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Abstract

Cubic Spline Collocation Method for the Simulation of Turbulent Thermal Convection in

Compressible Fluids

by

Victor Manuel Castillo, Junior

Doctor of Philosophy in Engineering-Applied Science

University of California at Davis/Livermore

Professor Emeritus William G. Hoover, Chair

A collocation method using cubic splines is developed and applied to simulate steady

and time-dependent, including turbulent, thermally convecting flows for two-dimensional

compressible fluids. The state variables and the fluxes of the conserved quantities are

approximated by cubic splines in both space direction. This method is shown to be nu-

merically conservative and to have a local truncation error proportional to the fourth

power of the grid spacing. A “dual-staggered” Cartesian grid, where energy and momen-

tum are updated on one grid and mass density on the other, is used to discretize the flux

form of the compressible Navier-Stokes equations. Each grid-line is staggered so that the

fluxes, in each direction, are calculated at the grid midpoints. This numerical method is

validated by simulating thermally convecting flows, from steady to turbulent, reproducing
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known results. Once validated, the method is used to investigate many aspects of thermal

convection with high numerical accuracy.

Simulations demonstrate that multiple steady solutions can coexist at the same Rayleigh

number for compressible convection. As a system is driven further from equilibrium, a

drop in the time-averaged dimensionless heat flux (and the dimensionless internal entropy

production rate) occurs at the transition from laminar-periodic to chaotic flow. This

observation is consistent with experiments of real convecting fluids. Near this transition,

both harmonic and chaotic solutions may exist for the same Rayleigh number. The chaotic

flow loses phase-space information at a greater rate, while the periodic flow transports

heat (produces entropy) more effectively. A linear sum of the dimensionless forms of these

rates connects the two flow morphologies over the entire range for which they coexist. For

simulations of systems with higher Rayleigh numbers, a scaling relation exists relating the

the dimensionless heat flux to the two-seventh’s power of the Rayleigh number, suggesting

the existence of “hard” turbulence in two-dimensional compressible convection.
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“ If a body lighter than a fluid be forcibly

immersed in it, the body will be driven

upwards by a force equal to the

difference between its weight

and the weight of the fluid

displaced. ”

The sixth proposition from
περι oχoνµενων (On Floating Bodies),
Archimedes of Syracuse, circa 260 B.C. 1

“ When among the roots of the

determinantal equation there are

some for which the real parts are

positive, the undisturbed motion

is unstable.”

Theorem III from
Obwa� zadaqa ob usto$iqivosti dvi�eni�
(On the General Problem of the Stability of
Motion), Aleksandr M. Lyapunov, 1892. 2

1English translation from “The Works of Archimedes” T. L. Heath, Dover, New York (1912).
2Translated from Russian into French by Édouard Davaux, in Communications de la Société

mathématique de Kharkow (1893). Translated from French into English by A. T. Fuller in International
Journal of Control, 55(1992).
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Chapter 1

Introduction

A numerical method for solving the full Navier-Stokes equations so as to simulate

convection and convective turbulence in compressible fluids is described, analyzed, and

validated by comparison with results from experiments and other computational work in

this field. This method is then used to investigate some interesting aspects of convection

such as coexisting steady states, a dual-morphology region where harmonic and chaotic

flows coexist, and some properties of two-dimensional compressible turbulent convection.

1.1 Overview

This dissertation is divided into four sections – an introduction (Chapters 1-3) that

provides a motivation for the work and defines terms used in later sections; a description

of the cubic spline collocation method, along with analysis and validation (Chapters 4-6);

a discussion of the application of the method to investigate convection and convective
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turbulence (Chapters 7-9); and the conclusions (Chapter 10).

The remainder of this Chapter describes some historical work on convection, including

a discussion of the Oberbeck-Boussinesq approximation. This is followed by a discussion

of modern investigations, including those involving computer simulations.

Chapter 2 defines types of thermal convection, from steady to turbulent, and Fourier

conduction – the simplest example of heat transport. Examples of convection in nature

are discussed, from atmospheric to stellar, along with their physical parameters such as

length scale, temperatures, and viscosities to show how convective processes are common

among vastly different systems.

Chapter 3 develops the mathematical framework needed to describe convection in

more detail. The properties of the fluid and its surroundings are discussed in order to

define rigorously the Rayleigh number – the dimensionless parameter that quantifies how

far from equilibrium a convecting system is. Other important dimensionless quantities are

also defined.

Chapter 4 describes the “dual-staggered” discretization used for the method. The

“dual”-part refers to the fact that the mass density is updated on one grid (zone-centered)

while the energy and momentum are updated on another. The “staggered”-part refers

to the fact that the flux of the conserved quantities are updated at the midpoints in

each direction to avoid a decoupling of the even and odd-numbered nodes (the even/odd

instability).

Chapter 5 describes the cubic spline collocation method. Similar methods, such as
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centered finite difference, and Padé schemes are also described. The cubic spline method

is analyzed to show that the truncation error of the midpoint interpolation and mid-

point differentiation is of the order h4, where h is the grid spacing. The method is also

shown to be strictly conservative and to require relatively low computational effort (the

computational effort scales linearly with the number of nodes used for the simulation).

Chapter 6 describes simulations of steady and time-dependent convection used to

validate the numerical method. Results of these simulations agree with widely accepted

results from experiments and other simulations reported in the literature.

Chapter 7 discusses properties of steady convection including an investigation of co-

existing states in steady convection. Two-, four-, and six-roll solutions are generated and

compared for the same Rayleigh number.

Chapter 8 details an investigation of intermediate-Rayleigh-number time-dependent

convection including harmonic and chaotic flows. Here, a hysteresis exists that connects

two different flow morphologies, possible for the same Rayleigh number. The simpler of

the flows has two characteristic frequencies, the rotation frequency of the convecting rolls

and the vertical oscillation frequency of the rolls. Observables, such as the heat flux,

have a simple-periodic (harmonic) time dependence. The more complex (chaotic) flow

has at least one additional characteristic frequency – the horizontal frequency of the cold,

downward- and the warm, upward-flowing plumes. Observables of this latter flow have a

broad-band frequency distribution.

The two flow morphologies, at the same Rayleigh number, have different rates of en-
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tropy production and different Lyapunov exponents. The simpler “harmonic” flow trans-

ports more heat (produces entropy at a greater rate) whereas the more complex “chaotic”

flow has a larger maximum Lyapunov exponent (corresponding to a larger rate of phase-

space information loss). A linear combination of these two rates is invariant for the two

flow morphologies over the entire range of Rayleigh numbers for which the flows coexist.

This suggests a relation between the two rates near the onset of convective turbulence.

Chapter 9 discusses an investigation into convective turbulence. For these high-

Rayleigh-number flows, a scaling relation exists relating the dimensionless heat flux to

the Rayleigh number by the well-known two-seventh’s power law. Other characteristics

are observed such as vorticity on many length scales, lack of symmetry between the cold,

downward- and the warm, upward-flowing thermal plumes, and an exponential-like tem-

perature histogram of fixed points near the center of the cell.

Chapter 10 summarizes the conclusions about the numerical method and the investi-

gation of convection.

Appendix A describes a simple model of a double pendulum, with thermally-conducting

and thermally-expanding masses immersed in a constant-gradient temperature field, that

transport heat in a way that is analogous to buoyancy-driven convection. A Rayleigh-

number-like order parameter is defined for this system. The additional entropy produced

by the convecting double pendulum is calculated as a function of the order parameter as

the system is driven from regular to chaotic motion.

The intent in studying this model is to characterize the entropy production rate and the
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Lyapunov spectrum as this simple, non-equilibrium system is driven into chaos. The results

are compared to those of the more complex simulations of a compressible fluid, convecting

heat in two dimensions. The simulations suggest that within a range of Rayleigh numbers

time-averaged entropy production is related to the Kolmogorov-entropy (the rate at which

phase-space information is lost) for this convecting system.

Appendix B provides the FORTRAN code for the Navier-Stokes solvers and utilities

that are used to determine the maximum Lyapunov exponent and the internal entropy

production.

Appendix C provides MATHEMATICA scripts for plotting and analysis.

1.2 Review of previous work

A discussion is given here of some historical highlights in the investigation of con-

vective processes. The work of Bénard and Rayleigh, who laid the foundation of what

is now known as the “Rayleigh-Bénard” problem, is outlined. The Oberbeck-Boussinesq

approximation was used by Rayleigh and is still used by some researchers today to simplify

the equations governing thermal convection. Its derivation and assumptions are discussed

as historical background. Some current topics of investigation and their history is then

discussed and related to the work in this dissertation.
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1.2.1 Early work

Henri Bénard, for his PhD thesis work, did the first careful experiments with convecting

fluids around the turn of the century. This work, appearing also in two subsequent

publications in 1900 [1] and 1901 [2] describes an apparatus (see Fig.1.1) in which a thin

layer of fluid is situated on a level metallic plate maintained at a constant temperature.

The fluid is in free contact with the air above which is at a temperature lower than

the metallic plate. He used a variety of liquids with different properties to investigate

the rôle of viscosity on the flow characteristics of the fluid. Bénard’s most important

contribution, however, was the observation that at a critical plate temperature, for each

fluid, a cellular structure (see Section 2.2.4) spontaneously appears. He noticed that this

cellular structure was made up of small steady fluid currents, “le régime permanent”,

where the fluid ascended in the center and descended at the boundaries of adjoining cells.

Lord Rayleigh (John William Strutt), 1904 Nobel Laureate 1, laid out the groundwork

for theoretical investigations into the onset of thermal convection. In his seminal paper

in 1916 [3], he treated the “Bénard problem” as a linear stability problem. He used a

linear approximation of the Navier-Stokes equations, originally developed by Oberbeck in

1879 [4], but attributed to Boussinesq’s 1903 work [5]. Rayleigh, for practical reasons,

considered a convecting system with two free boundaries at constant temperature. Al-

11904 Nobel Laureate in Physics “for his investigations of the densities of the most important gases
and for his discovery of argon in connection with these studies”
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Figure 1.1: Bénard’s original experimental apparatus

though these conditions do not model a true experimental system, the assumptions did

allow Rayleigh to make a reasonable estimate of the conditions for the onset of convective

instability.

Rayleigh’s work was continued by Jeffreys in 1926 [6] and 1928 [7] who solved the

problem for rigid-rigid and rigid-free boundaries and determined the critical “Rayleigh

number” for each. The Rayleigh number, Ra, is a dimensionless quantity that depends

on the temperature difference, length scale, viscosity, conductivity, and expansivity. (The

derivation of the Rayleigh number is presented in Chapter 3). This dimensionless param-

eter, used by Rayleigh and Jeffreys, was first called the “Rayleigh number” by Sutton in

1961 [8]

Chandrasekhar (1961) [9] completed the analysis of the linear theory of thermal con-
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vective instability. Again, the Oberbeck-Boussinesq approximation was employed with

various boundary conditions. He analyzed the problem of a fluid heated from below in

the presence of a shear, in a rotating system, and in the presence of a magnetic field – all

using the linear, incompressible approximation of the Navier-Stokes equations.

1.2.2 Oberbeck-Boussinesq approximation

It may seem somewhat odd to model buoyancy-driven convection with a set of equa-

tions that assumes constant density, but the Oberbeck-Boussinesq approximation has

afforded analysis of a complex problem and has allowed useful insight. Because of its his-

torical significance, a derivation of the Oberbeck-Boussinesq equations is outlined here.

The derivation of the Oberbeck-Boussinesq approximation starts with the incompress-

ible Navier-Stokes equations. The variations in the density ρ are neglected except insofar

as they are used in a buoyancy term,

∇ · ~u = 0

∂~u
∂t

+ ~u · ∇~u = ν∇2~u− 1
ρ0
∇p +

ρ
ρ0

~g

∂T
∂t

+ ~u · ∇T = DT∇2T,

(1.1)

where the transport coefficients and thermal expansion coefficient are defined in terms of
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this constant density

ν ≡ η
ρ0

; DT ≡
κ

cρ0
. (1.2)

The variation in the density is linearized with the temperature variation (T − T0) by

the thermal expansion coefficient,

ρ = ρ0(1− α(T − T0)); α ≡ − 1
ρ0

(

∂ρ
∂T

)

p
, (1.3)

where ρ0 and T0 are the density and temperature at z = 0.

Now, consider a static (quiescent) state with a constant temperature gradient, β ≡ −∂T
∂z ,

~u = 0; T = T (z) = T0 − βz; ρ = ρ0(1− α(T − T0)) = ρ0(1 + αβz). (1.4)

The scalar pressure is related only to the gravitational force, which acts in the direction

opposite to the heat flow,

∂p
∂z

= −gρ = −gρ0(1 + αβz) ⇒ p = p0 − gρ0(z +
1
2
αβz2). (1.5)

The thermal energy is transported solely by diffusion

∇2T = 0. (1.6)
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A new state with temperature, pressure, and density {T ′, p′, ρ′} and a non-zero velocity

represents a perturbation of the static state,

T ′ = T + θ,

ρ′ = ρ0(1− α(T ′ − T0)) = ρ0(1 + α(βz − θ))

p′ = −gρ0(z + α(
1
2
βz2 − θz)) = p + gρ0θαz,

(1.7)

where θ is the temperature perturbation.

We can now solve the incompressible Navier-Stokes equations (1.1) for the perturbed

state. The continuity equation, in terms of velocity, u, of the perturbed system also

assumes incompressible flow,

∇ · ~u = 0 (1.8)

The terms in the momentum equation with density and pressure are expressed in terms

of the perturbation using 1.5,

1
ρ0

[ρ′~g −∇p′] =
1
ρ0

[~gρ0(1 + α(βz − θ)−∇p−∇δp]

=
1
ρ0

[(~gρ−∇p)− α~gρ0θ −∇δp]

= −α~gθ −∇δp
ρ0

.

(1.9)

The thermal energy equation for the temperature of the perturbed system reduces to an
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equation for the perturbation temperature using 1.6,

∂T ′

∂t
+ ~u · ∇T ′ = DT∇2T ′

⇒ ∂T
∂t

+
∂θ
∂t

+ ~u · ∇(T + θ) = DT∇2(T + θ)

⇒ ∂θ
∂t

+ ~u · ∇T + ~u · ∇(T0 − βz) = DT∇2θ

(1.10)

Using 1.9, 1.8, and 1.10, we arrive at the Oberbeck-Boussinesq equations in terms of

the temperature perturbation,

∇ · ~u = 0

∂~u
∂t

+ ~u · ∇~u = ν∇2~u−∇δP
ρ0
− αθ~g

∂θ
∂t

+ ~u · ∇θ = DT∇2θ + ~u · ~β

(1.11)

1.2.3 Modern work

The term “modern” is used here to describe work on open questions that are currently

under investigation. Most of this work involves the use of or is somehow influenced by

computer simulation. Computers allow sufficiently accurate “thought” experiments of

systems that are too complex for conventional analysis. In general, simulations of con-

vective processes are based on either Oberbeck-Boussinesq approximation, Navier-Stokes

equations, or ab initio methods including molecular dynamics [10–12], lattice gases [13],

and smooth particle applied mechanics [14, 15]. Two areas of current research in ther-
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mal convection are 1.) understanding the transitions to different convecting morphologies

and 2.) understanding the heat transport in turbulent convection. Additionally, the need

for accurate, efficient, and scalable numerical methods for the simulation of convective

processes is motivating much research.

Transitions in convective flows

The nature of flow transitions, such as the transition from laminar to turbulent flow,

has been questioned for ages. Benard’s experiments to study the transition to cellular

convection only mark the beginning of careful and controlled observation of convective

processes. Experimental observations of the discrete transitions in convecting systems

leading to turbulence were reported by Malkus (1954) [16]. Distilled water and acetone

were allowed to convect with very high Rayleigh numbers (up to 1010, well in the tur-

bulent regime) while the total amount of transported heat was measured. Six discrete

transitions were observed, each indicated by a change in the slope of the heat transport -

Rayleigh number relation. This was later confirmed and renumbered by Willis and Dear-

dorff (1967) [17]. Krishnamurti (1970) did very detailed experiments to characterize the

transition from two-dimensional to three-dimensional steady flow [18] and to characterize

the onset of time-dependent flow [19]. He showed that at a fixed point a time peri-

odic oscillation develops. A discrete change in slope of the heat flux curve accompanies

this transition. A hysteresis is also shown for the heat flux near this transition. Heslot

(1987) [20] did experiments to map out transitions to turbulence in helium gas. His-
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tograms of the temperature a points in the cell were used to define the regions of steady,

oscillatory, chaotic, and soft and hard turbulent convection.

Clever and Busse [21–23] extended Chandrasekhar’s work [9] with the non-linear

Oberbeck-Boussinesq approximation and compared results to experimental results. They

explored transitions between steady states and the onset of time-dependent convection.

