 

standard Pitzer model. It was further shown that the error minimization criterion could be 

fruitfully exploited to optimize the value of the exponential coefficient 1
Pα  of the standard 

Pitzer model, with the result that the accuracy of the standard Pitzer model was improved 

to the point where it may no be longer necessary to use extended Pitzer models for both 

Ca(NO3)2(aq) and NaNO3(aq) over the full ionic strength range up to the solubility limit 

for T = (298.15 to 423.15) K. Instead of the standard value of 1
Pα  = 2.0 kg1/2·mol–1/2, the 

optimum constant values for the exponential coefficient were found to be 1
Pα  = 0.87 

kg1/2·mol–1/2 for Ca(NO3)2(aq) and 1
Pα  = 1.43 kg1/2·mol–1/2 NaNO3(aq), respectively. The 

accuracies of the standard Pitzer model representations using these optimized values of 

1
Pα  are also comparable to or better than commonly achieved with the more complex 

mole-fraction based thermodynamic models [26,30]. 

An exploratory study performed to determine whether the use of an optimal 

temperature dependent 1
Pα  exponential coefficient would improve the accuracy of the 

standard Pitzer model showed that no significant increase in accuracy could be realized 
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over that obtained using a constant optimal value of the exponential coefficient. 

Therefore, it is recommended that the constant optimal exponential coefficient values 

given above be used for these two aqueous electrolytes. 

A general error minimization method of fitting temperature functions to the parameters 

of the standard Pitzer model, previously determined through the model conversion 

process, was developed. The impact of different selections of temperature functions on 

the accuracy of the osmotic coefficient calculated using these temperature functions to 

represent the variation with temperature of the Pitzer parameters, was investigated. It was 

found that while 4-term temperature functions were adequate for NaNO3(aq), 7-term 

temperature functions were required to accurately represent the Pitzer parameters for 

Ca(NO3)2(aq).  We recommend the use of the 7-term temperature functions given in the 

paper together with the constant optimized values of the exponential coefficient 1
Pα . 

Finally, these Pitzer parameter temperature coefficients and optimized 1
Pα  exponential 

coefficient values were used to compute the osmotic coefficient, water activity, mean 

activity coefficient, and solubility product of saturated solutions of Ca(NO3)2(aq) and 

NaNO3(aq) over the temperature range of T = (273.15 K to 423.15) K as presented in 

tables 10 and 11. 

Our success in representing the osmotic coefficients of Ca(NO3)2(aq) and NaNO3(aq) 

with the standard Pitzer model when the 1
Pα  values are optimized leads us to believe that 

thermodynamic data for other highly-soluble metal nitrate salts such as LiNO3(aq), 

KNO3(aq), Cu(NO3)2(aq), etc., may also be accurately represented with the standard 

Pitzer model using this approach. 
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TABLE 1. Parameters for the standard Pitzer ion-interaction model for Ca(NO3)2(aq) 

converted from the extended Archer ion-interaction model of Oakes et al. [13], with 

temperature independent optimal and standard values of the exponential 

coefficients 1
Pα  and maximum ionic strengths Imax(T) equal to those of the saturated 

solutionsa 

T/K              βMX
(0,P) ·m°           βMX

(1,P) ·m°             M,X
(φ,P)C ·(m°)2            Imax /m°         Isat /m° 

1
Pα  = 0.87 kg1/2·mol–1/2 (optimum value); average RMSE (EI,T) = 6.0964·10–3 

273.15 8.9288·10–2 0.41957   1.5814·10–3 18.651 18.651 

283.15 0.10216 0.45835 –1.3534·10–4 21.078 21.078 

293.15 0.10978 0.49995 –1.1700·10–3 23.640 23.640 

298.15 0.11256 0.51995 –1.5540·10–3 25.227 25.227 

303.15 0.11534 0.53501 –1.9213·10–3 27.897 27.897 

313.15 0.11828 0.57057 –2.3499·10–3 35.841 35.841 

323.15 0.11813 0.61606 –2.4774·10–3 51.480 51.480 

333.15 0.11612 0.67152 –2.4685·10–3 56.180 56.180 

343.15 0.11419 0.72067 –2.4599·10–3 60.880 60.880 

353.15 0.11243 0.76350 –2.4555·10–3 65.580 65.580 

363.15 0.11092 0.79955 –2.4583·10–3 66.030 66.030 

373.15 0.10963 0.82985 –2.4659·10–3 66.480 66.480 

383.15 0.10853 0.85433 –2.4746·10–3 66.696 66.696 

393.15 0.10762 0.87454 –2.4845·10–3 66.912 66.912 

403.15 0.10686 0.89030 –2.4913·10–3 67.227 67.227 

413.15 0.10623 0.90214 –2.4932·10–3 67.640 67.640 

423.15 0.10571 0.91022 –2.4873·10–3 68.486 68.486 
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1
Pα  = 2.0 kg1/2·mol–1/2 (optimum value); average RMSE (EI,T) = 7.2456·10–2 

273.15 0.13520 1.5222 –2.8248·10–3 18.651 18.651 

283.15 0.14720 1.7892 –4.1041·10–3 21.078 21.078 

293.15 0.15390 2.0779 –4.7514·10–3 23.640 23.640 

298.15 0.15557 2.2387 –4.8824·10–3 25.227 25.227 

303.15 0.15509 2.4417 –4.7737·10–3 27.897 27.897 

313.15 0.14983 2.9650 –4.2132·10–3 35.841 35.841 

323.15 0.13866 3.7113 –3.3784·10–3 51.480 51.480 

333.15 0.13567 4.1053 –3.2655·10–3 56.180 56.180 

343.15 0.13262 4.4680 –3.1608·10–3 60.880 60.880 

353.15 0.12965 4.7979 –3.0696·10–3 65.580 65.580 

363.15 0.12875 5.0051 –3.0906·10–3 66.030 66.030 

373.15 0.12793 5.1878 –3.1109·10–3 66.480 66.480 

383.15 0.12727 5.3414 –3.1331·10–3 66.696 66.696 

393.15 0.12669 5.4785 –3.1527·10–3 66.912 66.912 

403.15 0.12610 5.6016 –3.1629·10–3 67.227 67.227 

413.15 0.12550 5.7140 –3.1624·10–3 67.640 67.640 

423.15 0.12471 5.8250 –3.1400·10–3 68.486 68.486 

 

a These parameter values were obtained by using matrix equation (31) to determine the 

standard Pitzer model parameters at ∆T = 10 K temperature intervals from T = (273.15 to 

423.15) K. Values of Isat(T), used to evaluate the coefficients of matrix equation (31), 

were calculated from the information tabulated by Linke [22], or estimated by 

interpolation when the temperatures reported by Linke did not correspond to those in this 
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table. The highest ionic strengths are those of the saturated solution, with Imax(T) = Isat(T). 

m° = 1 mol·kg–1. 
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TABLE 2. Parameters for the standard Pitzer ion-interaction model for Ca(NO3)2(aq) 

converted from the extended Archer ion-interaction model of Oakes et al. [13], with 

temperature independent optimal and standard values of exponential coefficients 1
Pα  and 

constant maximum ionic strengths Imax(T) = 68.5 mol·kg–1 a 

T/K              βMX
(0,P) ·m°           βMX

(1,P) ·m°             M,X
(φ,P)C ·(m°)2            Imax /m°         Isat /m° 

1
Pα  = 0.87 kg1/2·mol–1/2 (optimum value); average RMSE (EI,T) = 6.6666·10–3 

273.15 0.13608 9.5318·10–2 –2.9299·10–3 68.5 18.651 

283.15 0.13180 0.23936 –2.7991·10–3 68.5 21.078 

293.15 0.12790 0.35729 –2.6920·10–3 68.5 23.640 

298.15 0.12611 0.40910 –2.6480·10–3 68.5 25.227 

303.15 0.12441 0.45588 –2.6084·10–3 68.5 27.897 

313.15 0.12132 0.53913 –2.5463·10–3 68.5 35.841 

323.15 0.11861 0.60975 –2.5027·10–3 68.5 51.480 

333.15 0.11625 0.66976 –2.4748·10–3 68.5 56.180 

343.15 0.11419 0.72069 –2.4598·10–3 68.5 60.880 

353.15 0.11242 0.76376 –2.4547·10–3 68.5 65.580 

363.15 0.11090 0.79997 –2.4570·10–3 68.5 66.030 

373.15 0.10960 0.83029 –2.4645·10–3 68.5 66.480 

383.15 0.10850 0.85477 –2.4732·10–3 68.5 66.696 

393.15 0.10760 0.87494 –2.4832·10–3 68.5 66.912 

403.15 0.10684 0.89059 –2.4904·10–3 68.5 67.227 

413.15 0.10622 0.90230 –2.4927·10–3 68.5 67.640 

423.15 0.10571 0.91022 –2.4873·10–3 68.5 68.486 
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1
Pα  = 2.0 kg1/2·mol–1/2 (optimum value); average RMSE (EI,T) = 7.5730·10–2 

273.15 0.13771 1.4144 –2.9843·10–3 68.5 18.651 

283.15 0.13652 2.1478 –2.9600·10–3 68.5 21.078 

293.15 0.13515 2.7497 –2.9400·10–3 68.5 23.640 

298.15 0.13447 3.0143 –2.9344·10–3 68.5 25.227 

303.15 0.13377 3.2540 –2.9293·10–3 68.5 27.897 

313.15 0.13247 3.6813 –2.9286·10–3 68.5 35.841 

323.15 0.13128 4.0458 –2.9372·10–3 68.5 51.480 

333.15 0.13019 4.3582 –2.9536·10–3 68.5 56.180 

343.15 0.12923 4.6269 –2.9760·10–3 68.5 60.880 

353.15 0.12837 4.8586 –3.0025·10–3 68.5 65.580 

363.15 0.12762 5.0590 –3.0313·10–3 68.5 66.030 

373.15 0.12697 5.2335 –3.0609·10–3 68.5 66.480 

383.15 0.12639 5.3834 –3.0873·10–3 68.5 66.696 

393.15 0.12590 5.5162 –3.1117·10–3 68.5 66.912 

403.15 0.12546 5.6321 –3.1298·10–3 68.5 67.227 

413.15 0.12507 5.7346 –3.1400·10–3 68.5 67.640 

423.15 0.12470 5.8253 –3.1396·10–3 68.5 68.486 

 

a These parameter values were obtained by using matrix equation (31) to determine the 

standard Pitzer model parameters at ∆T = 10 K temperature intervals from T = (273.15 to 

423.15) K. Values of Isat(T), used to evaluate the coefficients of matrix equation (31), 

were calculated from the information tabulated by Linke [22], or estimated by 
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interpolation when the temperatures reported by Linke did not correspond to those in this 

table. The maximum ionic strength Imax(T) = 68.5 mol·kg–1. m° =1 mol·kg–1. 
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TABLE 3. Parameters for the standard Pitzer ion-interaction model for NaNO3(aq) 

converted from the extended ion-interaction model of Archer [29], with temperature 

independent optimal and standard values of exponential coefficient 1
Pα  and maximum 

ionic strengths Imax(T) equal to those of the saturated solutions a 

T/K              βMX
(0,P) ·m°           βMX

(1,P) ·m°             M,X
(φ,P)C ·(m°)2            Imax /m°         Isat /m° 

 
1
Pα  = 1.43 kg1/2·mol–1/2 (optimum value); average RMSE (EI,T) = 2.0340·10–3 

273.15 –1.8283·10–2 3.6990·10–3   1.6561·10–3   8.584   8.584 

283.15 –1.0998·10–2 7.1311·10–2   1.0319·10–3   9.454   9.454 

293.15 –4.6944·10–3 0.12367   5.3708·10–4 10.365 10.365 

298.15 –1.8888·10–3 0.14594   3.3095·10–4 10.839 10.839 

303.15   6.9924·10–4 0.16622   1.4906·10–4 11.327 11.327 

313.15   5.2627·10–3 0.20219 –1.5053·10–4 12.352 12.352 

323.15   9.0742·10–3 0.23361 –3.7671·10–4 13.453 13.453 

333.15   1.2209·10–2 0.26184 –5.4193·10–4 14.644 14.644 

343.15   1.4738·10–2 0.28778 –6.5670·10–4 15.944 15.944 

353.15   1.6732·10–2 0.31204 –7.2995·10–4 17.372 17.372 

363.15   1.8255·10–2 0.33506 –7.6939·10–4 18.950 18.950 

373.15   1.9373·10–2 0.35715 –7.8169·10–4 20.701 20.701 

383.15   2.0136·10–2 0.37865 –7.7206·10–4 22.547 22.547 

393.15   2.0629·10–2 0.39936 –7.4740·10–4 24.805 24.805 

403.15   2.0879·10–2 0.41986 –7.1031·10–4 27.169 27.169 

413.15   2.0952·10–2 0.44008 –6.6576·10–4 29.810 29.810 

423.15   2.0924·10–2 0.45974 –6.1857·10–4 33.069 33.069 
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1
Pα  = 2.0 kg1/2·mol–1/2 (optimum value); average RMSE (EI,T) = 7.9871·10–3 

273.15 –1.8440·10–2 1.2425·10–2   1.6810·10–3   8.584   8.584 

283.15 –8.1391·10–3 0.11486   7.8419·10–4   9.454   9.454 

293.15   9.1337·10–6 0.19958   1.4950·10–4 10.365 10.365 

298.15   3.4443·10–3 0.23750 –9.5861·10–5 10.839 10.839 

303.15   6.5168·10–3 0.27324 –3.0280·10–4 11.327 11.327 

313.15   1.1715·10–2 0.33987 –6.2203·10–4 12.352 12.352 

323.15   1.5832·10–2 0.40213 –8.4089·10–4 13.453 13.453 

333.15   1.9039·10–2 0.46182 –9.8248·10–4 14.644 14.644 

343.15   2.1469·10–2 0.52025 –1.0638·10–3 15.944 15.944 

353.15   2.3235·10–2 0.57834 –1.0982·10–3 17.372 17.372 

363.15   2.4435·10–2 0.63673 –1.0962·10–3 18.950 18.950 

373.15   2.5157·10–2 0.69587 –1.0668·10–3 20.701 20.701 

383.15   2.5515·10–2 0.75524 –1.0196·10–3 22.547 22.547 

393.15   2.5497·10–2 0.81719 –9.5460·10–4 24.805 24.805 

403.15   2.5274·10–2 0.87929 –8.8377·10–4 27.169 27.169 

413.15   2.4872·10–2 0.94260 –8.0883·10–4 29.810 29.810 

423.15   2.4314·10–2 1.0084 –7.3183·10–4 33.069 33.069 

a These parameter values were obtained by using matrix equation (31) to determine the 

standard Pitzer model parameters at ∆T = 10 K temperature intervals from T = (273.15 to 

423.15) K. Values of Isat(T), used to evaluate the coefficients of matrix equation (31), 

were calculated from the information tabulated by Linke [22] from the studies of 

Berkeley and Chretien, after smoothing the combined results as a function of 
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temperature. The highest ionic strengths are those of the saturated solution, with Imax(T) = 

Isat(T). m° = 1 mol·kg–1. 
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TABLE 4. Parameters for the standard Pitzer ion-interaction model for Ca(NO3)2(aq) 

converted from the extended Archer ion-interaction model of Oakes et al. [13], with 

temperature dependent optimal exponential coefficient 1
Pα (opt) and maximum ionic 

strengths Imax(T) equal to the ionic strength Isat(T) of the saturated solutions a  