For more complicated flows, computer simulations are needed. Goldhirsch (1989) [24]

used simulations based on the Oberbeck-Boussinesq approximation to investigate steady

and time-dependent flows. Although this method agrees well with experiments for steady

and periodic flows, there is a surprising absence of chaotic or even quasi-periodic flows

for low-Prandtl-numbered fluids. Rapaport (1991) [12] employed molecular dynamics

methods to show that the onset of time-dependent convection results from these ab initio

assumptions. The periodic flow that develops has a frequency close to that predicted

by Goldhirsch. Deluca (1990) [25] and Werne (1991 and 1993) [26, 27] were able to

successfully employ the Oberbeck-Boussinesq approximation to simulate and study the

transition to two-dimensional convective turbulence.

Simulations that reveal coexisting flow morphologies for steady convection in com-

pressible fluids have been reported by this author [15] and are discussed in Chapter 7. A

region in which periodic and chaotic flows may coexist is observed near the transition for

compressible fluids. This is reported by this author [28, 29] and is discussed in Chapter

8. A characterization of turbulent convection for a two-dimensional compressible fluid is

also given by this author [29] and discussed in Chapter 9.



15

Heat transport in turbulent convection

Convective turbulence is an area of research that has many unanswered questions. The

scaling relation between the Rayleigh number and the dimensionless heat flux has been

the subject of much attention. Prandtl (1932) [30] used similarity arguments to estimate

the velocity of a convecting fluid allowing to free fall. Priestley (1954) [31] used these

arguments to estimate that the dimensionless heat flux for an equivalent system scales as

the 1
3 power of the Rayleigh number. Malkus (1954) [16] gave an analysis of the turbulent

regime in terms of marginal stability of the mean flow to improve the estimates of the

temperature dependence of the interior. This approach allows the derivation of the 1
3

power law without similarity assumptions. Building on this approach, Howard (1963) [32]

used similarity arguments based on a marginal stability of the boundary layers (see Chapter

9) to show this same power-law relation. Although these independent approaches predict

a 1
3 power law relation, experimental results do not agree. Heslot, Castaing and Libchaber

(1987) [20] analyzed experimental data for convecting helium gas and observed that within

the region of well-developed convective turbulence, the dimensionless heat flux scales as

the 2
7 power of the Rayleigh number. They referred to this region as “hard turbulence”.

They later [33] went on to argue, based on observations, that the shear wind induced

by the large scale convection current stabilizes the viscous boundary layer. This allows

for a slightly larger boundary layer, reducing the exponent in the power-law derivation of

Howard.

She (1989) [34] suggested that thermal turbulence may have an inertial subrange quite
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different from a Kolmogorovian freely cascading inertial range, leading to a departure from

the classical 1
3 law. This, however, has not been supported by data from experiment or

simulation.

Shraiman and Siggia (1990) [35] deduced the 2
7 power law from the presence of a mean

flow and the nesting of a thermal boundary layer within a viscous one. Their assumption

is that the heat flux into the boundary layer is carried completely by a mean flow. Xin

(1997) [36] used a light scattering technique to measure the velocity profiles in convecting

water to show that the thermal boundary layer is nested entirely within the viscous layer

for turbulent convection. This confirms the theoretical predictions of Shraiman and Siggia.

Naert et alii (1997) [37], however, did high-Rayleigh-number experiments using Mercury,

a low-Prandtl-number fluid showing that the 2
7 power law persists after the inversion of

the thermal and viscous boundary layers. This disputes a basic assumption of Shraiman

and Siggia. Werne et alii (1991) [26] used simulations based on the Oberbeck-Boussinesq

approximation to show that “hard turbulence” exists in two dimensions. They reported

that the convective part of the dimensionless heat flux (Nu− 1) develops a 2
7 power-law

dependence on the Rayleigh number for two-dimensional convective turbulence. In a later

paper, DeLuca, Werne, Rosner, and Cattaneo (1990) [25] reported that simulations of

two-dimensional turbulence, based on Oberbeck-Boussinesq approximation, suggest that

a substantial part of the heat is transported by hot and cold plumes. This disputes the

assumption of Shraiman and Siggia that the heat flux into the boundary layer is carried

completely by a mean flow. Ching (1997) [38] used analysis based on the Oberbeck-
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Boussinesq approximation to show that the 2
7 power-law is a result of the nonuniform

shear from these plumes.

Wu and Libchaber (1991) [39] proposed that in a “non-Boussinesq” regime of turbulent

convection, the boundary layers on opposite sides of a cell adjust their length scales so that

the mean hot and cold temperature fluctuations are equal in the center of the cell. Zhang

et alii (1997) [40] confirmed this equality experimentally with glycerol. This experiment

also reveals a systematic deviation in the 2
7 power law relation (as seen in Chapter 9).

Most simulation and theory of this power-law relation are based on the Oberbeck-

Boussinesq approximation. In Chapter 9, convective turbulence is discussed for a two-

dimensional compressible fluid. The 2
7 power-law is recovered in these simulations. A

discussion of the dimensionless internal entropy production and a dimensionless measure

of the rate at which phase space information is lost is presented for this hard turbulence

regime.

Simulating compressible convection

Some of the earliest models of compressible convection came from the astrophysical

community. The Oberbeck-Boussinesq approximation is sufficient for thin layers, where

the variation in density can be neglected. The compressible effects in stars, however,

are significant. Spiegel [41] used a first-order perturbation of the linear OB equations to

determine the marginal stability for polytropic atmospheres. Advances in computational

approaches for modeling compressible convection were made by Fröhlich and Gauthier
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for two-dimensional systems. A Fourier-Chebyshev spectral method is used for a system

with both slippery and rigid boundary conditions [42]. A Fourier expansion is used in

the horizontal direction while Chebyshev polynomials are used in the vertical. An ex-

plicit Adams-Bashforth predictor-corrector numerical scheme is used for the time domain.

Steady compressible flows were generated and analyzed [43, 42, 44] for both boundary

types. With advances in large super computers, three-dimensional compressible systems

could be modeled with sufficient resolution. Toomre, Cattaneo, Brummell, and Hurlburt

used a hybrid finite-difference-pseudospectral method with a resolution of 963 grid points

to model compressible convection. A set of four computer runs with varying Rayleigh and

Prandtl numbers is reported in references [45–47].

The cubic spline collocation method used in this dissertation to simulate convective

processes in compressible fluids is developed, analyzed, and validated in Chapters 4-6.
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Chapter 2

Thermal convection

Thermal convection is the transport of thermal energy by fluid currents. These currents

are induced by buoyancy forces arising from a temperature difference. The morphology

of a convecting system may vary from simple, time-independent convecting rolls to highly

irregular, both in space and time, turbulent convection. In a fluid, heat is transported by

conduction (thermal diffusion) and by convection if the conditions are right. Convection

is a naturally occurring process – evident in vastly different systems.

2.1 Heat transport in two dimensions

Thermal energy is transported in two dimensional fluids in different amounts and by

different mechanisms, depending on the fluid properties and how far from equilibrium

the system is. Slightly away from equilibrium, heat is typically transported by linear

conduction. A highly nonequilibrium system, on the other hand, may transport heat in a
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turbulent fashion. The types of thermal transport, in two-dimensional fluids, are outlined

in the remainder of this Section.

2.1.1 Fourier conduction

If viscous forces are strong enough to deny fluid motion, thermal energy is transported

from a heat source to a heat sink solely by thermal diffusion. This process is known as

Fourier conduction as it is described by Fourier’s law of heat conduction, qF = κ∇T .

The heat flux, qF , is related to the local temperature gradient by the thermal conductivity

coefficient, κ.

2.1.2 Rayleigh-Bénard instability

A fluid, like air, in the presence of a heat source tends to expand as it heats, thus

lowering its density. This warmer, lighter fluid spontaneously starts to rise if the buoyant

forces overcome the viscous constraints in a time shorter than the time it takes for the

heat to diffuse through the surrounding fluid. As the fluid rises, it carries thermal energy

away from the heat source faster than it diffuses away. Conversely, a fluid in the presence

of a heat sink cools, condenses, and submerges if the buoyancy forces (acting downward

in this case) overcome the viscous grip.

The instability of the quiescent state leading to a convecting state occurs at a criti-

cal value of the Rayleigh number. This is the well-known “Rayleigh-Bénard” instability.

In the convective state, heat is transported more effectively. The Rayleigh number is
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Figure 2.1: Velocity field of steady thermal convection of a compressible fluid enclosed
between two rigid thermal boundaries.

a dimensionless temperature gradient that depends on the properties of the fluid, the

magnitude of the body force (gravity), the length scale, and the temperature difference.

The Rayleigh number is developed in Chapter 3 from dimensional analysis. For now, the

Rayleigh number can be thought of as a parameter that quantifies how far a system is

from equilibrium, much like the Reynolds number. It was shown by linear analysis that

the critical Rayleigh number and critical cell aspect ratio a (ratio of convection cell width

Type of boundaries Rac a
Both free 657.5 1.41
Both rigid 1707.8 1.99
One rigid and one free 1100.7 1.71

Table 2.1: Critical Rayleigh number and aspect ratio for the onset of convection for
different boundary types.
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to height) depends on the nature of the upper and lower boundaries.

In simple systems, the convection state that results at this critical value is steady and

has simple rolls. For a system with periodic side boundaries (representing an infinite width

enclosure), the number of rolls is even to conserve angular momentum. For systems with

rigid sides, an odd number of rolls is possible. The diameter of the rolls becomes equal

to the height of the system, if the material is uniform and the system is isobaric. Steady

convection is discussed further in Chapter 7.

2.1.3 Harmonic convection

At a much higher Rayleigh number, the system makes another transition from the

steady convection to unsteady (time-dependent) convection. This transition was noted

by Clever and Busse [22] for an incompressible fluid and later simulated by Rapaport [12]

using molecular dynamics. This transition occurs at Ra ≈ 8× 104 for our ideal gas fluid

and marks the beginning of a periodic motion where the rolls oscillate up and down.

2.1.4 Chaotic and turbulent convection

Eventually, this periodic motion gives way to aperiodic convection as plumes start to

mix the flow. It was pointed out by Heslot [20] that the chaotic flow at this point is

distinctly different from fully-developed turbulence. This is usually referred to as “soft

turbulence”. Soft turbulence is characterized by a loss of time coherence while the space

coherence persists. As the Rayleigh number is increased further, Ra ≈ 4 × 107, the
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Figure 2.2: Dimensionless heat flux as a function of time for harmonic convection.

system finally makes a transition to “hard turbulence” where time and space coherence

is lost. An interesting feature of this “hard turbulence” region that has been observed in

experimental studies of convection using helium gas [33] is the existence of a scaling region

where the convective part of the heat flux is related to the Rayleigh number by a two-

seventh’s power-law. This is different from the “classical” result [32] relating the heat flux

to Ra
1
3 which is based on the assumption of marginal stability at a thermal boundary layer.

Numerical simulations of incompressible Boussinesq fluids reveal a scaling relation close

to the experimental one for Rayleigh numbers between 108 and 1015 [25, 27]. Harmonic

and chaotic convection are discussed in Chapter 8. Turbulent convection is discussed in

Chapter 9.
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2.2 Examples of Convection

Many examples of convection, both laminar and turbulent, exist in nature and are part

of our everyday lives. They range greatly in temperature scale, length scale, and scale

of the various material properties. Examples of convection in Nature and laboratories are

discussed in the remainder of this Section.

2.2.1 Atmospheric convection

Convective weather patterns affect us daily. As solar radiation heats the Earth’s

surface, the air near the surface heats, expands, and rises. Similarly, air in the upper

atmosphere losses heat, condenses, and falls – completing the convective cycle. This

extremely simplified view does not take into account moisture, photochemistry, rotation,

diurnal effects, or jet streams. This simplified view of “dry” convection, however, does give

a rough model of the dynamics of planetary atmospheres. The fact that the atmosphere

has a very low viscosity (ν ∼ 1.5× 10−5 m2 s−1), a low heat transport coefficient, and a

large characteristic length (the troposphere starts about 10 km above the surface) leads

to a system that is quite convectively unstable. In fact, given that the gravitational

acceleration is 9.8 m s−2, the mean temperature is 300 K, and assuming that air has

a thermal expansion similar to an ideal gas, it can be shown that if the temperature

difference between the surface and the air, say at 1 km, is on the order of 10−15 K,

convective instability will dominate. The Rayleigh number for atmospheric convection

can be as high as 1017 to 1020.
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Figure 2.3: Diagrams of ideal convection (left) and realistic moist-air convection (right)
in the atmosphere. [From Klemp (1987).]

In reality, moisture adds thermodynamic complexity to the convection dynamics by in-

troducing a variety of new dynamical processes that have no analog in dry convection [48, 49].

Not only has moist, unsaturated air a greater heat capacity than dry air, but absorbed wa-

ter can go through phase changes as temperature and pressure change. Condensation or

“deposition” (transformation of water vapor to ice) releases heat locally at a greater rate

than molecular diffusion would allow without the phase change. The cloud droplets may

coalesce and grow to precipitation-sized particles and fall. The falling of water droplets

(rain) forces a convective-like flow as the air below is displaced.

2.2.2 Mantle convection

Mantle convection is a process that has a great influence on the shape of the earth, yet

goes mostly unnoticed – that is, except for an occasional earthquake or volcanic eruption.

Convection dynamics are responsible for mountain building, plate tectonics, fluctuations
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in the Earth’s magnetic field, and most of the global heat loss. The global heat loss, due

to mantle convection, is estimated to be 44.2× 1012 Watts [50].

The mantle is made up of molten material such as magnesium-iron silicates. At high

temperatures and pressures these act as a high-viscosity plastic. The reference viscosity

is this molten material is estimated at 1021 Pa · s [51, 52] (the actual viscosity varies

greatly with temperature and pressure). The main characteristic that distinguishes mantle

convection from the convection one sees in the laboratory is the time scale. The speed of

the creeping flow of the mantle is inferred from the speed of the Earth’s tectonic plates,

since these are linked to the down-welling cold boundary layer. Typical plate speeds are

about 10 cm/year and the mantle depth is about 2900 km giving the estimated “transit”

time for a plume of about 29 million years. For reference, the age of the Earth is 4.5

billion years. Since the rates were probably higher in the past when the Earth’s interior was

hotter, it has been estimated that there have been hundreds of overturns during Earth’s

history [53].

Mantle convection serves to transport heat from the outer core (which is primarily

molten iron) to the Earth’s surface. The temperature difference, estimated from the high-

pressure melting temperature of FeO and FeS, is around 750 K. The thermal expansivity,

thermal diffusivity, and density estimated from laboratory measurements at high temper-

ature and pressure are 3× 10−5 K−1, 10−6 m2 s−1, and 4× 103 kg · m−3 [51]. This leads

to a Rayleigh number on the order of 107. This is within the chaotic or turbulent range

for most fluids. Mantle convection is assumed to be chaotic given on the distribution of
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Figure 2.4: Cross-section diagram of the Earth showing the UM&C: upper mantle and
crust (0−670 km), LM: convecting lower mantle (670−2, 890 km), OC: liquid outer core
(2, 890− 5, 150 km), and IC: solid inner core (5, 150− 6, 370 km).

trace elements in the upper mantle [54].

2.2.3 Stellar convection

Convection in stars, like the Sun, is the main mechanism through which heat, generated

by nuclear reactions at the core, is transported to the surface. Convection occurs in

the outer 30% of the solar radius (roughly 200, 000 km) across which the temperature

drops from 2, 000, 000 K to about 6, 000 K at the solar surface. The density ratio of the

compressed material near the bottom of the convection rolls to the outer surface is 107.

The Rayleigh number associated with solar convection is near 1024.

Solar granulation is a term used to refer to the ever-present convection rolls observed
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on the Sun’s surface (see Figure 2.5). They are grain-like in shape and about 5, 000 km

across. The “turn-over” time for these cells is about ten minutes.

Figure 2.5: Solar granulation showing very small-scale turbulent motions (from La Palma
observatory)

2.2.4 Bénard’s and other laboratory experiments

Laboratory experiments, including those of Bénard, are carried out to study thermal

convection in a controlled environment. Obviously, the extreme conditions (temperatures,

pressures, viscosities, and length scales) that exist in atmospheric, mantle, and stellar

convection would be difficult to reproduce in the laboratory. However, many physical

aspects of convection may be studied in a more moderate environment with an appropriate
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choice of materials and laboratory conditions.

Bénard, for example, studied convection in a very thin layer of fluid (about 1 mm) on

a metallic plate which was heated uniformly by steam (TH ≤ 100◦ C) while the upper free

surface was cooled by ambient air (TL ≈ 20◦ C). Some of the higher-viscosity fluids that

Figure 2.6: Bénard cells in spermaceti. A reproduction from one of Bénard’s original
photographs. [From Chandrasekhar (1961).]

he used included spermaceti (oil from a sperm whale) and melted paraffin. Spermaceti is

rigid at room temperature, but melts at 46◦ C, and has a low thermal conductivity. The

result was the formation of an array of steady hexagonal-shaped convection cells with a

cross section of about 1 − 1.5 mm with a turnover time (the time for a fluid volume to

travel to the top and back to the bottom of a convecting cell) of about ten seconds. The
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cellular structure resembles that of the small-scale stellar convection (compare figures 2.5

and 2.6), despite great differences in length scale, temperature, and viscosity.

Many advances in experimental technique have allowed more precise measurement and

characterization of convective processes. The bolometer is the most sensitive detector of

broad-band electromagnetic radiation at wavelengths between 250 m and 5 mm. The

responsiveness of this detector allows the measurement of the temperature histogram of

the convecting fluid at a point in the cell. The temperature histogram of a point in the

center and near the bottom of a container of gaseous helium allowed Heslot et alii [20] to

characterize the domains of the various convection types – laminar, oscillatory, chaotic,

and turbulent. To visualize the flow, a shadowgraph technique was used by Zhang and

coworkers [40]. Using a collimating lens, a nearly parallel light source was sent through

Figure 2.7: Shadowgraph of convecting glycerol at Ra = 2.3×108. [From Zhang (1997).]
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the convection cell. Shadows, resulting from refraction of the fluid, outline the thermal

plumes. See Figure 2.7. The need to examine the convective properties of a low-Prandtl-

number fluid inspired Naert and his colleagues to use liquid mercury. The objective of

this study was to reach a high-Rayleigh-number point at which the viscous and thermal

boundaries invert. Rayleigh numbers as high as 109 were obtained in this study.
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Chapter 3

Factors influencing convection

The properties of the fluid transporting heat along with its boundary conditions deter-

mine whether convection will occur. The rate a which heat is transported and the type

of convection that develops depends on how far the system is from equilibrium. Whether

or not convection occurs and the nature of the flow if it does depends on the properties

of the fluid and how far from equilibrium the system is. The amount of heat that is

transported is also dependent on these factors.

3.1 Description of the fluid

Many of the physical properties of a fluid can be determined by the thermal and

mechanical equation of state. These include its response to a change in the environment.

The transport coefficients describe the local transport of energy and momentum. The

nature of the simple two-dimensional fluid used here to study convective processes is
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described in the remainder of this section.

3.1.1 Thermal and mechanical equation of state

To study natural convection and the transitions leading to turbulence, we establish a

model of a simple, heat-conducting, viscous fluid enclosed between two thermal boundaries

and in the presence of a body force. For simplicity, we assume a fluid with an ideal

equation of state, where the equilibrium hydrodynamic scalar pressure is related to the

density and temperature through the Boltzmann constant (per unit mass), Peq = ρkBT .

The thermal equation of state, e = kBT , defines the internal energy per unit mass. With

these equations, we can define some of the properties of the material. The sound speed

for the fluid depends on the relationship between the pressure and the density. For the

ideal gas equation of state,

c =
(

∂P
∂ρ

)1/2

= (kBT )1/2 . (3.1)

The thermal expansion coefficient, or expansivity, is the rate a volume changes with the

temperature,

α ≡ 1
V

(

∂V
∂T

)

P
= −1

ρ

(

∂ρ
∂T

)

P
= T−1. (3.2)
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Also, the isothermal mechanical compressibility can be defined,

β ≡ − 1
V

(

∂V
∂P

)

T
=

1
ρ

(

∂ρ
∂P

)

T
= P−1. (3.3)

For convenience we also assume that transport coefficients – the heat conductivity (κ)

and the shear viscosity (η) – are constant.

3.1.2 Isotropy and transport coefficients

Mechanical and thermal isotropy is a common simplifying assumption used in modeling

fluids. It assumes that the mechanical and thermal properties of the fluid do not depend

on the direction and requires only two parameters – one for shear deformations and one

for volumetric deformations. For an isotropic fluid, the stress tensor can be written as

σ ≡ λ(∇ · ~u)I + η(∇u +∇u
t
)− PeqI, (3.4)

where Peq is the equilibrium pressure scalar, η and ηv are the shear and bulk viscosity. The

term ∇u is the velocity gradient (a tensor) and ∇u
t
is its transpose. In three dimensions,

the velocity, its divergence and gradient are

~u ≡

















u

v

w

















, ∇ · ~u =
∂u
∂x

+
∂v
∂y

+
∂w
∂z

, ∇u =

















∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

















. (3.5)
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Considering the trace of the stress tensor,

Tr(σ) = 3λ(∇ · ~u) + 2η(∇ · ~u)− 3Peq

⇒ 1
3
Tr(σ) + Peq = (λ +

2
3
η)∇ · ~u

≡ ηv(3d)∇ · ~u

(3.6)

we can relate the equilibrium pressure to a contribution from the volumetric deformation.

This defines λ in terms of the shear and bulk viscosities in three dimensions,

λ = ηv(3d) −
2
3
η (3.7)

In two dimensions, the velocity, its divergence and gradient are

~u ≡









u

v









, ∇ · ~u =
∂u
∂x

+
∂v
∂y

, ∇u =









∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y









. (3.8)

Therefore, the trace of the stress tensor is

Tr(σ) = 2λ(∇ · ~u) + 2η(∇ · ~u)− 2Peq

⇒ 1
2
Tr(σ) + Peq = (λ + η)∇ · ~u

≡ ηv(2d)∇ · ~u,

(3.9)
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which relates λ to the shear and bulk viscosities in two dimensions,

λ = ηv(2d) − η. (3.10)

At this point, we can relate the shear viscosity with the viscosities associated with volu-

metric deformation in two and three dimensions,

ηv(3d) −
2
3
η = ηv(2d) − η

⇒ ηv(2d) = ηv(3d) +
1
3
η

(3.11)

Stoke’s assumption further simplifies the isotropic assumption by setting the bulk

viscosity to zero. If we are to use Stoke’s assumption for simulations in two dimensions,

we must decide whether the fluid is truly two-dimensional or just a slice of a three-

dimensional fluid. For this study, we choose to represent a three-dimensional Stoke’s fluid

and do so by setting ηv(3d) = 0. This determines the value of the bulk viscosity for the

two-dimensional constitutive equations,

ηv(2d) =
1
3
η (3.12)

This assumption is quite reasonable for simulations of steady convection where the prop-

erties of the rolls, in three dimensions, are independent of the position along the axis of

the rolls. Put another way, the two-dimensional simulations represent a slice of three-

dimensional steady convection. For time-dependent convection, particularly for chaotic
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and turbulent convection, the flow is not independent of the third direction. In this case,

the choice of the bulk viscosity is not based on axial symmetry, but is still valid for the

expansion of a small volume.

The numerical effect of adding the bulk viscosity in the two-dimensional simulations

is typically quite small. In an ideal-gas simulation of Rayleigh-Bénard flow, at a Rayleigh

number of 3600, the flow velocity increased by about one part in 1000 when the two-

dimensional bulk viscosity was set equal to zero rather than to η/3. It is interesting,

and possibly significant, that taking a two-dimensional reference system with vanishing

bulk viscosity, would require a negative bulk viscosity in three dimensions, leading to

catastrophic instabilities [15].

Fourier’s law of heat conduction describes the linear transport of thermal energy where

the heat flux is related to the temperature gradient by the heat conductivity coefficient,

~qF = −κ∇T. (3.13)

The conservation of thermal energy for a material of mass density ρ and heat capacity c

relates the time rate of change for the temperature of a small volume to the divergence

of the heat flux. For simple conduction,

ρc
∂T
∂t

= −∇ · qF = ∇ · κ∇T . (3.14)
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For constant density, heat capacity and conductivity,

∂T
∂t

=
κ
ρc
∇2T = DT∇2T (3.15)

relating the thermal diffusion and conduction coefficients.

3.2 Rayleigh number

This system may be driven away from equilibrium by increasing the temperature gra-

dient, decreasing the transport coefficients, or increasing the gravitational field. A dimen-

sionless parameter that incorporates all of the possibilities was first derived by Rayleigh [3]

and allows us to compare the convection of very different systems such as stellar and man-

tle convection. The Rayleigh number is defined as the ratio of the power per unit area

from conduction to convection for a simple model of the system,

Ra ≡ |u|ρc∆T
κ∆T/L

. (3.16)

The characteristic velocity is determined by balancing the viscous drag force with the

buoyancy force per unit area for a volume element moving with the flow,

η
|u|
L

= gρα∆TL. (3.17)
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By equating the thermal and potential energy change for a volume of fluid moving from

the one boundary to the other, the magnitude of the body force can be defined by

ρgL = kB∆T, (3.18)

thus simplifying the Rayleigh number,

Ra = (ρ0ckB)
α∆T 2L2

κη
. (3.19)

The convecting system has a characteristic length scale, velocity, and shear viscosity

for which a Reynolds number may be estimated. The Reynolds number, like the Rayleigh

number, is a dimensionless order parameter that describes how far a dynamical system

is from equilibrium. The Reynolds number is a ratio of inertial to momentum diffusion

rates,

Re ≡ |u|L
ν

=
|u|Lρo

η
. (3.20)

For steady flows, the viscous drag force is balanced by the buoyancy force (Eq. 3.17). By

balancing the potential and thermal energies (Eq. 3.18), we can express the characteristic
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velocity in terms of the Reynolds number,

η2Re
ρ0L2 = kBα∆T 2

⇒ Re = (ρ0kB)
α∆T 2L2

η2

= (ρ0ckB)
α∆T 2L2

ηκ
Pr−1

= Ra Pr−1 (steady),

(3.21)

where the Prandtl number is the ratio of the momentum to thermal diffusion times.

Pr ≡ ν
DT

≡ cη
κ

. (3.22)

For turbulent flows, the buoyancy force must be balanced by the fluid acceleration.

The Froude number is the ratio of inertial to potential energies,

Fr ≡ u2

gL
. (3.23)

Again, using Eq. 3.18 for g and Eq. 3.20 to relate the Reynolds number to the charac-

teristic velocity,

Re2η2

L2ρ2
0

= Fr
kB∆T

ρ0

⇒ Re2 = Fr (kBρ0)
L2∆T

η2

= Fr Pr−1(ρ0ckB)
L2∆T

κη

. (3.24)
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For an ideal gas, α = T−1. If the mean temperature is of the order of the temperature

difference, then,

Re2 ∼ Fr Pr−1Ra (turbulent). (3.25)

3.3 Nusselt number

The Nusselt number is the ratio of the total heat flux to the purely-conductive heat

flux for an equivalent system (length scale, temperature difference, and conductivity).

Nu ≡ qtot

qF
=

qtot

−κ∇T
. (3.26)

The total heat flux across a system is equal to the heat flux across its boundary wall,

~qtot = ~qwall = −κ lim
x→wall

∇T. (3.27)

By calculating the heat flux near the wall, thermal energy entrained by the fluid flows

may be neglected. Within the bulk fluid, the more complicated energy flux vector must
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be calculated,

~qtot = −κ∇T − ~u · σ + ρ~u(e +
1
2
~u · ~u)

=
[

−κ
∂T
∂x

− uσxx − vσxy + ρue +
ρu
2

(u2 + v2)
]

î

+
[

−κ
∂T
∂y

− uσxy − vσyy + ρve +
ρv
2

(u2 + v2)
]

ĵ

(3.28)

for a two-dimensional flow with velocity ~u ≡ uî + vĵ. This expression for the heat flux

approaches ~qwall (3.27) as the velocity vanishes at the wall. The total flux across a line,

parallel to the boundary is

Qtot ≡
∮

A
~qtot · ~dA. (3.29)
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Part II

Numerical Methods
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Chapter 4

Discretization

Simulation of a physical system by digital computers requires the discretization of the

appropriate equations. The equations, although based on some simplifying assumptions,

must represent the essential underlying physics of the problem. Once the equations are

determined, the system must be divided into smaller discrete parts (discretized) so that the

computer, with its finite capacities, can store and operate on them. Improper discretization

may lead to spurious answers or catastrophic instabilities.

4.1 Navier-Stokes equations

The Navier-Stokes equations describe the conservation of mass, momentum, and en-

ergy for a continuous medium that is either compressible or incompressible. The in-

compressibility assumption has been used by many researchers, as in the case of the

Oberbeck-Boussinesq approach, because it greatly simplifies the equations and reduces the
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computational effort needed. This assumption, however, fails to correctly model all phys-

ical responses of the system such as compression (sound) waves. The fully-compressible

Navier-Stokes equations are used here to simulate buoyancy-driven thermal convection.

4.1.1 Eulerian and Lagrangian forms

These conservation laws may be expressed in either the “Lagrangian” frame (following

the motion of the fluid) or the “Eulerian” frame (fixed or “lab”). By considering the

definition of the “convective” or “material” time derivative,

Ds
Dt

≡ ṡ =
∂s
∂t

+ ~u · ∇s, (4.1)

where ~u is the material flow velocity and s is an observed quantity, we can express the

Navier-Stokes equations in both frames,

ρ̇ = −ρ∇ · ~u =
∂ρ
∂t

+ ~u · ∇ρ

ρ~̇u = ∇ · σ + ρ~g = ρ
∂~u
∂t

+ ρ~u · ∇~u

ρė = σ : ∇~u−∇ · ~q = ρ
∂e
∂t

+ ρ~u · ∇e.

(4.2)

The constitutive equations describe the local comoving linear transport,

~q = −κ∇T ; σ = ηv(∇ · ~u)I + η(∇~u +∇~ut)− PeqI (4.3)
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where,
ρ ≡ density ~u ≡ velocity e ≡ internal energy per unit mass

~q ≡ heat flux ~g ≡ body force Peq ≡ equilibrium pressure = ρe = ρkBT

σ ≡ stress tensor η ≡ shear viscosity ηv ≡ bulk viscosity .

4.1.2 Conservative (flux) form

The Navier-Stokes equations can be put into “conservative form”:

∂Q
∂t

+∇ · ~F = S (4.4)

where the time-rate-of-change of the conserved quantity Q is equal to the negative di-

vergence of its flux ~F plus the source S. When put into discrete form, the difference

equations conserve the quantities to machine accuracy by explicitly accounting for the

change due to the fluxes.

In two dimensions, the conservative form of the Navier-Stokes equations is,

∂ρ
∂t

+
∂
∂x

(ρu) +
∂
∂y

(ρv) = 0

∂
∂t

(ρu) +
∂
∂x

(ρu2 − σxx) +
∂
∂y

(ρuv − σyx) = ρgx,

∂
∂t

(ρv) +
∂
∂x

(ρuv − σxy) +
∂
∂y

(ρv2 − σyy) = ρgy,

∂
∂t

[

ρe +
ρ
2
(u2 + v2)

]

+
∂
∂x

[

qx − uσxx − vσxy + ρue +
ρu
2

(u2 + v2)
]

+

∂
∂y

[

qy − uσxy − vσyy + ρve +
ρv
2

(u2 + v2)
]

= ρ(ugx + vgy), (4.5)
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with,

~q ≡ −κ∇e; σ ≡ [(ηv − η)∇ · ~u− Peq] I + η(∇u +∇u
t
); ~u = uî + vĵ.

Again, the equilibrium pressure is determined by the equation of state

Peq ≡ ρkBT.

4.2 Staggered grid

The solution of numerical approximation of differential equations depends on the way

that the problem is discretized. Discretization is the representation of the continuous

variables as a finite number of values, each with finite accuracy. For an Eulerian repre-

sentation, these values are fixed in space and may sit on the nodes of a regularly-spaced

grid. Improper discretization, however, may lead to spurious solutions.

4.2.1 Example: One-dimensional heat equation

The one-dimensional diffusion equation, expressed in flux form, is used as a simple

example that demonstrates how improper discretization may lead to a spurious solution.

∂T
∂t

= −∇ · ~q = −∂~q
∂x

; ~q = −∇T = −∂T
∂x

, (4.6)
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where kB, ρ, and cv are set equal to one for simplicity.

First, the continuous variables T and q are represented as discrete values on the nodes

of a regular (evenly-spaced) one-dimensional grid. Next, the spatial derivatives at the

nodes are approximated using a centered-difference,

∂q
∂x
|
0
≈ q+ − q−

2∆x
;

∂T
∂x
|
0
≈ T+ − T−

2∆x
, (4.7)

where the derivative is approximated by the difference of the neighboring values divided

by the space between them. The grid spacing is set equal to one for simplicity. The

boundaries are made periodic by allowing the end points to be neighbors. Starting with

an initial condition T = {0, 0, A, 0}, the heat flux q is determined to be A
2 {0,−1, 0, 1}.