T/K   1
Pα (opt)     RMSE (EI)     βMX

(0,P) ·m°       βMX
(1,P) ·m°      M,X

(φ,P)C ·(m°)2      Imax /m°       Isat /m°  

273.15 1.74 1.4797·10–3 0.12990 1.1300 –2.1968·10–3 18.651 18.651 

283.15 1.56 1.4143·10–4 0.13746 1.0553 –3.0828·10–3 21.078 21.078 

293.15 1.40 1.3206·10–3 0.13950 0.98237 –3.4060·10–3 23.640 23.640 

298.15 1.30 2.0533·10–3 0.13795 0.91424 –3.3472·10–3 25.227 25.227 

303.15 1.25 2.7466·10–3 0.13699 0.90822 –3.3335·10–3 27.897 27.897 

313.15 1.10 4.1928·10–3 0.13028 0.82543 –2.9845·10–3 35.841 35.841 

323.15 0.95 4.8171·10–3 0.12139 0.72113 –2.6048·10–3 51.480 51.480 

333.15 0.90 4.8545·10–3 0.11737 0.71422 –2.5136·10–3 56.180 56.180 

343.15 0.88 4.7533·10–3 0.11539 0.76836 –2.5004·10–3 60.880 60.880 

353.15 0.86 4.6822·10–3 0.11204 0.74673 –2.4430·10–3 65.580 65.580 

363.15 0.86 4.7743·10–3 0.11051 0.78197 –2.4454·10–3 66.030 66.030 

373.15 0.85 4.9281·10–3 0.10878 0.79364 –2.4392·10–3 66.480 66.480 

383.15 0.85 5.1225·10–3 0.10766 0.81700 –2.4473·10–3 66.696 66.696 

393.15 0.85 5.3845·10–3 0.10673 0.83626 –2.4568·10–3 66.912 66.912 

403.15 0.85 5.6852·10–3 0.10596 0.85120 –2.4634·10–3 67.227 67.227 

413.15 0.86 6.0665·10–3 0.10578 0.88204 –2.4794·10–3 67.640 67.640 

423.15 0.87 6.4759·10–3 0.10571 0.91022 –2.4873·10–3 68.486 68.486 
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a These parameter values are for the optimal value of the exponential coefficient 1
Pα  that 

minimizes the RMS error EI defined by equation (15) and were obtained by using matrix 

equation (31) to determine the standard Pitzer model parameters at ∆T = 10 K 

temperature intervals from T = (273.15 to 423.15) K. Values of Isat(T), used to evaluate 

the coefficients of matrix equation (31), were calculated from the information tabulated 

by Linke [22], or estimated by interpolation when the temperatures reported by Linke did 

not correspond to those in this table.  c The highest ionic strengths are those of the 

saturated solution, with Imax(T) = Isat(T). m° = 1 mol·kg–1. 
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TABLE 5. Parameters for the standard Pitzer ion-interaction model for NaNO3(aq) 

converted from the extended ion-interaction model of Archer [29], with temperature 

dependent optimal exponential coefficient 1
Pα (opt) and maximum ionic strengths Imax(T) 

equal to the solubility limit Isat(T) a 

T/K          1
Pα (opt)   RMSE (EI)      βMX

(0,P) ·m°      βMX
(1,P) ·m°       M,X

(φ,P)C ·(m°)2       Imax /m°        Isat /m°  

273.15 n.a.      n.a.        n.a.     n.a.        n.a.   8.584   8.584 

283.15 2.60 2.0005·10–4 –6.4628·10–3 0.19302   6.1175·10–4   9.454   9.454 

293.15 1.96 8.8132·10–6 –2.3091·10–4 0.19277   1.7124·10–4 10.365 10.365 

298.15 1.81 2.2945·10–5   2.0449·10–3 0.20107   2.4427·10–5 10.839 10.839 

303.15 1.70 4.5837·10–5   3.9495·10–3 0.20933 –9.2604·10–5 11.327 11.327 

313.15 1.57 1.5174·10–4   7.2901·10–3 0.22896 –2.8942·10–4 12.352 12.352 

323.15 1.50 3.1935·10–4   1.0187·10–2 0.24938 –4.4757·10–4 13.453 13.453 

333.15 1.45 5.2718·10–4   1.2541·10–2 0.26705 –5.6168·10–4 14.644 14.644 

343.15 1.43 7.6164·10–4   1.4738·10–2 0.28778 –6.5670·10–4 15.944 15.944 

353.15 1.41 1.0221·10–3   1.6406·10–2 0.30525 –7.1300·10–4 17.372 17.372 

363.15 1.42 1.3559·10–3   1.8102·10–2 0.33119 –7.6187·10–4 18.950 18.950 

373.15 1.41 1.6397·10–3   1.9083·10–2 0.34849 –7.6845·10–4 20.701 20.701 

383.15 1.42 1.9957·10–3   2.0002·10–2 0.37380 –7.6632·10–4 22.547 22.547 

393.15 1.42 2.3166·10–3   2.0508·10–2 0.39397 –7.4257·10–4 24.805 24.805 

403.15 1.43 2.6761·10–3   2.0879·10–2 0.41986 –7.1031·10–4 27.169 27.169 

413.15 1.44 3.0433·10–3   2.1049·10–2 0.44667 –6.6910·10–4 29.810 29.810 

423.15 1.45 3.4111·10–3   2.1091·10–2 0.47426 –6.2387·10–4 33.069 33.069 

a These parameter values are for the optimal value of the exponential coefficient 1
Pα  that 

minimizes the RMS error EI defined by equation (15) and were obtained by using matrix 

equation (31) to determine the standard Pitzer model parameters at ∆T = 10 K 

temperature intervals from T = (273.15 to 423.15) K. Values of Isat(T), used to evaluate 

the coefficients of matrix equation (31), were calculated from the information tabulated 
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by Linke [22] from the studies of Berkeley and Chretien, after smoothing the combined 

results as a function of temperature. The highest ionic strengths are those of the saturated 

solution, with Imax(T) = Isat(T). m° = 1 mol·kg–1. Values of the Pitzer parameters are not 

reported at T = 273.15 K because the source model yield an unrealistic value of 1
Pα (opt) 

at this temperature; n.a. denotes not available. 
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TABLE 6. Temperature coefficients aij of parameters for the standard Pitzer ion-

interaction model for Ca(NO3)2(aq), derived from the extended Archer ion-interaction 

model of Oakes et al. [13], with maximum ionic strengths Imax(T) equal to the ionic 

strengths Isat(T) of the saturated solutions a 

 Temperature Coefficient:         {a1j(βMX
(0,P) )}·(m°)   {a2j(βMX

(1,P) )}·(m°)  {a3j( M,X
(φ,P)C )}·(m°)2 

1
Pα  = 0.87 kg1/2·mol–1/2 (optimum value); average RMSE = 8.7357·10–3 

Index j Basis Function       i = 1        i = 2         i = 3 

1 1   0.1131573   0.5151491 –1.601513·10–3 

2 {g2(T)}·(T°)   1.492571 –2.209288·10 –9.000908·10–3 

3 {g3(T)}·(T°)2 –1.013127·10–3   1.439130·10–2   1.244447·10–5 

4 {g4(T)}/(T°) –9.178758·104   1.555944·106 –1.469640·103 

5 g5(T) –5.335195·102   8.357861·103 –1.556757 

6 {g6(T)}·(T°)3   3.579341·10–7 –4.939277·10–6 –5.932399·10–9 

7 {g7(T)}/(T°)2   3.002336·106 –5.703014·107   1.088473·105 

8 {g8(T)}/(T°)3       not used       not used     not used 

1
Pα  = 2.0 kg1/2·mol–1/2 (standard value); average RMSE = 7.5993·10–2 

1 1   0.1541224   2.281398 –4.710317·10–3 

2 {g2(T)}·(T°) –5.753712   1.393891·102   0.7664789 

3 {g3(T)}·(T°)2   3.485761·10–3 –8.218850·10–2 –4.737426·10–4 

4 {g4(T)}/(T°)   4.774220·105 –1.214241·107 –6.114101·104 

5 g5(T)   2.354621·103 –5.851593·104 –3.075189·102 

6 {g6(T)}·(T°)3 –1.117736·10–6   2.562256·10–5   1.550355·10–7 

7 {g7(T)}/(T°)2 –1.916559·107   4.968478·108   2.407663·106 

8 {g8(T)}/(T°)3       not used       not used        not used 
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a These parameter values were obtained using matrix equation (31) to determine the 

standard Pitzer model parameters at ∆T = 10 K temperature intervals from T = (298.15 to 