Next the time derivative of the temperature is determined to be A
2 {1, 0,−1, 0}. This

shows that the temperature of nodes 2 and 4 (the even nodes) will not change.

# 1 2 3 4
—O———–—O———–—O———–—O———–

T: 0 0 A 0

q: 0 −A
2 0 A

2

Ṫ : A
2 0 −A

2 0

Because the flux depends on the gradient of the conserved quantity and the centered-

difference approximation of the gradient depends only on the value of the immediate

neighbors, the time evolution of the even nodes becomes decoupled from that of the odd

nodes. This is the “even/odd” numerical instability. It should be noted, however, that if
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the total number of nodes is odd for a periodic grid, the even and odd nodes are coupled

and the instability is avoided.

The following mathematica program iterates equations from an initial condition,

T = {0, 0, A, 0} with a time step dt = 0.1 on a simple periodic grid.

(* Simple grid for diffusion equation *)
nn=4; dt=0.1;
T=Table[0,{nn}]; T[[3]]=1; q=Table[0,{nn}];ntime=50;
pdat1=Table[0,{ntime}]; pdat2=Table[0,{ntime}];
pdat3=Table[0,{ntime}]; pdat4=Table[0,{ntime}];
pdat1[[1]]=T[[1]]; pdat2[[1]]=T[[2]];
pdat3[[1]]=T[[3]]; pdat4[[1]]=T[[4]];
For[j=2,j<=ntime,j++,

q[[1]]= -(T[[2]]-T[[nn]])/2;
For[i=2,i<=nn-1,i++,

q[[i]]= -(T[[i+1]]-T[[i-1]])/2;
];
q[[nn]]= -(T[[1]]-T[[nn-1]])/2;
T[[1]]= T[[1]]-dt*(q[[2]]-q[[nn]])/2;
For[i=2,i<=nn-1,i++,

T[[i]]= T[[i]]-dt*(q[[i+1]]-q[[i-1]])/2;
];
T[[nn]]= T[[nn]]-dt*(q[[1]]-q[[nn-1]])/2;
Print[T];
pdat1[[j]]=T[[1]]; pdat2[[j]]=T[[2]];
pdat3[[j]]=T[[3]]; pdat4[[j]]=T[[4]];

];

The results are shown in Figure 4.1. The value of the odd nodes (T1, T3) converge to

A/2, while the even node temperatures remain unchanged. The time dependence of the

odd nodes can be described by

T1(t) =
A
2

[

1− e−t] ; T3(t) =
A
2

[

1 + e−t] ; T2(t) = T4(t) = 0.0 (4.8)

This is obviously a non-physical solution for the diffusion equation.
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Figure 4.1: Convergence of the centered-difference approximation of the diffusion equation
to the wrong solution using a simple grid. The temperatures are factors of A.

To avoid this even/odd numerical instability, a staggered grid is used where the flux

(q) is calculated at the cell centers. Again the initial condition is used for the temperature

is T = {0, 0, A, 0}. The heat flux, at the midpoints, is calculated by differencing the

values at the nearby nodes. This time, the temperature time-rate-of-change is nonzero

on both even and odd numbered nodes and have the correct direction.

# 1 2 3 4
—O——x——O——x——O——x——O——x—

T: 0 0 A 0

q: 0 -A A 0

Ṫ : 0 A -2A A

The following mathematica program iterates equations from an initial condition,

T = {0, 0, A, 0} with a time step dt = 0.1 on a periodic staggered grid.

(* staggered grid for diffusion equation *)
nn=4; dt=0.1;
T=Table[0,{nn}]; T[[3]]=1; q=Table[0,{nn}];ntime=50;
Print[T];
pdat1=Table[0,{ntime}]; pdat2=Table[0,{ntime}];
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pdat3=Table[0,{ntime}]; pdat4=Table[0,{ntime}];
pdat1[[1]]=T[[1]]; pdat2[[1]]=T[[2]];
pdat3[[1]]=T[[3]]; pdat4[[1]]=T[[4]];
For[j=2,j<=ntime,j++,

For[i=1,i<=nn-1,i++,
q[[i]]= -(T[[i+1]]-T[[i]]);

];
q[[nn]]= -(T[[1]]-T[[nn]]);
T[[1]]= T[[1]]-dt*(q[[1]]-q[[nn]]);
For[i=2,i<=nn,i++,

T[[i]]= T[[i]]-dt*(q[[i]]-q[[i-1]]);
];
Print[T];
pdat1[[j]]=T[[1]]; pdat2[[j]]=T[[2]];
pdat3[[j]]=T[[3]]; pdat4[[j]]=T[[4]];

];

In this case, the system converges to the correct solution T = A
4 {1, 1, 1, 1}. The time

dependence of the nodal temperatures can be described by

T1(t) =
A
4

(1 + e−4t)− A
2

e−2t; T2(t) = T4(t) =
A
4

(1− e−4t);

T3(t) =
A
4

(1 + e−4t) +
A
2

e−2t.

(4.9)
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Figure 4.2: Convergence of the centered-difference approximation of the diffusion equation
to the correct solution using a staggered grid.



52

4.3 Boundaries

The choice of boundaries has an influence on the nature of the solution. The bound-

aries of the system must be selected to represent those of the physical system that is

to be modeled. In some cases, it is desirable to study a system in which the effects of

physical boundaries are minimized. Periodic boundaries approximate an infinite domain

without great computational cost. The computational domain wraps around so that end

points become neighbors. The result is an infinitely periodic simulation, of which only one

period is actually calculated. For simulating convection, in particular steady convection,

periodic boundaries are a reasonable choice for representing an infinite set of pairs of

convecting rolls. The symmetry of the problem requires an even number of convecting

rolls (counter-rotating pairs) to avoid high shears. The aspect ratio of the simulation is

the length of the periodic part (which may be more than one multiple of the wave length

of a roll pair) divided by vertical length scale.

The horizontal thermal boundaries are usually modeled as free or rigid, giving three

possibilities – both free, both rigid, or one free and one rigid. The rigid boundary differs

from a free boundary in that the normal component of the velocity vanishes. The rigid

boundary can be made slip or no-slip, where the latter requires the tangential velocity

of the fluid, relative to the velocity of the boundary, to vanish. A stress-free boundary

requires that the stress, at the boundary, vanish. In all cases, there exists a certain

ambiguity concerning the density of the fluid at the boundary for compressible flows.
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4.4 “Dual-staggered” grid

A cartesian grid is the natural choice for the discretization of this problem because the

system is rectangular. For this problem, we use a cartesian “dual-staggered” grid. This

Figure 4.3: Internal energy and momentum are updated on one grid of the “dual-
staggered” mesh while the mass density is updated on the other.

means that the state variables are updated on two different grids (the “dual” part) and

the fluxes are calculated at the grid midpoints (the “staggered” part).

At the rigid, thermal boundaries, the temperature and velocities are specified, but the

mass density is ambiguous. To deal with this ambiguity, a “dual” grid is used where the

temperature and velocity are updated on one grid (the grid that includes the rigid bound-

aries) and the mass density is updated on the other. The values of the state variables are

interpolated to intermediate (staggered) grids where the fluxes of the conserved quantities
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Figure 4.4: Fluxes of conserved quantities are updated at the midpoints (staggered) along
each grid line of the “dual-staggered” grid.

are calculated. The staggered grid scenario is not uncommon – it is used to avoid the

“even/odd” instability, where the even numbered nodes become decoupled from the odd

numbered nodes.

Figure 4.3 shows the cartesian grid on which the energy and momentum are defined

(nodes are indicated by an “X”) and the grid on which the mass density (nodes are

indicated by an “O”) are defined. This configuration is also known as a density-centered

grid because the density nodes are in the center of zones whose corners are the X-nodes.

Figure 4.4 shows the two grids in more detail. The solid circles at the intersection of

the grid indicates the place at which the fluxes are calculated. These points can also be

thought of as the midpoints between nodes along lines. The x-flux for the density and

the y-flux for the energy and momentum are calculated on one flux point while the y-flux
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for the density and the x-flux for the energy and momentum are calculated on the other.

The updating of the conserved quantities at each time-step requires a sequence of

steps that involve interpolation and differentiation of quantities. The steps are outlined

here.

1. Interpolate new density to other grids

• interpolate density to midpoint in x-direction

• interpolate density to midpoint in y-direction

• interpolate midpoint density to Grid 1

2. Determine state variables u,v,e from quantities on Grid 1

• x-velocity equals x-momentum divided by density

• y-velocity equals y-momentum divided by density

• internal energy is determined from density and velocities

3. Interpolate state variables

• interpolate x-velocity to midpoint in y-direction

• interpolate y-velocity to midpoint in y-direction

• interpolate internal energy to midpoint in y-direction

• interpolate x-velocity to midpoint in x-direction

• interpolate y-velocity to midpoint in x-direction

• interpolate internal energy to midpoint in x-direction

4. Determine gradients of state variables

• determine midpoint gradient of x-velocity in x-direction (ux)

• determine midpoint gradient of y-velocity in x-direction (vx)

• determine midpoint gradient of internal energy in x-direction (ex)

• determine midpoint gradient of x-velocity in y-direction (uy)

• determine midpoint gradient of y-velocity in y-direction (vy)

• determine midpoint gradient of internal energy in y-direction (ey)

5. Interpolate velocity gradients to opposite grid
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• interpolate ux to Grid 2

• interpolate vx to Grid 2

• interpolate uy to Grid 2

• interpolate vy to Grid 2

• interpolate Grid 2 ux to midpoint in y-direction

• interpolate Grid 2 vx to midpoint in y-direction

• interpolate Grid 2 uy to midpoint in x-direction

• interpolate Grid 2 vy to midpoint in x-direction

6. Determine flux values

• calculate qx at midpoint

• calculate σxx at midpoint

• calculate σxy at midpoint

• calculate midpoint total energy

• calculate y-flux of density at midpoint

• calculate x-flux of x-momentum at midpoint

• calculate x-flux of y-momentum at midpoint

• calculate x-flux of total energy at midpoint

• calculate qy at midpoint

• calculate σyy at midpoint

• calculate σxy at midpoint

• calculate midpoint total energy

• calculate x-flux of density at midpoint

• calculate y-flux of x-momentum at midpoint

• calculate y-flux of y-momentum at midpoint

• calculate y-flux of total energy at midpoint

7. Compute sources (mass density has no source)

• calculate y-momentum source

• total energy source

8. Compute divergence of the fluxes

• calculate divergence of density flux in x-direction
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• calculate divergence of density flux in y-direction

• calculate divergence of x-momentum flux in x-direction

• calculate divergence of x-momentum flux in y-direction

• calculate divergence of y-momentum flux in x-direction

• calculate divergence of y-momentum flux in y-direction

• calculate divergence of total energy flux in x-direction

• calculate divergence of total energy flux in y-direction

9. return to time integrator

Obviously, there is a need to employ a method that calculates the midpoint interpolant

and spatial derivative with high accuracy, but with relatively-low computational cost. The

methods used are discussed in the next chapter.
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Chapter 5

Cubic spline collocation

5.1 Background

The fully compressible, viscous, time-dependent Navier-Stokes equations are rich in

possible solutions. The compressibility allows for sound (compression) waves in addition

to buoyancy-driven convection. Many approaches exist for solving the time-dependent

Navier-Stokes equations with specified initial and boundary conditions. Each has its ad-

vantages and disadvantages. Approaches for solving fluid flow problems generally fall

into one of two groups – Lagrangian or Eulerian. Lagrangian approaches follow the

flow of the fluid and allow the grid to track the fluid interface or other regions of in-

terest. Often these moving meshes become tangled and produce difficulties such as

“hour-glassing”. Grid-free (free-Lagrangian) approaches avoid these problems by track-

ing particles that may represent fluid molecules (such as the Direct Simulation Monté
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Carlo (DSMC) method [55, 56, 11]), a group of particles (such as in the case of Cellular

Automata (CA) [57, 58], Smooth Particle Applied Mechanics (SPAM) [14, 59, 60], and

Particle in Cell (PIC) [61]) or statistical distributions (such as Grid and Particle Hydro-

dynamics (GaPH) [62]). Hybrid methods have also been developed such as the Arbitrary

Lagrangian-Eulerian (ALE) method to take advantage of the Lagrange method while

avoiding mesh entanglement.

In the case of Eulerian methods, the grid is fixed in space and the fluid moves through

it. These methods are often easier to implement and require less computational effort to

solve. The disadvantage with these methods is that often the phenomena under study

may be at a length scale much less that the length scale of the problem – requiring an

unreasonable number of grid points. One can use multigrid methods which refine the grid

locally around the region of interest. If the region is moving, as in the case of a moving

interface, adaptive mesh refinement methods are used.

5.1.1 Finite difference methods

Once a discrete grid has been constructed on the domain of the problem, the con-

tinuous variables and their derivatives can be approximated to the desired accuracy with

truncated Taylor series at the nodal points. An example of this is the second order central

difference approximation of the first derivative, in one dimension, of a function f ,

f ′j ≈
fj+1 − fj−1

2h
, (5.1)
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which has an error, due to truncation, of order f ′′′h2, where h is the grid spacing.

5.1.2 Finite element methods

The idea behind the finite element method is to break up the domain of the problem

into small elements, over which the continuous variables are interpolated. This is accom-

plished by first discretizing the spatial domain into subdomains of arbitrary shape and

size. These elements are further reduced to triangular and quadrilateral elements that do

not overlap and that provide complete coverage of the computational domain. The sides

of the elements are referred to as the edges whose intersections define the nodal points

of the domain. The objective is to solve for the unknowns (usually the state variables)

at the nodes for a particular time. This is usually accomplished by approximating the

field variables by a linear combination of basis functions Ni(x) (also referred to as shape,

interpolation, or trial functions),

f̃ ≈
∑

i

αi(t)Ni(x) (5.2)

where the sum is over all nodes.



61

5.1.3 Padé approximation

To solve the continuum equations on a uniformly spaced mesh, the derivative of the

flux terms can be determined by the application of a Padé-like [63] method where

βf ′i−2 + αf ′i−1 + f ′i + αf ′i+1 + βf ′i+2 =

c
6h

(fi+3 − fi−3) +
b
4h

(fi+2 − fi−2) +
a
2h

(fi+1 − fi−1)

(5.3)

The values of the coefficients are related by matching the Taylor series coefficients to get

the desired truncation error. For fourth order accuracy in calculating the first derivative,

β is set to zero, leaving a tridiagonal system to be solved. Choosing α = 1
4 , b = c = 0,

and a = 3
2 the classical Padé scheme is recovered with a truncation error of 1

120h
4f (5),

f ′i−1 + 4f ′i + f ′i+1 =
3
h

(fi+1 − fi−1). (5.4)

At fixed boundaries, a one-sided form of the equation,

f ′1 + αf ′2 =
1
h

(af1 + bf2 + cf3 + df4) (5.5)

can be used with α = 3, a = −17
6 , b = 3

2 , c = 3
2 , d = −1

6 . This preserves the tridiagonal

nature of the system and the fourth order accuracy.
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5.1.4 Collocation

A collocation method involves the determination of an approximate solution by a suit-

able set of functions (trial functions) that satisfy the boundary conditions at certain points

(collocation points). In time-dependent problems, the method is used to approximate the

spatial dependence of the variables. A comprehensive history of collocation methods from

the method used by Kantorovich in the 1930’s to the present is provided by Fairweather

and Meade [64]. Kantorovich’s method uses a collocation approximations for the meth-

ods of lines solution of a partial differential equation in two variables. The collocation is

applied for each variable while the other is held fixed.

Examples of Collocation Methods

In general, a collocation method uses a function, or set of functions, that satisfies

certain conditions at the collocation points to approximate a field variable. This concept

is incorporated into many approaches for solving continuum problems. For example, in

the Weighted Residual Method (WRM), one determines an approximation of the field

variable, f = f(x, t) as a linear sum of basis functions,

f =
∑

i

αi(t)φi(x), (5.6)
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that satisfies a differential equation,

L[f ∗] = 0; L[f ]− L[f ∗] = R[f ], (5.7)

where f ∗ is the true field variable and R[f ] is the residue function. For a particular

method, a weight function Wm is assigned, and the αi(t) are determined that lead to,

∫

Ω
WmR[f ] = 0 (5.8)

over the whole domain of the problem. For example, Finite Volume methods divide the

problem into sub-domains Dm such that

Wm =



















1 in Dm,

0 outside Dm.