423.15) K. Matrix equation (58) was used subsequently to fit temperature coefficients to 

these Pitzer parameter values, and the average RMSE values refer to this fit. Values of 

Isat(T), used to evaluate the coefficients of matrix equation (31), were calculated from the 

information tabulated by Linke [22], or estimated by interpolation when the temperatures 

reported by Linke did not correspond to those needed. The gj(T) functions are defined by 

equations (48)–(55). m° = 1 mol·kg–1 and T° = 1 K. 
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TABLE 7. Temperature coefficients aij of parameters for the standard Pitzer ion-

interaction model for Ca(NO3)2(aq), derived from the extended Archer ion-interaction 

model of Oakes et al. [13], with constant maximum ionic strengths Ima(T) = 68.5 mol·kg–1 

a 

    Temperature Coefficient:      {a1j(βMX
(0,P) )}·(m°)   {a2j(βMX

(1,P) )}·(m°)  {a3j( M,X
(φ,P)C )}·(m°)2 

1
Pα  = 0.87 kg1/2·mol–1/2 (optimum value); average RMSE = 6.6735·10–3  

Index j Basis Function        i = 1        i = 2         i = 3 

1 1     0.1261160   0.4090042 –2.647838·10–3 

2 {g2(T)}·(T°) –8.098479·10–2 –2.897730   1.375931·10–2 

3 {g3(T)}·(T°)2     5.384184·10–5   1.855898·10–3 –9.781430·10–6 

4 {g4(T)}/(T°)     6.001026·103   2.231575·105 –8.815055·102 

5 g5(T)     3.102035·10   1.133882·103 –4.913129 

6 {g6(T)}·(T°)3 –1.941233·10–8 –6.384572·10–7   3.788698·10–9 

7 {g7(T)}/(T°)2 –2.275682·105 –8.991675106   3.135831·104 

8 {g8(T)}/(T°)3       not used       not used     not used 

1
Pα  = 2.0  kg1/2·mol–1/2 (standard value); average RMSE = 7.5724·10–2 

1 1   0.1344734   3.014095 –2.934099·10–3 

2 {g2(T)}·(T°) –0.1456606 –9.290062   1.599564·10–2 

3 {g3(T)}·(T°)2   9.544499·10–5   5.551481·10–3 –1.122061·10–5 

4 {g4(T)}/(T°)   1.094660·104   7.931238·105 –1.052388·103 

5 g5(T)   5.623581·10   3.838806·103 –5.784694 

6 {g6(T)}·(T°)3 –3.380523·10–8 –1.731504·10–6   4.286865·10–9 

7 {g7(T)}/(T°)2 –4.260763·105 –3.364272·107   3.821457·104 

8 {g8(T)}/(T°)3       not used       not used        not used 
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a These parameter values were obtained using matrix equation (31) to determine the standard 

Pitzer model parameters at ∆T = 10 K temperature intervals from T = (298.15 to 423.15) K. 

Matrix equation (58) was used subsequently to fit temperature coefficients to these Pitzer 

parameter values, and the average RMSE values refer to this fit. Values of Isat(T), used to 

evaluate the coefficients of matrix equation (31), were calculated from the information tabulated 

by Linke [22], or estimated by interpolation when the temperatures reported by Linke did not 

correspond to those needed. The gj(T) functions are defined by equations (48)–(55). m° = 1 

mol·kg–1 and T° = 1 K. For the 4-term temperature function fit yields {a11(βMX
(0,P) )}·(m°) = 

0.1259034, {a12(βMX
(0,P) )}·(m°) = –4.774229·10–4,  {a14(βMX

(0,P) )}·(m°) = 1.442089·102, 

 {a15(βMX
(0,P) )}·(m°) = 0.5209749, {a21(βMX

(1,P))}·(m°) = 0.4022983, {a22(βMX
(1,P))}·(m°) = 3.731374·10–

3, {a24(βMX
(1,P))}·(m°) = –3.219040·103, {a25(βMX

(1,P))}·(m°) = –8.988610, {a31( M,X
(φ,P)C )}·(m°)2 =                

–2.608019·10–3, {a32( M,X
(φ,P)C )}·(m°)2 = 2.203723·10–4, {a34( M,X

(φ,P)C )}·(m°)2 = –2.968550·101, and 

{a34( M,X
(φ,P)C )}·(m°)2 = –1.623817·10–1. 
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TABLE 8. Temperature coefficients aij of parameters for the standard Pitzer ion-

interaction model for NaNO3(aq), derived from Archer’s ion-interaction model [29], with 

maximum ionic strengths Imax(T) equal to the ionic strengths Isat(T) of the saturated 

solutions a 

Temperature Coefficient:         {a1j(βMX
(0,P) )}·(m°)   {a2j(βMX

(1,P) )}·(m°)  {a3j( M,X
(φ,P)C )}·(m°)2 

1
Pα  = 1.43 kg1/2·mol–1/2 (optimum value); average RMSE = 2.0493·10–3 

Index j Basis Function         i = 1        i = 2         i = 3 

1 1 –1.888186·10–3   0.1460677   3.308894·10–4 

2 {g2(T)}·(T°)   4.501887·10–2 –0.8585493 –6.711814·10–4 

3 {g3(T)}·(T°)2 –3.612038·10–5   3.558161·10–4   8.676446·10–7 

4 {g4(T)}/(T°) –3.006404·103   1.115479·105 –2.265104·10 

5 g5(T) –1.578798·10   4.534652·102   8.622251·10–2 

6 {g6(T)}·(T°)3   1.665781·10–8 –5.360715·10–8 –5.372888·10–10 

7 {g7(T)}/(T°)2   1.093358·105 –5.285602·106   3.785484·103 

8 {g8(T)}/(T°)3       not used       not used     not used 

1
Pα  = 2.0 kg1/2·mol–1/2 (standard value); average RMSE = 8.0052·10–3 

1 1   3.453151·10–3   0.2376814 –9.713788·10–5 

2 {g2(T)}·(T°) –0.1902405 –0.9844373   2.736158·10–2 

3 {g3(T)}·(T°)2   1.078947·10–4   5.182529·10–4 –1.632435·10–5 

4 {g4(T)}/(T°)   1.630865·104   1.135333·105 –2.348706·103 

5 g5(T)   7.964834·10   4.739877·102 –1.132943·10 

6 {g6(T)}·(T°)3 –2.990106·10–8 –1.422885·10–7   5.069506·10–9 

7 {g7(T)}/(T°)2 –6.738489·105 –5.408732·106   9.868867·104 

8 {g8(T)}/(T°)3       not used       not used        not used 
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a These parameter values were obtained using matrix equation (31) to determine the 

standard Pitzer model parameters at ∆T = 10 K temperature intervals from T = (273.15 to 

423.15) K. Matrix equation (58) was used subsequently to fit temperature coefficients to 

these Pitzer parameter values, and the average RMSE values refer to this fit. Values of 

Isat(T), used to evaluate the coefficients of matrix equation (31), were calculated from the 

information tabulated by Linke [22] from the studies of Berkeley and Chretien, after 

smoothing the combined results as a function of temperature. The gj(T) functions are 

defined by equations (48)–(55). m° = 1 mol·kg–1 and T° = 1 K. 
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TABLE 9. Temperature dependent and average constant optimal values of exponential 

coefficient 1
Pα (opt) of the standard Pitzer model for Ca(NO3)2(aq) and NaNO3(aq), with  

maximum ionic strengths Imax(T) equal to the ionic strength Isat(T) of the saturated 

solution. 

 Ca(NO3)2(aq)a
                                  Mg(NO3)2(aq)b                               NaNO3(aq)a 

  T/K                      1
Pα (opt) RMSE 1

Pα (opt) RMSE 1
Pα (opt) RMSE 

Averagec,d 0.87c 6.0964·10–

3c 

n.a. n.a. 1.43c 2.0340·10–3c 

273.15 1.74 1.4797·10–3 n.a. n.a. n.a. n.a. 

283.15 1.56 1.4143·10–3 n.a. n.a. 2.60 2.0005·10–4 

293.15 1.40 1.3206·10–3 n.a. n.a. 1.96 8.8132·10–6 

298.15 1.30 2.0533·10–3 1.55 3.5733·10–

3 

1.81 2.2945·10–5 

303.15 1.25 2.7466·10–3 n.a. n.a. 1.70 4.5837·10–5 

313.15 1.10 4.1928·10–3 n.a. n.a. 1.57 1.5174·10–4 

323.15 0.95 4.8171·10–3 n.a. n.a. 1.50 3.1935·10–4 

333.15 0.90 4.8545·10–3 n.a. n.a. 1.45 5.2718·10–4 

343.15 0.88 4.7533·10–3 n.a. n.a. 1.43 7.6164·10–4 

353.15 0.86 4.6822·10–3 n.a. n.a. 1.41 1.0221·10–3 

363.15 0.86 4.7743·10–3 n.a. n.a. 1.42 1.3559·10–3 

373.15 0.85 4.9281·10–3 n.a. n.a. 1.41 1.6397·10–3 

383.15 0.85 5.1225·10–3 n.a. n.a. 1.42 1.9957·10–3 

393.15 0.85 5.3845·10–3 n.a. n.a. 1.42 2.3166·10–3 

403.15 0.85 5.6852·10–3 n.a. n.a. 1.43 2.6761·10–3 

413.15 0.86 6.0665·10–3 n.a. n.a. 1.44 3.0433·10–3 
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423.15 0.87 6.4759·10–3 n.a. n.a. 1.45 3.4111·10–3 

 

 

a These temperature dependent optimal values of the exponential coefficient 1
Pα  for the 

standard Pitzer model were evaluated directly using as input the extended ion-interaction 

model parameters reported by Oakes et al [13] for Ca(NO3)2(aq) and Archer [29] for 

NaNO3(aq).  These parameter values were obtained using matrix equation (31) to 

determine the standard Pitzer model parameters at ∆T = 10 K temperature intervals from 

T = (273.15 to 423.15) K for values of 1
Pα  increasing in steps of ∆ 1

Pα  = 0.05 kg1/2·mol–1/2 

from 1
Pα  = (0.1 to 3.0) kg1/2·mol–1/2, and the optimal value of 1

Pα  was determined as the 

value corresponding to minimum root mean square error EI. b These values for 

Mg(NO3)2(aq) were reported by Rard et al. [17] for T = 298.15 K only. The equation 

parameters and RMSE were obtained by direct fitting of osmotic coefficients rather than 

from transforming the parameters of an extended ion-interaction model. n.a. denotes not 

available.  c The constant optimal values of 1
Pα  and the corresponding constant RMSE 

(EI,T) are evaluated over the ionic-strength range from zero to saturation, and T = (298.15 

to 423.15) K for Ca(NO3)2(aq) and T = (273.15 to 423.15) K for NaNO3(aq), 

respectively. Values of Isat(T), used to evaluate the coefficients of matrix equation (31), 

were calculated from the information tabulated by Linke [22]. 
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 TABLE 10. Osmotic coefficient φ, activity of water aw, mean activity coefficient γ±, and 

solubility product Ksp for solid phases of Ca(NO3)2 + H2O computed using the standard 

Pitzer ion-interaction model for Ca(NO3)2(aq) derived from the extended ion-interaction 

model of Oakes et al [13], and the solubility information reported by Linke [22], with 

temperature independent optimal exponential coefficient 1
Pα  = 0.87 kg1/2·mol–1/2 and 

maximum ionic strengths Imax(T) equal to those of the saturated solutions a 

    T/K              φa                 aw
a
      γ± a                  Ksp

a              Isat
b

 /m°        Solid Phaseb 

293.15 1.5399 0.51900 0.72571 5.4279·10 23.640 Ca(NO3)2·4H2O(s) 

298.15 1.5687 0.49021 0.77894 6.4916·10 25.227 Ca(NO3)2·4H2O(s) 

303.15 1.6183 0.44338 0.87036 8.1962·10 27.897 Ca(NO3)2·4H2O(s) 

308.15 1.6634 0.39530 0.97074 9.8300·10 30.971 Ca(NO3)2·4H2O(s) 

313.15 1.7219 0.32898 1.1296 1.1515·102 35.841 Ca(NO3)2·4H2O(s) 

318.15 1.7843 0.22974 1.4251 4.9803·102 45.755 Ca(NO3)2·3H2O(s) 

323.15 1.7499 0.19733 1.4729 4.9627·102 51.480 Ca(NO3)2·3H2O(s) 

324.15 1.7323 0.18501 1.4928 4.9331·102 54.067 Ca(NO3)2·3H2O(s) 

328.15 1.5705 0.15704 1.4051 1.1512·105 65.430 Ca(NO3)2(s) 

353.15 1.4010 0.19104 0.98891 4.0416·104 65.580 Ca(NO3)2(s) 

373.15 1.2852 0.21457 0.74225 1.7799·104 66.480 Ca(NO3)2(s) 

398.15 1.1425 0.25166 0.49223 5.3216·103 67.032 Ca(NO3)2(s) 

420.65 1.0154 0.28847 0.32786 1.6386·103 67.957 Ca(NO3)2(s) 

424.15 0.9818 0.29626 0.30278 1.3379·103 68.778 Ca(NO3)2(s) 

a These properties are based on the derived standard Pitzer model parameters given in 

table 6 for constant optimal 1
Pα  = 0.87 kg1/2·mol–1/2. b Values of  Isat(T) used to evaluate 

these properties, and the solid phases, are calculated from the saturated solution 

compositions tabulated by Linke [22]. m° = 1 mol·kg–1.



 

 

67

TABLE 11. Osmotic coefficient φ, activity of water aw, mean activity coefficient γ±, and 

solubility product Ksp for NaNO3 + H2O computed using the standard Pitzer ion-

interaction model parameters converted from the extended ion-interaction model of 

Archer [29], and solubility information reported by Linke [22], with temperature 

independent optimal exponential coefficient 1
Pα  = 1.43 kg1/2·mol–1/2 and maximum ionic 

strengths Imax(T) equal to those of the saturated solutions a 

    T/K               φa                      aw 
a                 γ±

a          Ksp
a            Isat

b
 /m°     Solid Phaseb 

273.15 0.72121 0.80007 0.26776    5.2827    8.584 NaNO3(s) 

283.15 0.74603 0.77560 0.29196    7.6186    9.454 NaNO3(s) 

293.15 0.76491 0.75152 0.31221 1.0472·10 10.365 NaNO3(s) 

298.15 0.77236 0.73961 0.32085 1.2094·10 10.839 NaNO3(s) 

303.15 0.77857 0.72778 0.32849 1.3844·10 11.327 NaNO3(s) 

313.15 0.78746 0.70436 0.34077 1.7718·10 12.352 NaNO3(s) 

323.15 0.79186 0.68125 0.34905 2.2051·10 13.453 NaNO3(s) 