(5.9)

Another popular example is the Galerkin method, where Wm = φm, where {φm} is

a complete set (for example: φ ∈ {1, x, x2, x3, . . . }). The collocation WRM can be

expressed as

Wm = δ(x− xm), (5.10)

where δ is the Dirac delta function and xm represents the collocation points. This leads

to R[f(xm, t)] = 0. The Finite Difference method is a special case of the collocation
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WRM without an approximate solution – the actual solution is collocated at the node

points. The spectral method is a form of WRM, similar to the Galerkin method, that

uses orthogonal functions for the basis and weight functions. When nonlinear terms are

involved, the solution becomes very time consuming. For economy, often the solution is

expressed in terms of nodal unknowns (collocation). The explicit use of nodal unknowns

allows boundary information to be incorporated easily into the solution. In the literature,

the collocation spectral method is referred to as the pseudospectral method [65].

Spline collocation is the use of spline functions, that satisfy conditions at the nodal

point, to represent the field variables over the domain of the problem. In comparison with

finite difference methods, spline collocation provides approximations to the solution and

its derivative with respect to x at all points of the domain of the problem.

A cubic spline collocation method, used to solve the compressible Navier-Stokes equa-

tions on the dual-staggered grid, is developed and analyzed in the remainder of this

chapter.

5.2 Cubic spline approximations

A new method is used in this thesis to model convective heat transport in a heat-

conducting, viscous fluid [66, 15, 28, 29, 67]. The method involves approximating the field

variables with cubic splines and using this approximation to solve the flux-form of the

compressible Navier-Stokes equations. The fluxes of the conserved quantities are also

approximated by cubic spline functions to determine the spatial derivatives, and hence,
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the time derivatives of the conserved quantities.

Using equally-spaced nodes with h ≡ xj+1−xj, ∀j, a spline function S∆(x) is created

such that S∆(xj) = f(xj) ≡ fj. The second derivative of the spline function at the nodes

is denoted as, Mj ≡ S′′∆(xj). Now, since the cubic spline consists of piecewise third-order

polynomials, S′′∆(x) is piecewise linear. Therefore

S ′′∆(x) = Mj
xj+1 − x

h
+ Mj+1

x− xj

h
, x ∈ [xj, xj+1]. (5.11)

Integration leads to,

S ′∆(x) = −Mj
(xj+1 − x)2

2h
+ Mj+1

(x− xj)2

2h
+ Aj, (5.12)

S∆(x) = Mj
(xj+1 − x)3

6h
+ Mj+1

(x− xj)3

6h
+ Aj(x− xj) + Bj. (5.13)

From S∆(xj) = fj and S∆(xj+1) = fj+1, Aj and Bj are defined

Aj =
fj+1 − fj

h
− h

Mj+1 −Mj

6
; Bj = fj −Mj

h2

6
. (5.14)
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Figure 5.1: Piecewise-cubic spline interpolating polynomial S∆(x) and its derivatives
S ′∆(x) and S′′∆(x). This piecewise-linear function for the second derivative was gener-
ated from S ′′(xj) = (j mod 2).

5.3 Midpoint interpolation and differentiation

Because the state variables are known at the vertices of an equally spaced grid, the

midpoint interpolant f̂0 and spatial derivative f ′0 are:

f̂0 =
fj+1 + fj

2
− h2

16
(Mj+1 + Mj) (5.15)
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f ′0 =
fj+1 − fj

h
− h

24
(Mj+1 −Mj) (5.16)

where f0 ≡ f(xj + h
2 ).

5.4 Accuracy – local truncation error

Convergence of midpoint interpolant

To determine the local truncation error of the midpoint interpolation using cubic

splines [Equation (5.15)] is O(h4), consider Taylor’s expansion about f0 ≡ f(xj + h
2 ). We

use k ≡ h
2 to keep the expansions in familiar form:

fj+1 = f0 + kf ′0 +
k2

2
f ′′0 +

k3

6
f ′′′0 +

k4

24
f ′′′′0 + O(k5) (5.17)

fj = f0 − kf ′0 +
k2

2
f ′′0 −

k3

6
f ′′′0 +

k4

24
f ′′′′0 + O(k5). (5.18)

Adding (5.17) and (5.18) leads to

f0 =
fj+1 + fj

2
− k2

2
f ′′0 −

k4

12
f ′′′′0 + O(k6). (5.19)
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differentiating (5.19) twice gives,

f ′′0 =
f ′′j+1 + f ′′j

2
− k2

2
f ′′′′0 + O(k4). (5.20)

Substituting (5.20) into (5.19) gives

f0 =
fj+1 + fj

2
− k2

4
(f ′′j+1 + f ′′j ) +

11
24

k4f ′′′′0 + O(k5). (5.21)

To get (5.21) into the form (5.15), while tracking the truncation error, we need to

derive the relation between f ′′(xj) and Mj. First, we define δ such that 0 < δ < h ≡

xj+1 − xj, with f+ ≡ f(xj + δ) and f− ≡ f(xj − δ). Taylor’s expansions about a node

are:

f+ = fj + δf ′j +
δ2

2
f ′′j +

δ3

6
f ′′′j +

δ4

24
f ′′′′j + O(δ5) (5.22)

f− = fj − δf ′j +
δ2

2
f ′′j −

δ3

6
f ′′′j +

δ4

24
f ′′′′j + O(δ5). (5.23)

Adding (5.22) and (5.23) leads to

f+ + f− = 2fj + δ2f ′′j +
δ4

12
f ′′′′j + O(δ6). (5.24)

Similarly, for the cubic spline function, let Sj ≡ S∆(xj), S+ ≡ S∆(xj + δ), and S− ≡
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S∆(xj − δ), so that

S+ + S− = 2Sj + δ2S ′′j +
δ4

12
S′′′′j + O(δ6). (5.25)

We are careful to keep δ strictly greater than 0 and less than h so that the fourth derivative

is defined

S ′′′′∆ (x) = 0, xj < x < xj+1. (5.26)

Subtracting (5.24) from (5.25), and noting that S′′j ≡ Mj gives

(S+ − f+) + (S− − f−) = 2(Sj − fj) + δ2(Mj − f ′′j )− δ4

12
f ′′′′j + O(δ6). (5.27)

Now, since fj = Sj, ∀j, we can set δ arbitrarily close to h so the (S+−f+) and (S−−f−)

terms are arbitrarily close to zero, yielding

Mj − f ′′j =
h2

12
f ′′′′j + O(h4). (5.28)

We can now put (5.21) into the form (5.15), using (5.28) to determine the midpoint

interpolation truncation error,

f̂0 =
fj+1 + fj

2
− h2

16
(Mj+1 + Mj) + O(h4) (5.29)
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Convergence of midpoint spatial derivative

To show that the local truncation error of the midpoint spatial derivative using cubic

splines (5.16) is O(h4), we again use the Taylor expansions. Again we use k ≡ h
2 .

Subtracting (5.18) from (5.17) yields

f ′0 =
fj+1 − fj

2k
− k2

6
f ′′′0 + O(k4). (5.30)

differentiating twice gives,

f ′′′0 =
f ′′j+1 − f ′′j

2k
+ O(k2). (5.31)

Substituting (5.31) into (5.30) gives

f ′0 =
fj+1 − fj

2k
− k

12
(f ′′j+1 − f ′′j ) + O(k4). (5.32)

This time, using the error associated with approximating f ′′j by Mj does not give the

whole story. Instead, we need the error associated with approximating (f ′′j+1 − f ′′j ) with

(Mj+1 −Mj). From (5.28), we get

Mj+1 − f ′′j+1 =
h2

12
f ′′′′j+1 + O(h4) (5.33)
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Mj − f ′′j =
h2

12
f ′′′′j + O(h4). (5.34)

Subtracting (5.34) from (5.33) and multiplying by h
24 yields

h
24

(Mj+1 −Mj) =
h
24

(f ′′j+1 − f ′′j ) +
h3

288
(f ′′′′j+1 − f ′′′′j ) + O(h5). (5.35)

Differentiating the midpoint Taylor expansions (5.17) and (5.18) four times gives

f ′′′′j+1 = f ′′′′j+ 1
2

+
h
2
f ′′′′′j+ 1

2
+

h2

8
f ′′′′′′j+ 1

2
+ O(h3) (5.36)

f ′′′′j = f ′′′′j+ 1
2
− h

2
f ′′′′′j+ 1

2
+

h2

8
f ′′′′′′j+ 1

2
+ O(h3). (5.37)

Subtracting (5.37) from (5.36) gives

f ′′′′j+1 − f ′′′′j = hf ′′′′′j+ 1
2

+ O(h3). (5.38)

Substituting (5.38) into (5.35) gives

h
24

(Mj+1 −Mj) =
h
24

(f ′′j+1 − f ′′j ) + O(h4). (5.39)
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Which leads to the truncation error for the midpoint spatial derivative:

f ′0 =
fj+1 − fj

h
− h

24
(Mj+1 −Mj) + O(h4) (5.40)

5.5 Flux conservation

Once the differential equations are written in conservative form, the numerical method

must account for the loss and gain of fluxes locally so that the total change in the mass,

momentum, and energy at each time step is random and with a magnitude on the order

of the machine accuracy (double-precision is used in these calculations). Since these

calculations are locally one dimensional, the midpoint gradient approximation (5.40) is

used for the divergence calculation.

To show that this method is strictly conservative, we integrate the time-rate-of-change

of the conserved quantity Q along each (1D) grid line. Using the conservative form of the

differential equation (4.4),

∫

L

∂
∂t

Qdx =
∫

L
[− ∂

∂x
F + S] dx (5.41)

where F is the flux and S is the source. Discretizing the integral yields

∂
∂t

h
n−1
∑

j=0

Qj+ 1
2

= −h
n−1
∑

j=0

F ′
j+ 1

2
+ h

n−1
∑

j=0

Sj+ 1
2
. (5.42)
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Here, the conserved quantity, its source, and the midpoint spatial derivative of the flux

are on one grid (the midpoint in this case) and the flux is on the other grid. Substituting

(5.16) for F ′ and Qtot and Stot for the integrals of Q and S respectively, we get

∂
∂t

Qtot = −h
n−1
∑

j=0

[

Fj+1 − Fj

h
− h

24
(Mj+1 −Mj)

]

+ Stot. (5.43)

Expanding the sums

∂
∂t

Qtot = (F0 − F1) + (F1 − F2) + · · ·+ (Fn−1 − Fn)

− h2

24
[(M0 −M1) + (M1 −M2) + · · ·+ (Mn−1 −Mn)] + Stot

(5.44)

= (F0 − Fn)− h2

24
(M0 −Mn) + Stot. (5.45)

By setting M0 = Mn, we recover,

∂
∂t

Qtot = (F0 − Fn) + Stot (5.46)

where the time-rate-of-change of the total conserved quantity is equal to the flux in

from the boundaries minus the flux out to the boundaries plus the total other (boundary

independent) sources. For periodic boundaries, F0 = Fn and M0 = Mn, so this condition

is satisfied. For fixed boundaries, the choice of M0 = Mn is satisfied by the “natural”

end conditions, M0 = Mn = 0. This condition, however, appears to introduce an extra
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error at the rigid boundaries where,

f ′1
2

=
f1 − f0

h
− h

24
(M1); f ′n− 1

2
=

fn − fn−1

h
+

h
24

(Mn−1) (5.47)

because M0 and Mn have been arbitrarily set equal to zero. The apparent decrease in

the convergence rate, O(h) rather than O(h4), does not seem to affect the rest of the

calculation. For turbulent simulations, along with other high-Reynolds-number flows, a

boundary layer forms near rigid boundaries, In thermal and viscous boundary layers, the

transport is linear, making the assumption M0 = Mn = 0 reasonable.

Equation (5.42) describes the discrete form of the conservation equation for a con-

served quantity updated on the (j + 1
2)-grid (in this case mass density). The results show

that the total change in mass for each time step is equal to the flux at the boundaries plus

the source of mass. In the simulations in this thesis, there is no mass source (Sρ = 0)

and no mass flux at the walls (Fρ(x = 0) = Fρ(x = L) = (ρv)boundary = 0). Therefore,

the total mass of the simulation is constant. In the case of conserved quantities updated

on the j-grid (momentum and energy), equation (5.41) is discretized as

∂
∂t

h
n−1
∑

j=1

Qj = −h
n−1
∑

j=1

F ′
j + h

n−1
∑

j=1

Sj (5.48)

in the horizontal direction (the vertical, periodic direction is again trivial). The boundary

terms, Q0 and Qn, are not included in the sum because the momentum and energy are

defined by the boundary conditions and are not updated. Again, substituting (5.16) for
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F ′ and Qtot and Stot for the integrals of Q and S respectively, we get

∂
∂t

Qtot = −h
n−1
∑

j=1

[

Fj+ 1
2
− Fj− 1

2

h
− h

24
(Mj+ 1

2
−Mj− 1

2
)

]

+ Stot. (5.49)

Expanding the sums

∂
∂t

Qtot = (F 1
2
− F 3

2
) + (F 3

2
− F 5

2
) + · · ·+ (Fn− 3

2
− Fn− 1

2
)

− h2

24
[(M 1

2
−M 3

2
) + (M 3

2
−M 5

2
) + · · ·+ (Mn− 3

2
−Mn− 1

2
)] + Stot

(5.50)

= (F 1
2
− Fn− 1

2
)− h2

24
(M 1

2
−Mn− 1

2
) + Stot. (5.51)

In this case, we set M 1
2

= Mn− 1
2

= 0 for conservation leaving,

∂
∂t

Qtot = (F 1
2
− Fn− 1

2
) + Stot, (5.52)

where the flux boundary is displaced from the walls by half a cell size. The apparent error

introduced at the boundary due to the conservation constraint,

f ′1 =
f 3

2
− f 1

2

h
− h

24
(M 3

2
); f ′n−1 =

fn− 1
2
− fn− 3

2

h
+

h
24

(Mn− 3
2
) (5.53)

is O(h). Again, if we assume that the viscous and thermal boundary layers have a length

scale greater than the cell size, we can assume linear transport, making f ′′(h
2 ) = 0 and

f ′′(L− h
2 ) = 0. These reasonable assumptions imply truncation errors of O(h4).
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5.6 Calculation of the spline function

Assuming the end conditions are established, there are an equal number of unknowns

and equations. We can solve a linear system for the second derivative of the spline function

at the nodes {Mj}.

5.6.1 Fixed boundaries

For a grid line with fixed boundaries, the linear system is
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(5.54)

where Mj ≡ S′′∆(xj) and

dj =



















0 j = 0, n

6
h2 [fj+1 − 2fj + fj−1] j = 1, 2, . . . , n− 1

(5.55)

To solve this linear system, we use the LU decomposition method which, for a tridi-
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agonal matrix, reduces to the Thomas algorithm. The tridiagonal linear system can be

written as

ajMj−1 + bjMj + cjMj+1 = dj j = 1, . . . N (5.56)

with a1 = cN = 0. The Thomas algorithm solves the system in two stages – a forward

step followed by a backward step:

Forward step

β1 = b1; βj = bj − aj
cj−1

βj−1
, j = 2, . . . N

γ1 =
d1

β1
; γj =

(−ajγj−1 + dj)
βj,

j = 2, . . . N

(5.57)

Backward step

MN = γN ; Mj = γj −Mj+1
cj

βj
, j = N − 1, . . . 1. (5.58)

This requires 5N operations. Because the matrix for the cubic spline solution is diagonally

dominant, the procedure will converge.

The subroutine tridia uses the Thomas algorithm to solve a tridiagonal system in

two stages.
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Subroutine TRIDIA

subroutine TRIDIA(a,b,c,r,u,n)
C****************************************************************
C subroutine TRIDIA solves the linear system Tu=r.
C T is tridiagonal with major and minor diagonals
C c and a respectively. b is the main diagonal.
C****************************************************************

IMPLICIT REAL*8 (A-H,O-Z)
parameter (Nmax=1000)
dimension gam(nmax),a(n),b(n),c(n),r(n),u(n)
if(b(1).eq.0.0d0) pause
bet=b(1)
u(1) = r(1)/bet
do 10 j=2,n

gam(j)=c(j-1)/bet
bet=b(j)-a(j)*gam(j)
if(bet.eq.0.0d0) then

write(*,*) j,a(j),b(j),c(j)
pause

end if
u(j)=(r(j)-a(j)*u(j-1))/bet

10 continue
C
C BACK SUBSTITUTION
C

do 20 j=n-1,1,-1
u(j)=u(j)-gam(j+1)*u(j+1)

20 continue
return
end

5.6.2 Periodic boundaries

For the grid lines with periodic boundaries, the preceding method cannot be used

because of the non-zero terms in the extreme corners. The linear system, for periodic
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boundaries is
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(5.59)

where

d0 =
6
h2 [f1 − 2f0 + fn]; dn =

6
h2 [f0 − 2fn + fn−1];

dj =
6
h2 [fj+1 − 2fj + fj−1], j = 2, · · · , n− 1.