333.15 0.79197 0.65845 0.35334 2.6773·10 14.644 NaNO3(s) 

353.15 0.77992 0.61375 0.35019 3.7010·10 17.372 NaNO3(s) 

373.15 0.75272 0.57039 0.33278 4.7456·10 20.701 NaNO3(s) 

393.15 0.71312 0.52870 0.30444 5.7027·10 24.805 NaNO3(s) 

423.15 0.63419 0.46971 0.24966 6.8163·10 33.069 NaNO3(s) 

 

a These properties are based on the derived standard Pitzer model parameters given in 

table 8 for constant optimal 1
Pα  = 1.43 kg1/2·mol–1/2. b Values of Isat(T), used to evaluate 

the coefficients of matrix equation (31), were calculated from the information tabulated 

by Linke [22] from the studies of Berkeley and Chretien, after smoothing the combined 
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results as a function of temperature. 
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Figure Captions 

FIGURE 1. Variation, with respect to 1
Pα , of the root mean square error (RMSE) EI,T for 

osmotic coefficient differences between the extended Archer and standard Pitzer models 

for Ca(NO3)3(aq) and solubility limited maximum ionic strength. ¡, RMSE for model 

conversion only; ◊, RMSE for model conversion plus 4-term temperature fitting function; 

l, RMSE for model conversion plus 7-term temperature fitting function. 

 

FIGURE 2. Variation, with respect to 1
Pα , of the root mean square error (RMSE) EI,T for 

osmotic coefficient differences between the extended Archer and standard Pitzer models 

for Ca(NO3)2(aq) and maximum ionic strength of Imax = 68.5 mol·kg–1. ¡, RMSE for 

model conversion only; ◊, RMSE for model conversion plus 4-term temperature fitting 

function; l, RMSE for model conversion plus 7-term temperature fitting function. 

 

FIGURE 3. Comparison of osmotic coefficients calculated using the extended Archer and 

standard Pitzer models for Ca(NO3)2(aq) and solubility limited maximum ionic strength 

with 1
Pα  = 0.20 kg1/2·mol–1/2. ¡, standard Pitzer model at T = 298.15 K; l, extended 

Archer model at T = 298.15 K; ê, standard Pitzer model at T = 353.15 K; σ, extended 

Archer model at T = 353.15 K; o, standard Pitzer model at T = 423.15 K; n, extended 

Archer model at T = 423.15 K. 

 

FIGURE 4. Comparison of osmotic coefficients calculated using the extended Archer and 

standard Pitzer models for Ca(NO3)2(aq) and solubility limited maximum ionic strength 

with optimum value of 1
Pα  = 0.87 kg1/2·mol–1/2. ¡, standard Pitzer model at T = 298.15 

K; l, extended Archer model at T = 298.15 K; ê, standard Pitzer model at T = 353.15 
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K; σ, extended Archer model at T = 353.15 K; o, standard Pitzer model at T = 423.15 K; 

n, extended Archer model at T = 423.15 K. 

 

FIGURE 5. Comparison of osmotic coefficients calculated using the extended Archer and 

standard Pitzer models for Ca(NO3)2(aq) and solubility limited maximum ionic strength 

with 1
Pα  = 2.0 kg1/2·mol–1/2. ¡, standard Pitzer model at T = 298.15 K; l, extended 

Archer model at T = 298.15 K; ê, standard Pitzer model at T = 353.15 K; σ, extended 

Archer model at T = 353.15 K; o, standard Pitzer model at T = 423.15 K; n, extended 

Archer model at T = 423.15 K. 

 

FIGURE 6. Comparison of Osmotic coefficients calculated using the extended Archer 

and standard Pitzer models for Ca(NO3)2(aq) and maximum ionic strength of Imax = 68.5 

mol·kg–1 with 1
Pα = 0.20 kg1/2·mol–1/2. ¡, standard Pitzer model at T = 298.15 K; l, 

extended Archer model at T = 298.15 K; ê, standard Pitzer model at T = 353.15 K; σ, 

extended Archer model at T = 353.15 K; o, standard Pitzer model at T = 423.15 K; n, 

extended Archer model at T = 423.15 K. 

 

FIGURE 7. Comparison of osmotic coefficients calculated using the extended Archer and 

standard Pitzer models for Ca(NO3)2(aq) and maximum ionic strength of Imax = 68.5 

mol·kg–1 with optimum value of 1
Pα  = 0.87 kg1/2·mol–1/2 . ¡, standard Pitzer model at T = 

298.15 K; l, extended Archer model at T = 298.15 K; ê, standard Pitzer model at T = 

353.15 K; σ, extended Archer model at T = 353.15 K; o, standard Pitzer model at T = 

423.15 K; n, extended Archer model at T = 423.15 K. 
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FIGURE 8. Comparison of osmotic coefficients calculated using the extended Archer and 

standard Pitzer models for Ca(NO3)2(aq) and maximum ionic strength of Imax = 68.5 

mol·kg–1 with 1
Pα  = 2.0 kg1/2·mol–1/2. ¡, standard Pitzer model at T = 298.15 K; l, 

extended Archer model at T = 298.15 K; ê, standard Pitzer model at T = 353.15 K; σ, 

extended Archer model at T = 353.15 K; o, standard Pitzer model at T = 423.15 K; n, 

extended Archer model at T = 423.15 K. 

 

FIGURE 9. Variation, with respect to 1
Pα , of the root mean square error (RMSE) EI,T for 

osmotic coefficient between the Archer and standard Pitzer models for NaNO3(aq) and 

solubility limited maximum ionic strength. ¡, RMSE for model conversion only; ◊, 

RMSE for model conversion plus 4-term temperature fitting function; l, RMSE for 

model conversion plus 7-term temperature fitting function. 

 

FIGURE 10. Comparison of osmotic coefficients calculated using the Archer and 

standard Pitzer models for NaNO3(aq) and solubility limited maximum ionic strength 

with 1
Pα  = 0.20 kg1/2·mol–1/2. ¡, standard Pitzer model at T = 298.15 K; l, Archer model 

at T = 298.15 K; ê, standard Pitzer model at T = 353.15 K; σ, Archer model at T = 

353.15 K; o, standard Pitzer model at T = 423.15 K; n, Archer model at T = 423.15 K. 

 

FIGURE 11. Comparison of osmotic coefficients calculated using the Archer and 

standard Pitzer models for NaNO3(aq) and solubility limited maximum ionic strength 

with optimum value of 1
Pα  = 1.43 kg1/2·mol–1/2. ¡, standard Pitzer model at T = 298.15 

K; l, Archer model at T = 298.15 K; ê, standard Pitzer model at T = 353.15 K; σ, 
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Archer model at T = 353.15 K; o, standard Pitzer model at T = 423.15 K; n, Archer 

model at T = 423.15 K. 

 

FIGURE 12. Comparison of osmotic coefficients calculated using the Archer and 

standard Pitzer models for NaNO3(aq) and solubility limited maximum ionic strength 

with 1
Pα  = 2.0 kg1/2·mol–1/2. ¡, standard Pitzer model at T = 298.15 K; l, Archer model 

at T = 298.15 K; ê, standard Pitzer model at T = 353.15 K; σ, Archer model at T = 

353.15 K; o, standard Pitzer model at T = 423.15 K; n, Archer model at T = 423.15 K. 

 

FIGURE 13.  Temperature function fits to βM,X
(0,P)  values of the standard Pitzer model for 

Ca(NO3)2(aq) for solubility limited maximum ionic strength and optimum value of 1
Pα  = 

0.87 kg1/2·mol–1/2. l, values of βM,X
(0,P)  from model conversion; o, values of βM,X

(0,P)  from 4-

term temperature function; ¡, values of βM,X
(0,P)  from 7-term temperature function. 

 

FIGURE 14.  Temperature function fits to βM,X
(1,P)  values of the standard Pitzer model for 

Ca(NO3)2(aq) for solubility limited maximum ionic strength and optimum value of 1
Pα  = 

0.87 kg1/2·mol–1/2. l, values of βM,X
(1,P)  from model conversion; o, values of βM,X

(1,P)  

calculated with the 4-term temperature function; ¡, values of βM,X
(1,P)  calculated with the 7-

term temperature function. 

 

FIGURE 15.  Temperature function fits to M,X
(φ,P)C  values of the standard Pitzer model for 

Ca(NO3)2(aq) for solubility limited maximum ionic strength and optimum value of 1
Pα  = 

0.87 kg1/2·mol–1/2. l, values of M,X
(φ,P)C  calculated with the model conversion; o, values of 
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M,X
(φ,P)C  calculated with the 4-term temperature function; ¡, values of M,X

(φ,P)C  from 7-term 

temperature function. 

 

FIGURE 16.  Temperature function fits to βM,X
(0,P)  values of the standard Pitzer model for 

NaNO3(aq) for solubility limited maximum ionic strength and optimum value of 1
Pα  = 

1.43 kg1/2·mol–1/2. l, values of βM,X
(0,P)  from model conversion; o, values of βM,X

(0,P)  from 4-

term temperature function; ¡, values of βM,X
(0,P)  from 7-term temperature function. 

 

FIGURE 17.  Temperature function fits to βM,X
(1,P)  values of the standard Pitzer model for 

NaNO3(aq) for solubility limited maximum ionic strength and optimum value of 1
Pα  = 

1.43 kg1/2·mol–1/2. l, values of βM,X
(1,P)  from model conversion; o, values of βM,X

(1,P)  from 4-

term temperature function; ¡, values of βM,X
(1,P)  from 7-term temperature function. 

 

FIGURE 18.  Temperature function fits to M,X
(φ,P)C  values of the standard Pitzer model for 

NaNO3(aq) for solubility limited maximum ionic strength and 1
Pα  = 1.43 kg1/2·mol–1/2. l, 

values of M,X
(φ,P)C  from model conversion; o, values of M,X

(φ,P)C  from 4-term temperature 

function; ¡, values of M,X
(φ,P)C  from 7-term temperature function. 

 

FIGURE 19. Comparison of osmotic coefficients calculated using the extended Archer 

and standard Pitzer models for Ca(NO3)2(aq), solubility limited maximum ionic strength,  

and temperature-dependent optimal exponential coefficient 1
Pα (Τ). ¡, standard Pitzer 

model at T = 298.15 K; l, extended Archer model at T = 298.15 K; ê, standard Pitzer 



 

 

74

model at T = 353.15 K; σ, extended Archer model at T = 353.15 K; o, standard Pitzer 

model at T = 423.15 K; n, extended Archer model at T = 423.15 K. 

 

FIGURE 20. Comparison of osmotic coefficients calculated using the extended Archer 

and standard Pitzer models for NaNO3(aq), solubility limited maximum ionic strength, 

and temperature-dependent optimal exponential coefficient 1
Pα (Τ). ¡, standard Pitzer 

model at T = 298.15 K; l, extended Archer model at T = 298.15 K; ê, standard Pitzer 

model at T = 353.15 K; σ, extended Archer model at T = 353.15 K; o, standard Pitzer 

model at T = 423.15 K; n, extended Archer model at T = 423.15 K. 

 

FIGURE 21. Osmotic coefficient φ, water activity aw, and mean activity coefficient γ± of 

saturated solutions of Ca(NO3)2(aq) calculated using the standard Pitzer model with 

solubility limited maximum ionic strength, 1
Pα  = 0.87 kg1/2·mol–1/2, and 7-term 

temperature functions. Triangles, solid phase Ca(NO3)2·4H2O(s); squares, solid phase 

Ca(NO3)2·3H2O(s); circles, solid phase Ca(NO3)2(s). Top curves φ, middle curves γ±, and 

bottom curves aw. 

 

FIGURE 22. Solubility msat and solubility product Ksp of individual solid phases of 

Ca(NO3)2·nH2O(s) calculated using the standard Pitzer model with solubility limited 

maximum ionic strength, 1
Pα  = 0.87 kg1/2·mol–1/2, and 7-term temperature functions. 

Circles, solid phase Ca(NO3)2·4H2O(s); squares, solid phase Ca(NO3)2·3H2O(s); 

diamonds, solid phase Ca(NO3)2(s); filled symbols, Ksp; open symbols, msat. 
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FIGURE 23. Osmotic coefficient φ, water activity aw, and mean activity coefficient γ± of 

saturated solutions of NaNO3(aq) calculated using the standard Pitzer model with 

solubility limited maximum ionic strength, 1
Pα  = 1.43 kg1/2·mol–1/2, and 7-term 

temperature function. o, φ; ¡, aw; ◊, γ±. 

 

FIGURE 24. Solubility msat and solubility product Ksp of NaNO3(s) calculated using the 

standard Pitzer model with solubility limited maximum ionic strength, 1
Pα  = 1.43 

kg1/2·mol–1/2, and the 7-term temperature function. o, Ksp; ¡, msat. 
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Fig 4 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70 80

I / (mol . kg-1)

φ



 

 

80

 

 
Fig 5 
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Fig 6 
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Fig 7 
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Fig 8 
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Fig 9 
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Fig 10 
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Fig 11 
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Fig 12 
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Fig 13 
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Fig 15 
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Fig 20 
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Fig 21 
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APPENDIX A 

Analytical expressions for the elements of the coefficient matrices Aij and Cik, defined by 

equations (33) and (34), and coefficient matrices nj
αA  and nk

αC  defined by equations (41) 

and (42), respectively, can be obtained by substituting the results of expressions (20) – 

(30), (37), and (38) in these expressions and performing the indicated integrations over 

the range of ionic strength from Imin = 0 to Imax(T). The resulting expressions are given 

below. 

 

Coefficient Matrix Aij 

A11 = λ3
2 ∫

=

(T)max  

min 0

I

I

I2 dI = λ3
2 Imax

3/3                                                                                   (A1) 

A12 = A21  = λ3
2 ∫

=

(T)max  

min 0

I

I

I2·exp(– 1
Pα I1/2) dI                                                                       (A2) 

A13 = A31 = λ3
2 ∫

=

(T)max  

min 0

I

I

I2 ·exp(– 2
Pα I1/2) dI                                                                       (A3) 

A14 = A41 = λ1λ3
2 ∫

=

(T)max  

min 0

I

I

I3 dI = λ1λ3
2 Imax

4/4                                                                   (A4) 

A22 = λ3
2 ∫

=

(T)max  

min 0

I

I

I2·exp(–2 1
Pα I1/2) dI                                                                               (A5) 

A23 = A32 = λ3
2 ∫

=

(T)max  

min 0

I

I

I2·exp{–( 1
Pα  + 2

Pα )I1/2} dI        (A6) 
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A24 = A42 = λ1λ3
2 ∫

=

(T)max  

min 0

I

I

I3·exp(– 1
Pα  I1/2) dI      (A7) 

A33 = λ3
2 ∫

=

(T)max  

min 0

I

I

I2·exp(–2 2
Pα I1/2) dI         (A8) 

A34 = A43 = λ1λ3
2 ∫

=

(T)max  

min 0

I

I

I3·exp(– 2
Pα I1/2) dI                                                                  (A9) 

A44 = λ1
2λ3

2 ∫
=

(T)max  

min 0

I

I

I4 dI = λ1
2λ3

2 Imax
5/5                                                                       (A10) 

Coefficient Matrix Cik 

C11 = λ3
2 ∫

=

(T)max  

min 0

I

I

I2 dI = λ3
2 Imax

3/3                                                                                 (A11) 

C12 = λ3
2 ∫

=

(T)max  

min 0

I

I

I2·exp(– 1
EAα I1/2) dI                                                                              (A12) 