(5.60)

This nearly tridiagonal system can also be solved efficiently, where the computational

effort scales linearly with the number of nodes. This procedure [68] requires the subroutine

dbbfa to LU decompose the border-banded matrix Tp without pivoting. The subroutine

dbbsl is called twice – once to solve the Ly = b system and once to solve the Ux = y

system. The blas routines daxpy and dscal are called by dbbsl. These double

precision routines dbbfa, dbbsl, daxpy and dscal are in Appendix B.1.

Another approach for solving the nearly-tridiagonal equation for the cubic spline with

periodic boundaries is given by Hirsch [69]. This approach leads to an algorithm in which
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two tridiagonal systems must be solved. For a periodic nearly-tridiagonal matrix Tp(~a,~b,~c)

with N + 1 rows and columns, the solution is written as a linear combination

~x = ~x(1) + xN+1~x(2), (5.61)

where ~x(1) and ~x(2) are the solution of the tridiagonal systems with the last row and the

last column removed, respectively,

T (1)
p ~x(1) = ~f ; T (2)

p ~x(2) = ~g (5.62)

where,

~g t ≡ {−a1, . . . , 0, . . . ,−cN}. (5.63)

The last unknown is,

xN+1 =
fN+1 − cN+1x

(1)
1 − aN+1x

(1)
N

bN+1 + aN+1x
(2)
N + CN+1x

(2)
1

(5.64)

The subroutine triper uses this method to solve a periodic tridiagonal linear system.

Subroutine TRIPER

SUBROUTINE TRIPER(AA,BB,CC,FF,N1,N,GAM2)
C****************************************************************
C SOLUTION OF A TRIDIAGONAL SYSTEM OF EQUATIONS WITH PERIODICITY
C IN THE POINTS K=N1 AND K=N+2
C
C THE ELEMENTS IN THE UPPER RIGHT AND LOWER LEFT CORNERS ARE
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C AA(N1) AND CC(N+1) RESPECTIVELY
C AA,BB,CC,FF,GAM2 ARE VECTORS WITH DIMENSIONS N+2.
C GAM2 IS USED FOR STORAGE. THE SOLUTION IS STORED IN FF
C****************************************************************

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION AA(1),BB(1),CC(1),FF(1),GAM2(1)

BB=(N1)=1./BB(N1)
GAM2(N1)=-AA(N1)*BB(N1)
AA(N1)=FF(N1)*BB(N1)
N2=N1+1

N1N=N1+N
DO 10 K=N2,N
K1=K-1
CC(K1)=CC(K1)*BB(K1)
BB(K) =BB(K)-AA(K)*CC(K1)
BB(K) =1./BB(K)
GAM2(K)=-AA(K)*GAM2(K1)*BB(K)
AA(K) =(FF(K)-AA(K)*AA(K1))*BB(K)

10 CONTINUE
GAM2(N)=GAM2(N)-CC(N)*BB(N)

C
C BACK SUBSTITUTION
C

FF(N)=AA(N)
BB(N)=GAM2(N)
DO 20 K1-N2,N
K=N1N-K1
K2=K+1
FF(K)=AA(K)-CC(K)*FF(K2)
BB(K)=GAM2(K)-CC(K)*BB(K2)

20 CONTINUE
C

K1=N+1
ZAA=FF(K1)-CC(K1)*FF(N1)-AA(K1)*FF(N)
ZAA=ZAA/(BB(K1)+AA(K1)*BB(N)+CC(K1)*BB(N1))
FF(K1)=ZAA
DO 30 K=N1,N
FF(K)=FF(K)+BB(K)*ZAA

30 CONTINUE
C

FF(N+2)=FF(N1)
RETURN
END
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5.7 Time integration

The classic, fourth-order Runge-Kutta (RK4) method is used for the time integration

of the differential equations. This method achieves a high order of accuracy (error of

order δ5

5! ) by evaluating the right-hand side four times in the range between t = nδt and

(n + 1)δt. The extra computational effort is offset by an extra order of accuracy gained

by symmetry. The equation describing the evolution of the state variable xs using the

RK4 method is

xn+1
s = xn

s + [k0 + 2k1 + 2k2 + k3]/6 (5.65)

where

k0 = δtf(~xn, tn)

k1 = δtf(~xn +
1
2
k0, tn +

1
2
δt)

k2 = δtf(~xn +
1
2
k1, tn +

1
2
δt)

k3 = δtf(~xn + k2, tn + δt)

(5.66)

and dxs/dt = f(~x, t).

To demonstrate the accuracy and stability of the fourth-order Runge-Kutta method,
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consider the one-dimensional diffusion equation,

Ṫ = DT∇xxT (5.67)

solved on a discrete grid with the initial condition,

Ti(0) =



















A i = k

0 otherwise.

(5.68)

The second derivative is approximated by second order centered-difference

Ṫk ≈ DT
Tk−1 − 2Tk + Tk+1

∆x2 (5.69)

so that at t = 0 we have,

i: ... k-1 k k+1 ...
—O———–—O———–—O———–—O———–—O—

T: 0 0 A 0 0

Ṫ : 0 ΓA −2ΓA ΓA 0

where Γ ≡ DT
∆x2 . By applying f(Tk) = Γ(Tk−1 − 2Tk + Tk+1) to Equations 5.66, for the
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initial condition

k0 = −2δtΓT 0
k

k1 = −2δtΓT 0
k + 2(δtΓ)2T 0

k

k2 = −2δtΓT 0
k + 2(δtΓ)2T 0

k − 2(δtΓ)3T 0
k

k3 = −2δtΓT 0
k + 4(δtΓ)2T 0

k − 4(δtΓ)3T 0
k + 4(δtΓ)4T 0

k

(5.70)

Equation 5.65 becomes

T+
k = T 0

k

[

1 + γ +
1
2
γ2 +

1
6
γ3 +

1
24

γ4
]

(5.71)

where γ ≡ −2δtΓ = −2Dδt
∆x2 , which is obviously the series expansion of eγt (γ < 0) with a

truncation error of O(δt5).

The future value is calculated by multiplying the current value by the factor

F (γ) ≡ 1 + γ +
1
2
γ2 +

1
6
γ3 +

1
24

γ4. (5.72)

The condition for stability require that |F (Ωδt)| < 1 for the characteristic value Ω < 0

(see, for example, reference [70]). mathematica is used to solve the roots of F (x) = 1.

Along the real axis, the range for stable Ωδt is [-2.78,0] for this fourth-order method. The
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eigenvalues for the implicit centered-difference approximation of the diffusion equation are

Ωj =
−4DT

∆x2 sin2(
πj
N

) j = 1, . . . , N, (5.73)

which leads to the condition on the time step,

DT

∆x2 δt <
2.78
4

. (5.74)
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Chapter 6

Validation of the method

Validation of the method is accomplished by simulation of simple, two-dimensional

convection for compressible fluids. The results for simulations requiring reasonable com-

puter effort are, in general, extrapolated to the continuum limit in order to minimize the

effect of discretization error. The simulations and analysis of these convecting system for

steady and time-dependent, including turbulent-like, flows are compared to experimental

results and simulations of similar systems reported by other researchers.

6.1 Description of system

The system that is used for validation is particularly simple, but still preserves the

essence of a real fluid. For all simulations, an ideal-gas equation of state is used with

constant transport coefficients, η, ηv, κ. To make the connection with a three-dimensional

Stoke’s fluid, the bulk viscosity (of the two-dimensional fluid) is set to a third of the shear
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Figure 6.1: Simple diagram of two-dimensional steady Rayleigh-Bénard convection.

viscosity, as discussed in Section 3.1.2. The Prandtl number is set to unity, which is

close to the value for many common gases such as Helium gas (0.65 ≤ Pr ≤ 1.5), and

is consistent with kinetic theory predictions for a dilute two-dimensional gas (Pr=0.67).

Simple kinetic theory also predicts that the ratios of the molecular constants do not change

much from substance to substance or with temperature. The units are in terms of the

Boltzmann constant (kB ≡ 1). The body force (gravity) is set so that the change in

potential and thermal energy for a small volume of fluid moving from the lower to the

upper boundary is equal (g = kB∆T/ρL).

Periodic boundaries are used on the sides. The top and bottom boundaries are rigid

(normal velocity vanishes), non-slip (tangential velocity of the fluid near the wall ap-

proaches the velocity of the wall, ~uwall = 0), and isothermal. The grid spacing dx is set

to unity so that the height is just equal to the number of grid spacings. The resolution,
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for a particular simulation, is defined as the number of grid points in one direction. For

these simulations, the number of grid points in the vertical direction is used for plots. The

simulated cell has a height L and a width equal to 2L (aspect ratio equals 2). Generally,

the hot boundary has a temperature of 1.5 and the cold boundary is at 0.5. The average

density is set to one. The Rayleigh number, with these simplifications, is defined by the

temperature difference, height, and transport coefficients (Ra = ∆T 2L2

ηκ ). Usually the

value of the transport coefficients is changed, leaving Pr=1, to set the Rayleigh number,

but the height and temperatures can also be used.

6.2 Extrapolation to continuum limit

The results from simulations with different resolutions can be extrapolated to the

continuum (zero-mesh-size) limit. It would be too expensive to continually increase the

resolution to lessen the global error. A prediction of a particular quantity without any error

due to discretization can be made by estimating limN→∞ f(x), where f is the quantity

of interest whose error scales with the grid resolution. Figure 6.2 shows the horizontal

kinetic energy, per unit mass, for simulations at Ra = 20, 000. The results for various

resolutions are plotted as a function of N−4, where N is the number of vertical nodes. This

nearly-linear relation can be used to estimate the zero-mesh-size value by determining the

y-intercept of a least-squares fit or a carefully drawn line. Because of the slight curvature,

it is best to extrapolate with a line through the two results with the greatest resolution.

The global error for a run with a particular resolution is defined as the absolute differ-
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Figure 6.2: Results extrapolated to the continuum limit.

ence between the result and the continuum value.

ε(~x; N) ≡ |f(~x; N)− f∞(~x)| (6.1)

The continuum value may be approximated by the extrapolated value or by the result of

a high resolution run. The power-law relating the global error to the grid spacing can be

determined using the estimated continuum value. Figure 6.3 shows that the global error

for estimating the total horizontal kinetic energy decreases as the fourth power of the grid

resolution. The slope of the log-log scale is determined by least-squares regression of the

data.
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Figure 6.3: Global error in calculation of the horizontal kinetic energy. A least-squares fit
through this data shows that the error scales linearly with the fourth power of the grid reso-
lution (1/N). The data is for systems of height (left to right) 60,48,36,30,24,18,15,12,and
9.

6.3 Validating results

Results from simulations that reproduce results from experiments or other simulations

are used to show that the method described here, along with the simplifications used,

is valid for modeling convection, both time- dependent and independent. The next few

sections briefly describe these validating simulations for steady to turbulent convection.

The details appear in the later chapters of this Dissertation.

6.3.1 Steady flow

Steady (time-independent) convection is the simplest to simulate numerically. Both

the cubic spline method and second-order centered finite-difference methods are used suc-
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cessfully to simulate the steady flow. Steady results are obtained, with double-precision

accuracy, within a thousand sound-traversal times. A variety of steady simulations were

conducted including those demonstrating the coexistence of two-, four-, and six-roll solu-

tions at the same Rayleigh number.

Figure 6.4: Comparison of calculation of a global quantity at various grid sizes for the
cubic spline (upper set) and centered difference method (lower set). The cubic spline
method, for a given resolution has less error.

The results from both methods, extrapolated to the continuum limit, agree within 1%.

Figure 6.4 gives the total kinetic energy per unit mass for simulations based on the cubic

spline method and the centered finite difference method. Although they both converge

to the same value, the cubic spline method is more accurate for a given grid resolution.

Figure 6.5 shows the calculations of the maximum vertical velocity for steady flows at

Ra = 20, 000 for various grid sizes using both the cubic spline method and the second-
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Figure 6.5: Comparison of calculation of a local quantity at various grid sizes for the cubic
spline (lower set) and finite difference method (upper set). The cubic spline has a faster
convergence rate than does the finite difference method.

order centered finite difference method. The error in the calculation of this local quantity

for the cubic spline method decreases as the third power of the number of grid points in

one direction.

For steady flows, the cubic spline method agrees with the centered finite-difference

method, but does not offer a great advantage. The strength of the cubic spline method

is in simulations of high Rayleigh number flows where the finite-difference method fails.

Steady convection is discussed in more detail in Chapter 7.

6.3.2 Time-dependent flow

As the Rayleigh number is increased, the flow becomes time-dependent. That is,

the state (mass density, velocity, and internal energy) at a particular point changes with
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time. The first type of time-dependent convection, referred to as harmonic, oscillatory,

or periodic, has a simple sinusoidal time profile for the observables, such as the heat flux.

Here, periodic convection occurs when Ra = 80, 000 and at a cycle time corresponding to

0.2 of the thermal diffusion time. This transition point and cycle time is consistent with

ab initio molecular dynamics simulations in a slightly different two-dimensional geometry.

Consistency with molecular dynamics simulations is desirable because MD simulations are

inherently compressible.

As the system is driven further from equilibrium the system makes a transition to

chaotic convection. Our simulations of a two-dimensional ideal gas show that there

is a drop in the Nusselt number associated with this transition. This is the result of

well-established simulations where transient effects are small. The transition and the

corresponding drop in the dimensionless heat flux occurs between a Rayleigh number

of 200,000 and 300,000. This is consistent with experiments with liquid mercury (a

nearly incompressible fluid with a low Prandtl number) and gaseous helium conducted by

different researchers. The temperature histogram at a point in the center of the simulated

cell makes a transition from a dual-maximum to a single-maximum as the system goes

from periodic to chaotic. This anomaly was also reported for the mercury experiment.

Periodic and chaotic convection will be discussed in detail in Chapter 8.
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6.3.3 Turbulent flow

For large Rayleigh numbers (Ra ∼ 108), the simulations describe turbulent-like flows,

even though they are two-dimensional. Many characteristics of turbulent convection are

observed. First, there is vorticity on many length scales – from the length scale of the

system to that of a few cell widths. In these simulations, the smallest vorticity length scale

observed is about 1/25th of the system size. A mechanism for the generation of vorticity

on these smaller scales is the convection instability itself. That is, on a length-scale smaller

than the length of the system, the temperature difference may be great enough to induce

local convection. The shear from the fast, downward-moving cold plume and the slower,

upward-moving warm plume also induces vorticity in the fluid near the plumes. Other

qualitative agreement with experiment and other simulations include the asymmetry in

the thermal plumes and the presence of a thermal and viscous boundary layer.

Quantitative agreement can be seen in a plot of the dimensionless heat flux from

convection Nu − 1 verses the Rayleigh number of the system. The well-known scaling

relation, Nu − 1 ∼ Ra2/7, is recovered. This scaling relation is seen in experiments and

other simulations, contradicting scaling arguments predicting a 1
3 power-law. Details of

the turbulent-like convecting flow simulations are detailed in Chapter 9.
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Part III

Applications
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Chapter 7

Steady compressible convection

Steady state convection is the simplest type of heat transport in a fluid after pure

conduction. The state variables – velocity, mass density, and internal energy – at a

particular point, are constant in time. In the two-dimensional model described here,

steady convection is observed for systems with Rayleigh numbers from a few thousand

to about 80,000. The exact value for the critical Rayleigh number – the value at which

pure conduction is unstable in favor of convection – was not investigated here. This

has been investigated exhaustively for incompressible flows [3, 9, 71] and for compressible

flows [41, 10]. Figure 7.1 shows the velocity, temperature, and density fields for a steady

convecting system at Ra = 20, 000. The velocity magnitude ranges from 0 to 0.177c,

where c is the sound speed, and vanishes at the non-slip boundaries. The temperature,

in this plot, goes from 1.5T0 (where T0 ≡ 1), at the bottom, to 0.5T0, at the top. This

temperature range is typically used in the simulations because ∆T = T̄ . The density
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Figure 7.1: Velocity, temperature, and density fields for steady compressible convection
at Ra = 20, 000.
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varies from 0.798ρ0 in the center-bottom to 1.26ρ0 at the top-sides. This deviation from

the equilibrium density (ρ0 = 1) is a measure of the compressibility of the fluid.

7.1 Coexisting solutions for steady flow

In the course of these investigations we found that solutions of the full set of contin-

uum equations can be degenerate over a wide range of conditions. The coexistence of

two stable stationary flows, for the same boundary conditions, was first discovered by ac-

cident, watching both develop from “random” initial conditions. Thus the computational

situation is not so different from the experimental one, in which roll patterns have been

observed to change on a time scale of days [10]. Of the three flows shown in Figure 7.2,

the two-roll flow in a box of aspect ratio two is very well known. The incompressible ap-

proximation to this case has been exhaustively discussed by Chandrasekhar [9], Clever [22]

and Busse [21, 23].