C13 = λ3
2 ∫

=

(T)max  

min 0

I

I

I2·exp(– 2
EAα I1/2) dI                                                                              (A13) 

C14 = λ1λ2λ3
2 ∫

=

(T)max  

min 0

I

I

I3 dI = λ1λ2λ3
2 Imax

4/4       (A14) 

C15 = λ1λ2λ3
2 ∫

=

(T)max  

min 0

I

I

I3·exp(– 1
EAω I1/2) dI                                                                       (A15) 

C16 = λ1λ2λ3
2 ∫

=

(T)max  

min 0

I

I

I3·exp(– 2
EAω I1/2) dI                                                                       (A16) 
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C21 = λ3
2 ∫

=

(T)max  

min 0

I

I

I2·exp(– 1
Pα  I1/2) dI                                                    (A17) 

C22 = λ3
2 ∫

=

(T)max  

min 0

I

I

I2·exp{–( 1
Pα  + 1

EAα )I1/2} dI      (A18) 

C23 = λ3
2 ∫

=

(T)max  

min 0

I

I

I2·exp{–( 1
Pα  + 2

EAα )I1/2} dI        (A19) 

C24= λ1λ2λ3
2 ∫

=

(T)max  

min 0

I

I

I3·exp(– 1
Pα  I1/2) dI        

(A20) 

C25 = λ1λ2λ3
2 ∫

=

(T)max  

min 0

I

I

I3·exp{–( 1
Pα  + 1

EAω )I1/2} dI      (A21) 

C26 = λ1λ2λ3
2 ∫

=

(T)max  

min 0

I

I

I3·exp{–( 1
Pα  + 2

EAω )I1/2} dI     (A22) 

C31 = λ3
2 ∫

=

(T)max  

min 0

I

I

I2·exp(– 2
Pα  I1/2) dI         (A23) 

C32 = λ3
2 ∫

=

(T)max  

min 0

I

I

I2·exp{–( 2
Pα  + 1

EAα )I1/2} dI       (A24) 

C33 = λ3
2 ∫

=

(T)max  

min 0

I

I

I2·exp{–( 2
Pα  + 2

EAα )I1/2} dI       (A25) 

C34 = λ1λ2λ3
2 ∫

=

(T)max  

min 0

I

I

I3·exp(– 2
Pα  I1/2) dI      

 (A26) 
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C35 = λ1λ2λ3
2 ∫

=

(T)max  

min 0

I

I

I3·exp{–( 2
Pα  + 1

EAω )I1/2} dI      (A27) 

C36 = λ1λ2λ3
2 ∫

=

(T)max  

min 0

I

I

I3·exp{–( 2
Pα  + 2

EAω )I1/2} dI      (A28) 

C41 = λ1λ3
2 ∫

=

(T)max  

min 0

I

I

I3 dI  =  λ1 λ3
2 Imax

4/4       (A29) 

C42 = λ1λ3
2 ∫

=

(T)max  

min 0

I

I

I3·exp(– 1
EAα I1/2) dI        (A30) 

C43 = λ1λ3
2 ∫

=

(T)max  

min 0

I

I

I3·exp(– 2
EAα I1/2) dI       (A31) 

C44 = λ1
2λ2λ3

2 ∫
=

(T)max  

min 0

I

I

I4 dI = λ1
2 λ2 λ3

2 Imax
5/5      (A32) 

C45 = λ1
2λ2λ3

2 ∫
=

(T)max  

min 0

I

I

I4·exp(– 1
EAω I1/2) dI      (A33) 

C46 = λ1
2λ2λ3

2 ∫
=

(T)max  

min 0

I

I

I4·exp(– 2
EAω I1/2) dI       (A34) 

Coefficient Matrix nj
αA  

11
αA  = λ3

2 ∫
=

(T)max  

min 0

I

I

I5/2·exp(– 1
Pα I1/2) dI        (A35) 

12
αA  = λ3

2 ∫
=

(T)max  

min 0

I

I

I5/2·exp(–2 1
Pα I1/2) dI        (A36) 
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13
αA  = λ3

2 ∫
=

(T)max  

min 0

I

I

I5/2·exp{–( 1
Pα  + 2

Pα )I1/2} dI      (A37) 

14
αA  = λ1λ3

2 ∫
=

(T)max  

min 0

I

I

I7/2·exp(– 1
Pα I1/2) dI        (A38) 

21
αA  = λ3

2 ∫
=

(T)max  

min 0

I

I

I5/2·exp(– 2
Pα I1/2) dI        (A39) 

22
αA  = λ3

2 ∫
=

(T)max  

min 0

I

I

I5/2·exp{–( 1
Pα  + 2

Pα )I1/2} dI       (A40) 

23
αA  = λ3

2 ∫
=

(T)max  

min 0

I

I

I5/2·exp(–2 2
Pα I1/2) dI        

 (A41) 

24
αA  = λ1λ3

2 ∫
=

(T)max  

min 0

I

I

I7/2·exp(– 2
Pα I1/2) dI        (A42) 

 

Coefficient Matrix nk
αC  

11
αC  = λ3

2 ∫
=

(T)max  

min 0

I

I

I5/2·exp(– 1
Pα I1/2) dI        (A43) 

12
αC  = λ3

2 ∫
=

(T)max  

min 0

I

I

I5/2·exp{–( 1
Pα  + 1

EAα )I1/2} dI        (A44) 

13
αC  = λ3

2 ∫
=

(T)max  

min 0

I

I

I5/2·exp{–( 1
Pα  + 2

EAα )I1/2} dI      (A45) 
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14
αC  = λ1λ2λ3

2 ∫
=

(T)max  

min 0

I

I

I7/2·exp(– 1
Pα I1/2) dI       (A46) 

15
αC  = λ1λ2λ3

2 ∫
=

(T)max  

min 0

I

I

I7/2·exp{–( 1
Pα  + 1

EAω )I1/2} dI      (A47) 

16
αC  = λ1λ2λ3

2 ∫
=

(T)max  

min 0

I

I

I7/2·exp{–( 1
Pα  + 2

EAω )I1/2} dI       (A48) 

21
αC  = λ3

2 ∫
=

(T)max  

min 0

I

I

I5/2·exp(– 2
Pα I1/2) dI         (A49) 

22
αC  = λ3

2 ∫
=

(T)max  

min 0

I

I

I5/2·exp{–( 2
Pα  + 1

EAα )I1/2} dI       (A50) 

23
αC  = λ3

2 ∫
=

(T)max  

min 0

I

I

I5/2·exp{–( 2
Pα  + 2

EAα )I1/2} dI      (A51) 

24
αC  = λ1λ2λ3

2 ∫
=

(T)max  

min 0

I

I

I7/2·exp(– 2
Pα I1/2) dI       (A52) 

25
αC  = λ1λ2λ3

2 ∫
=

(T)max  

min 0

I

I

I7/2·exp{–( 2
Pα  + 1

EAω )I1/2} dI      (A53) 

26
αC  = λ1λ2λ3

2 ∫
=

(T)max  

min 0

I

I

I7/2·exp{–( 2
Pα  + 2

EAω )I1/2} dI       (A54) 

 

Evaluation of Integrals in Coefficient Matrices 

The integrals involving exponential factors in the integrands in the matrices Aij, Cik, 

nj
αA , and nk

αC  are all special cases of a generalized integral whose solution was derived 
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and reported by Rard and Wijesinghe [14] in their Appendix A.   Their general result can 

be expressed in a more compact form as 

∫
=

(T)max  

min 0

I

I

In·exp(–aI1/2) dI  

          = 2{(2n + 1)!/a2n+2}·[1 – exp(–Y)
r= 0

2n +1

∑ {Y(2n+1–r) /(2n + 1 – r)!]                       (A55) 

where we define Y ≡ a Imax
1/2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