Busse went on to explore the stability of roll patterns (for incompressible fluids) of

various wavenumbers, α, where α = π corresponds to the two-roll pattern. The “Busse

Bubble” refers to the region of wavenumber-Rayleigh number space for which roll patterns

are stable. This stability region is centered near α = π but covers a range so small as to

suggest that the four-roll pattern, α = 2π, is not stable at any Rayleigh number. Puhl

and coworkers [10] presented work based on a finite-difference model of the compressible

hydrodynamics equations that indicated that both one- and two-roll solutions can coexist

for the same system. Additionally, they used a stability model based on the linearized
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Figure 7.2: Coexisting solutions (2-, 4-, and 6-roll) for compressible convection at Ra =
40, 000.
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hydrodynamic equations to support the existence of one-, two-, and three-roll patterns for

a system with an aspect ratio equal to two. This was for a box with four rigid sides and

stress-free boundaries (otherwise odd numbers of rolls would not be possible).

Unlike Busse’s incompressible flows, the present work uses a fully compressible model,

a natural choice for the study of buoyancy-driven convection. The results discussed here

correspond to wavenumbers of {π, 2π, 3π}. In testing the robust nature of the two-

roll solution, a four-roll solution would sometimes appear. Further testing showed that

four-roll solutions persist, as do the two-roll ones, as the number of degrees of freedom

describing the system is made arbitrarily large (at fixed Rayleigh and Prandtl numbers) for

times greater than 104 sound-traversal times. In addition to showing that these patterns

exist for long times the internal energy per unit mass, the heat flux, and the approximate

linear growth rate is quantitatively characterize for all the patterns. All of these results

are extrapolated to the continuum limit.

In three dimensions two roll patterns formed in a diagonal orientation, corresponding

to a roll width intermediate between the two-roll and four-roll cases. There is also a fairly

long-lived six-roll solution, still with exactly the same boundary conditions; see again Fig-

ure 7.2. This six-roll solution is stable to a catastrophe time equal to 470 sound traversal

times, after which the system evolves to either a two- or four-roll pattern. The approxi-

mate unpredictability of the final state suggests a complicated, perhaps fractal, boundary

separating these attracting states. Additionally, persisting non-stationary, mixed-mode

limit cycles have been observed to form after the catastrophe. Similar results hold in
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two and three dimensions, though comprehensive tests of the numerical stability in the

latter case would severely strain the limits of current computers. The methods used to

obtain these solutions and present evidence that degenerate compressible solutions persist

in the continuum limit are described here. The conclusions from this work are discussed

in Chapter 10.

A variety of initial conditions are used for this study. If the nodal velocities are chosen

randomly the corresponding kinetic energy dies out rapidly except for one or more unstable

modes, which grow and lead to a finite-amplitude stationary state, of the type shown in

Figure 7.2. Solutions with a particular desired symmetry can be constrained to retain that

symmetry in the velocity field until the other state variables converge such that fluctuations

from the stationary state become numerically insignificant. Then, the constraints can

be released, and the sensitivity to computational noise studied. By studying the mesh-

dependence of this sensitivity, a variety of stable solutions were discovered.

Nodal velocities for typical solutions are plotted in Figure 7.2 for a Rayleigh number of

40000, about 23 times the critical value for two-roll convection. These solutions exhibit

deviations from the fully-converged continuum limit which vary smoothly with the mesh

spacing. Either extrapolation or the use of a relatively large number of grid points makes

accurate results possible. The tabulated results are based on series of simulations using

2H2 cells, mostly with H = {36, 48, 60, 72}. See Table 7.1.

For the three states shown in Figure 7.2, continuum values are estimated for the

horizontal and vertical kinetic energies and the internal energy per unit mass, the heat flux,
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Table 7.1: The horizontal and vertical contributions to the kinetic energy per unit mass,
the internal energy per unit mass, the boundary heat flux, and the small-amplitude growth
rate of the kinetic energy, multiplied by the system width W are given for a series of
fully-converged solutions at a Rayleigh number of 40000. Two-roll, four-roll, and six-roll
solutions are compared. W = 2H. N = 2H2. In the continuum limit energies vary as
N , traversal times, diffusion times, and dissipation rates as N1/2 ∝ H.

Rolls Kx/Nm Ky/Nm E/Nm Qboundary W/τ
2 0.003730 0.00357 1.014 0.0120 1.42
4 0.001139 0.00410 1.018 0.0118 1.70
6 0.000274 0.00226 1.012 0.0106 1.25

and the approximate linear growth rate associated with the three types of roll patterns.

The last two points require further discussion. In the stationary state, the horizontal

average of the vertical energy flow must be constant, independent of the vertical y co-

ordinate and equal to the rate at which heat enters (and exits) the system through the

bottom (and top) boundaries.

The energy flow per unit area, including convection, but equal to the heat flux at the

boundary can be computed as follows:

~qtot = −κ∇T − ~u · σ + ρ~u(e +
1
2
~u · ~u)

=
[

−κ
∂T
∂x

− uσxx − vσxy + ρue +
ρu
2

(u2 + v2)
]

î

+
[

−κ
∂T
∂y

− uσxy − vσyy + ρve +
ρv
2

(u2 + v2)
]

ĵ.

(7.1)

The total energy per unit time through the boundary is

Qtot ≡
∮

A
〈~qtot〉 · ~dA. (7.2)
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Numerical estimates are included in Table 7.1.

The linear growth rate of the rolls’ kinetic energy is accurately proportional to 1/W as

the time and length scales vary proportionally. Rates were estimated by first determining

the stationary roll-state deviations from the quiescent state. The deviations, multiplied by

a small number, were then used to perturb an otherwise quiescent initial state. Growth

rates could be obtained in this way with uncertainties of one or two percent.

Using this problem to test various numerical methods, we were able to confirm the re-

producibility of the results and also reproduced some sample results given in Reference [63].

Though the programs differed slightly for finite meshes, due to the ambiguities in differ-

encing mentioned in Chapter 4, the independent programs agreed within 1% of the results

given in the Table. In appropriate special cases our two- and three-dimensional programs

agreed to the full 64-bit precision used in these simulations.

Similar roll-type flows were investigated with simulations with Smooth Particle Ap-

plied Mechanics [72, 60, 14]. The three-dimensional SPAM work reported here is new.

The smooth particle results are more complex because SPAM simulations, like molecular

dynamics, fluctuate forever, and cannot reach true stationary states. In many situations

the convective rolls and cells can come and go, and change orientation, in times which

are quite long relative to a typical roll-rotation time. Though the stability of such two-roll

patterns is well known in simulations, with both molecular dynamics [73, 12] and smooth

particle applied mechanics [14], the four-roll and six-roll solutions reported in this present

work remain subjects for continuing investigation in three dimensions.
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7.2 Min-max internal entropy production principle

Struchtrup and Weiss [74] (S&W) have proposed a new variational Principle for sta-

tionary nonequilibrium flows, such as the steady boundary-driven flows of mass and heat

shown in Fig. 7.3. S&W suggest that of all the possible flows satisfying the specified

boundary conditions, the solution with smallest maximum local entropy production is cor-

rect. They suggest that their min-max Principle could be extended to non-stationary flows.

S&W considered the one-dimensional heat flow of a Boltzmann gas. They calculated the

local entropy production and expressed its maximum as a function of the dimensionless

heat flux, q̂. They showed that the heat flux corresponding to the minimum of the local

entropy production also corresponds to the solution of this linear transport problem.

Despite their success with this simple example problem, more-complex, nonlinear prob-

lems are required to test any assertion of generality for such a Principle. Three potential

limitations for the validity of the Principle are the following: (i) the Principle ignores

the possible coexistence of stable multiple solutions for the same boundary conditions;

(ii) the Principle fails to treat the overall stability of two disparate, but weakly coupled,

nonequilibrium systems; (iii) the Principle excludes transitions to more stable states, such

as the transition from quiescent Fourier conduction to the steady convective state which

produces entropy at a greater rate [3, 9]. To make this point more explicit [67], a set

of stationary, convecting flows for a compressible, heat-conducting viscous fluid described

by the Navier-Stokes equations is displayed The flows have identical boundary conditions

with a Rayleigh number of 40, 000. The sides of the simulated cell are periodic and the
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Figure 7.3: Internal entropy production density for coexisting solutions (2-, 4-, and 6-roll)
at Ra = 40, 000. White indicates regions of highest entropy production.
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Table 7.2: Maximum internal entropy production density for the 2-, 4-, and 6-roll solutions
for Ra = 40, 000.

Rolls Max(gi) stability
2 0.00703 stable
4 0.00624 stable
6 0.00555 unstable

width is twice the height. The 2- and 4-roll flows are stable attractors in the solution

space while the more complex 6-roll solution is unstable. For details, see reference [15].

The local internal entropy production [75, 29, 67] for the compressible Navier-Stokes

equations is

gi = −~q · ∇T
T 2 +

¯̄σ : ∇~u
T

, (7.3)

where ¯̄σ is the stress tensor and ~q is the heat flux. This expression for the local entropy

production was validated by confirming that the integral

Ṡi =
∫

V
gi dV, (7.4)

is precisely equal to the total flow of entropy at the boundaries,

Ṡi = Ṡe ≡
Q
TH

− Q
TC

; Q ≡
∫

A
〈~q〉 · dA, (7.5)

where TH and TC are the temperatures of the hot and cold boundaries.

The maxima in the local entropy productions per unit volume max[gi] for the (2, 4,
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6)-roll flows are respectively 0.00703, 0.00624, and 0.00555. Thus two or more stable

solutions (2- and 4-roll) exist, for the same boundary conditions but with different max[gi].

It is amusing that an unstable “solution”, with six rolls, has the smallest max[gi] of the

three cases considered here.
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Chapter 8

Harmonic and chaotic convection

This Chapter discusses time-dependent flow morphologies that are not quite turbulent.

These include the laminar-harmonic and chaotic flows. A dual morphology region is

discovered where both may coexist. Within this region, the heat flux, entropy production,

and Lyapunov instability for flows with the same Rayleigh number are compared.

8.1 Transition to harmonic flow

At higher Rayleigh numbers, the convective transport of heat is time-dependent. The

first type of time-dependent convection to appear with increasing Rayleigh number from

steady flow is simple harmonic (also referred to as periodic or oscillatory) flow – in which

observables, such as the heat flux, have a simple harmonic time dependence. The harmonic

motion in this case is a result of the periodic up and down motion of the convective rolls.

Figure 8.1 shows the sinusoidal time profile of the Nusselt number for harmonic convection
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Figure 8.1: Sinusoidal time dependence of the Nusselt number for harmonic convection.

at Ra = 80, 000. The cycle time for the heat flux is 0.2τD, where τD ≡ L2/DT is the

thermal diffusion time. For this fluid, with unit Prandtl number, the thermal and viscous

diffusion times are equal. With the simplifications described in Section 6.1, the diffusion

time also equals L
√

Ra. In these simulations, harmonic convection commences near

Ra = 80, 000 and continues to about Ra = 240, 000. The onset of harmonic convection

is consistent with molecular dynamics (MD) simulations by Rapaport [12] who observed

harmonic convection at Ra = 78, 000 for a two-dimensional gas of hard spheres with

ρavg = 0.4. The disks are confined in a box with an aspect ratio of one and rigid, no-slip

boundaries on the top, bottom, and sides. The estimate of the transport coefficients used

to determine the Rayleigh number is based on the Enskog formulas and serves as a rough

estimate considering the relatively high density. Rapaport estimated the Prandtl number

to be 0.45. The course-grained time dependence of the temperature at particular points



110

in the MD simulations has a periodic profile with a cycle time of 0.4τD. The agreement

with the simulations discussed here is reasonable considering the differences in geometry,

boundaries, and Prandtl number. Agreement with molecular dynamics simulations is

important as these methods inherently allow for compressibility effects.

The results presented here also agree with two-dimensional simulations by Goldhirsch

et alii [24] using the Oberbeck-Boussinesq approximation. They report results for different

geometries (aspect ratios, rigid and periodic boundary conditions) for fluids with Prandtl

numbers of 0.71 and 6.8. The most appropriate comparison is with results for a fluid

with a Prandtl number of 0.71 in a cell with unit aspect ratio and Ra = 100, 000 which

showing a harmonic time profile with a cycle time ≈ 0.15. A similar result for a fluid with

Pr = 6.8 has a cycle time of 0.21. Again, the side boundaries are rigid, but still provide

good agreement. It is interesting that they did not observe aperiodic (chaotic) flows for

Pr = 0.71.

8.2 Transition to chaotic flow

The simulations show that the harmonic convection regime continues to about Ra =

240, 000. For high Rayleigh numbers, a different flow morphology is observed – where

thermal plumes sweep back-and-forth.
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Figure 8.2: Experimental results for convecting a. liquid mercury and b. gaseous helium.
Both systems show a drop in the Nusselt number near Ra ≈ 2.5× 105.
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Numerical simulations of the fully-compressible Navier-Stokes equations are used to

study the transition from simple-periodic, “harmonic”, to chaotic thermal convection as

the Rayleigh number, Ra, is increased. The simulations suggest that a sharp discontinuity

in the relationship between the Nusselt number, Nu (the ratio of the total heat flux to

the Fourier heat flux), and the Rayleigh number, is associated with this transition in

flow morphology [28]. This drop in Nusselt number is also seen in the data reported

in independent experiments involving the convection of two characteristically different

fluids - liquid mercury [37] (a nearly incompressible fluid with Pr = 0.024) and gaseous

helium [20] (a compressible fluid with unit Pr). The harmonic flow generates a dual-

maximum (quasi-harmonic) temperature histogram while the chaotic flow generates a

single-maximum histogram at the center point in the simulated cell. This is consistent

with the temperature distributions reported for the convecting mercury before and after the

drop in Nu. Our simulations also suggest a hysteresis in the Nu-Ra curve linking the two

distinctly different flow morphologies, heat fluxes, and temperature-fluctuation histograms

at the same Rayleigh number. The timed-averaged Nusselt number (dimensionless heat

flux) is plotted in Figure 8.3 for flows with 8 × 104 ≤ Ra ≤ 6 × 105. Within the dual-

morphology region, the Nusselt number for the two-frequency, periodic flow (higher) and

the three-frequency, chaotic flow (lower) are joined by a hysteresis loop. The upper branch

of the loop continues from the steady-state region into the periodic region. The lower

branch is continues from the chaotic region to fully-developed turbulent convection. As

the Rayleigh number is increased quasi-statically from a steady state, periodic convection
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Figure 8.3: Simulation results showing the drop in Nusselt number at the transition from
harmonic to chaotic convection. The temperature histograms for a point in the center of
the simulated cell are shown for both types of flows.

develops first. As the Rayleigh number is increased further, the system makes a transition

to chaotic flow. The Nusselt number, as seen in Figure 8.3, shows an initial drop along this

path, followed by an increase with increasing Ra. The term “quasi-statically” is used to

mean that a well-developed state at a given Rayleigh number is used as an initial condition

for a run at a slightly different Rayleigh number. The simulation is allowed to run for

several thousand sound traversal times to eliminate transient effects. The Rayleigh number

can be varied in our simulations by changing either the transport coefficients (which also

varies the diffusion traversal times but not the sound traversal time), the temperature of

the hot boundary (which also varies the sound traversal time and the thermal expansion

coefficient), or the length scale (which varies the diffusion and sound traversal times). In

all three cases, a hysteresis is present, but when the length scale is varied, the range of
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the dual-morphology region is decreased.

8.3 Coexisting flow morphologies

Our simulations of the fully-compressible Navier-Stokes equations of a viscous, heat-

conducting fluid enclosed between two rigid, thermal boundaries in the presence of a body

force reveal that, within a range of Rayleigh numbers, both laminar-like periodic flow

and turbulent-like chaotic flow morphologies are stable solutions for the same Rayleigh

number [29]. Figure 8.5 shows time sequences for the laminar-like (left hand side) and

Figure 8.4: Nusselt number for harmonic and chaotic flows indicates a dual-morphology
region where harmonic and chaotic flows may coexist.

chaotic (right hand side) flows – both at the same Rayleigh number, 2 × 105. The

harmonic flow sequence shows the thermal plumes oscillating vertically. This frequency is
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Figure 8.5: Temperature contours for harmonic and chaotic flows at Ra = 200, 000. The
time sequence appearing on the left shows the flow for “harmonic” convection.
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in addition to the frequency of the fluid moving around the two counter-rotating convection

cells. The harmonic flow is more effective in transporting heat. The chaotic flow has at

least one additional characteristic frequency – that of the plumes sweeping from side to

side, disturbing the thermal boundary layer on the opposite side. The horizontal sweeping

near the opposite thermal boundary causes fluid flow in a direction counter to the net flow

of heat, resulting in a less efficient heat transfer. The addition of a third incommensurate

frequency is, according to Ruelle’s idea of the route to chaos [76–78], enough to induce

highly unstable chaotic motion.

8.3.1 Entropy production and the loss of phase space information

Because the temporally periodic flow transports more heat, it must likewise produce

entropy at a greater rate. The total internal entropy production is the integral over the

system volume of the internal entropy production per unit volume, gi. According to local

thermodynamic equilibrium with linear transport theory, gi is defined

Ṡi =
∫

V
gi dV ; gi ≡ −~q · ∇T

T 2 +
¯̄σ : ∇~u

T
, (8.1)

where ~q is the heat flux and ¯̄σ is the stress tensor. This total internal entropy produc-

tion can be made dimensionless by dividing it by the internal entropy production for the
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equivalent quiescent system (with heat conduction only),

ṠND ≡ Ṡi/ṠF ; ṠF = −W
∫ L

0
dy

~qF · ∇TF

T 2 , (8.2)

where ~qF = −κ∇TF , ∇TF = ~y∆T/L, and W is the width of the system. Figure 8.6

Figure 8.6: Dimensionless internal entropy production for the harmonic and chaotic flows.

shows the time-averaged dimensionless internal entropy production for various Rayleigh

number flows including the dual morphology region. The dimensionless entropy production

is equivalent to the Nusselt number (time-averaged quantities) in these simulations in the

∆x → 0 limit.

The total internal entropy production is calculated by starting with a well-established

convection state and then averaging the volume integral for over 103 sound traversal times.

In Figure 8.6, the upper branch of the hysteresis loop represents the simple, periodically
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convecting systems and is generated by starting with steady convection and increasing the

Rayleigh number quasi-statically. This simple periodic mode is about 10% more efficient

at transporting heat. This efficient flow continues to a critical Rayleigh number where the

Nusselt number drops and the flow becomes turbulent. The turbulent flow morphology

continues as the Rayleigh number is increased. It should be noted here that in this

turbulent regime, the dimensionless entropy production (identically equal to the Nusselt

number) is related to the Rayleigh number by the 2/7ths power law, ṠND ∼ Ra
2
7 . As the

Rayleigh number is decreased from this point, the lower branch of this plot is generated

as the flow remains somewhat turbulent. It is possible to generate either of these two

different flow morphologies by starting with different initial conditions within this hysteresis

range. Towards the center of the hysteresis range, Ra ≈ 2× 105, the different flows are

insensitive to rather large perturbations (on the order of 10%). Near the transitional

Rayleigh number, the efficient flow is sensitive to perturbation. This hysteresis persists as

the grid is refined and is therefore expected to exist in the continuum limit.

Our discrete approximation to the system uses a finite number of variables to ap-

proximate its state. Each state variable can be thought of as a degree of freedom in a

multidimensional dynamical system whose set of Lyapunov exponents, {λi}, has a cardi-

nality equal to the number of state variables. Examples of Lyapunov spectra for various

systems can be seen in reference [79]. The spectrum describes the rates at which the

phase space volume grows or decays in time. The maximum Lyapunov exponent, λ1,

indicates the chaotic nature of the system by indicating whether neighboring points in
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phase space converge (for a stable system), diverge (for a chaotic system), or remain

close neighbors (for a neutrally stable system) in general,

λ1 ≡ lim

t →∞

|∆(0)| → 0

1
t

ln
|∆(t)|
|∆(0)|

. (8.3)

The maximum Lyapunov exponent is also relatively easy to compute from a well-established

Figure 8.7: Maximum Lyapunov exponent is a measure of the rate that a perturbed system
diverges from a reference trajectory.

fluid state. This is done by selecting a state (at random) that represents a small perturba-

tion from the original state and allowing both to evolve for a short time before uniformly

renormalizing all of the state variables so that the phase space distance is equal to the
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initial perturbation [80]. By doing this several thousand times, the perturbation direc-

tion rotates to give the eigenvector corresponding to the maximum Lyapunov exponent.

Once this alignment is established, the time-averaged Lagrange multiplier needed to re-

adjust the phase space distance is exactly equal to λ1. Figure 8.8 shows λ1τs for various

Rayleigh numbers, where τs is the sound traversal time. Five hundred sound traversal

times are allowed to pass for the perturbation to establish itself and another five hundred

sound traversal times are used for the time-averaging. The hysteresis loop, in this plot,

goes counter-clockwise. As the Rayleigh number is increased, from steady state, the lower

branch is generated until the transition to turbulence which is indicated by a change in the

flow morphology and a sudden jump in the dimensionless maximum Lyapunov exponent.

As the Rayleigh number is decreased, λ1τs smoothly decreases along the upper branch of

the hysteresis loop. The chaotic flow loses phase space information at a greater rate. The

Kolmogorov entropy, the sum of the positive Lyapunov exponents,
∑

λ+, quantifies this

rate. For our simulations, however, it is not easy to get the entire Lyapunov spectrum

and it is also not clear how well the spectrum for our discrete approximation describes

the continuous system. Instead, we calculate the maximum Lyapunov exponent and use

it as an estimate of the rate of loss of phase space information. To make this rate dimen-

sionless, the maximum Lyapunov exponent, λ1, is multiplied by the sound traversal time,

τs, the time for information to traverse the height of the system. Figure 8.8 shows the

dimensionless rate at which phase space information is lost, λ1τs, for various systems. In

this case, the hysteretic loop is also evident, but with the upper branch now representing
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Figure 8.8: Dimensionless maximum Lyapunov exponent for chaotic and harmonic flow.
Chaotic flows lose phase space information at a greater rate.

the rate for chaotic and turbulent flows.

From Figures 8.6 and 8.8, one can see that the difference in the dimensionless entropy

production rates corresponds to the difference in the dimensionless rate of loss of phase

space information for flows at the same Rayleigh number. This implies a connection

between the thermodynamic entropy production and the information entropy rate near the

onset of convective turbulence. A linear sum of the two rates (see Figure 8.9) connects

the two morphologies over the entire range for which the they coexist. A linear coefficient

is determined so that the hysteresis in the linear sum is greatly reduced. The linear sum

appears to increases continuously with Ra.
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Figure 8.9: Linear sum of the dimensionless internal entropy production and dimensionless
maximum Lyapunov exponent for the harmonic and chaotic flow morphologies.
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Chapter 9

Convective turbulence

In this chapter, results of simulations of high-Rayleigh-number flows are discussed.

Whether these flows are turbulent is addressed here. The term “turbulent” is not well-

defined and is the subject of much investigation. In general, “turbulence” refers to flows

that have both structure and randomness. This structure is often defined as a statistical

property of the flow in that it exists as a spatial or time average. A good example of

this is the Kolmogorov’s scaling arguments defining the energy spectrum of the turbulent

eddies. This is the well-known five-third’s law.

Here, both qualitative and quantitative descriptions are used to argue that turbulent

convection is achieved for the two-dimensional compressible fluid under study.
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Figure 9.1: Velocity, temperature, and vorticity fields for two-dimensional turbulent con-
vection at Ra = 1.5× 108.
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9.1 Non-Boussinesq (asymmetric) flow

The Oberbeck-Boussinesq approximation, described in Section 1.2, is still used for

much of the analytic work and some simulation of convective processes, even for very high

Rayleigh numbers. The main problem with this approach is that the artificial buoyancy

term, used to correct for the incompressibility simplification, has only a vertical component.

This leads to flows with a symmetric character. For example, the hot, upward-flowing

and cold, downward flowing plumes would have symmetry in the velocity and temperature

fields [40]. In some situations, such as unit Prandtl number, turbulence was not observed

for simulations using the Oberbeck-Boussinesq approximation for 0 < Ra ≤ 1.6×108 [27].

Figure 9.1 shows the velocity, temperature, and vorticity fields for convection at Ra =

1.5× 108. The asymmetry in the plumes is clear – the warm, upward-flowing plume (on

the left) is broad while the cold, downward flowing plume is narrow and fast. This has

been observed in experiments (see, for example, figure 2.7) and in natural phenomena [48].

Vorticity is seen on many scales – from the length scale of the system to that of a few cell

widths. In these simulations, the smallest vorticity length scale observed is about 1/25th

of the system size. A mechanism for the generation of vorticity on these smaller scales is

the convection instability itself. That is, on a length-scale smaller than the length of the

system, the temperature difference may be great enough to induce a micro-convecting

system. The shear from the fast, downward-moving cold plume and the slower, upward-

moving warm plume also induces vorticity in the fluid near the plumes. The existence of

thermal and viscous boundary layers is evident in the temperature and velocity plots.
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9.2 Scaling

A scaling relation between the dimensionless heat flux (equal to the dimensionless

entropy production) and the Rayleigh number has been the subject of much investigation.

Experimental studies of convecting helium gas [33] demonstrates the existence of a scaling

region where the convective part of the heat flux is related to the Rayleigh number by

Nu− 1 ∼ Ra0.282+0.006. This is different from the “classical” result [32] relating the

heat flux to Ra
1
3 which is based on the assumption of marginal stability at a thermal

boundary layer. Numerical simulations of incompressible Boussinesq fluids [25, 27] also

reveal a scaling relation close to the experimental one for Rayleigh numbers between 108

and 1015.

Figure 9.2: Diagram for the classic 1/3 scaling law theory.

The “classical” result relating the dimensionless heat flux to Ra
1
3 is based on the
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assumption of a thin thermal boundary layer across which the time-averaged temperature

changes by ∆T/2, where ∆T is the change in temperature across the system. The

thickness of the boundary layers, δ, is such as to just deny the instability leading to

local convection. The “local” critical Rayleigh number, Rac = ρgδ3/ηκ(∆T/2) and

the Nusselt number, Nu, can be computed as the Fourier conduction across the boundary

layer, qbl = −κ(∆T/2)/δ divided by the conduction across the system, qF = −κ(∆T )/L,

where L is the height of the system. By solving for δ in terms of Nu, one obtains

Nu ∼ (Ra/Rac)
1
3 . This power-law relation has been developed independently in at least

two different ways [31, 81].

Figure 9.3: Dimensionless heat flux from turbulent convection as a function of the Rayleigh
number. This suggests the existence of hard turbulence in two-dimensional compressible
fluids.

There are a number of theories that account for the deviation from the classic 1
3 value
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in the hard turbulence region. Castaing et alii [33] propose that a large scale fluctu-

ating wind may stabilize the thermal boundary layer to yield the 2
7 power-law relation.

She [34] analyzed the Boussinesq equations with the assumption that the central fluctu-

ating temperature field interacts strongly with the turbulent velocity field. Shraiman and

Siggia [35] analyze the Boussinesq equations with the assumption that thermal boundary

layer is nested within the viscous boundary layer. Ching [38] uses the assumption that a

large nonuniform shear influences the thickness of the thermal boundary layer.

The existence of this 2
7 power-law relation between the Rayleigh number and the

dimensionless heat flux, along with an exponential temperature distribution, are the main

indicators of “hard” turbulence. This has been reported for two-dimensional convection of

a Boussinesq fluid [25, 27, 26] and is evident in our simulations for the chaotic flows [29].

Figure 9.4: Linear combination of the dimensionless entropy rates for turbulent convection
as a function of the Rayleigh number.
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For higher Rayleigh numbers, within the turbulent region (2.5× 105 < Ra), a scaling

relation between a linear combination of the dimensionless internal entropy production

and the dimensionless maximum Lyapunov exponent (as discussed in the last chapter)

and the Rayleigh number ṠND + aλ1τs ∼ Ra2/9 is suggested by the data. This relation is

somewhat inconclusive because the data for our simulations only range a little over one

decade. Figure 9.4 shows a log-log plot of this linear combination as a function of the

Rayleigh number.



130

Part IV

Conclusions
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Chapter 10

Conclusions and prospects

Figure 2.5*: Convection cells
on the Sun

Thermal convection is a subject that is rich in

complex behavior and provides interesting examples

of nonequilibrium dynamical systems, both steady and

time dependent. It is a phenomenon that depends on

the properties of the fluid and the system environment.

Because any fluid that expands upon heating and is in

the presence of a steady gravitational field may spon-

taneously convect heat, this phenomena is universal and is observed in vastly different

systems. Convective processes may be created in a simple laboratory with ordinary fluids

and nominal effort; they also may be created on a kitchen stove.
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Figure 2.6*: Convection cells
in Bénard’s apparatus

It is a mechanism by which heat is transported

in many systems and consequently gives rise to mo-

tions that contribute to the dynamics of other systems.

Wind from Earth’s atmospheric convection, for exam-

ple, contributes to the erosion of mountains and the

propagation of seeds.

In this dissertation, the compressible Navier-Stokes

equations are solved by computer simulation to explore the dynamics of thermal convec-

tion. Unlike the Oberbeck-Boussinesq approximation, these equations are nonlinear and

are difficult to explore without computer simulation. They, however, provide solutions

that are more closely based on first principles. The numerical method described in this

dissertation represents a novel approach for solving the compressible Navier-Stokes equa-

tions. This numerical method is used to investigate several aspects related to thermal

convection of compressible fluids.
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10.1 Numerical method

Figure 4.4*: Diagram of the
“dual-staggered” mesh

This method described in Part II is shown to be

accurate, conservative, fast, simple, and valid.

As discussed in Chapter 4, the flux form of the

Navier-Stokes equations is discretized on a “dual-

staggered” mesh. The “dual”-part refers to the fact

that the mass density is updated on one grid (zone-

centered) while the energy and momentum are updated

on the other. The “staggered”-part refers to the fact that the flux of the conserved quan-

tities are updated at the midpoints in each direction to avoid a decoupling of the even

and odd-numbered nodes (the even/odd instability).

It is shown in Chapter 5 that the solution of the differential equations requires accurate

midpoint interpolation and spatial differentiation. This is accomplished by representing

the variables by cubic splines. The midpoint interpolant of the spline is

f̂0 =
fj+1 + fj

2
− h2

16
(Mj+1 + Mj) + O(h4). (5.29*)

The midpoint spatial derivative of the spline is

f ′0 =
fj+1 − fj

h
− h

24
(Mj+1 −Mj) + O(h4). (5.40*)
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where f0 ≡ f(xj + h
2 ). Here, Mj is the second derivative of the spline function at xj.

In Section 5.4, this method is shown to have a local truncation error of the order h4 for

the midpoint interpolation and the midpoint derivative. The proof of the accuracy of the

midpoint interpolation involves showing that the error in the approximation of the second

derivative of the function at the node point is of order h2,

Mj − f ′′j = O(h2). (5.33*)

The proof of the accuracy for the midpoint derivative involves showing that the error in

the approximation of the difference of the second derivative for two neighboring points is

of order h3,

(Mj+1 −Mj)− (f ′′j+1 − f ′′j ) = O(h3). (5.39*)

Conservation is demonstrated in Section 5.5 by considering the flux form for the time-

rate-of-change of a quantity Q,

∫

L

∂
∂t

Qdx =
∫

L
[− ∂

∂x
F + S] dx (5.41*)

where F is the flux and S is the source. This equation is then discretized in terms of a
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grid-centered flux divergence,

∂
∂t

h
n−1
∑

j=0

Qj+ 1
2

= −h
n−1
∑

j=0

F ′
j+ 1

2
+ h

n−1
∑

j=0

Sj+ 1
2
. (5.42*)

Equation 5.40* is substituted for the midpoint derivative of the flux. Expanding the

telescoping sums and eliminating canceling terms leaves

∂
∂t

Qtot = (F0 − Fn)− h2

24
(M0 −Mn) + Stot. (5.45*)

By setting M0 = Mn, we recover

∂
∂t

Qtot = (F0 − Fn) + Stot, (5.46*)

where the time-rate-of-change of the total conserved quantity is equal to the flux in from

the boundaries minus the flux out to the boundaries plus the sources. This is satisfied for

periodic boundaries because F0 = Fn and M0 = Mn. For fixed boundaries, the choice of

M0 = Mn is satisfied by the “natural” end conditions, M0 = Mn = 0. This numerical

methods guarantees conservation of mass, momentum, and energy.



136

Figure 6.2*: Results extrapo-
lated to the continuum limit

It was also shown in Section 5.6 that this method

requires relatively low computational effort. The com-

putation of the cubic spline requires the solution of a

tri-diagonal matrix (in the case of fixed boundaries) or

nearly tri-diagonal (in the case of periodic boundaries)

matrix with non-zero corners. In both cases, the linear

system can be solved in O(N) steps, where N is the

number of nodes. The computational effort scales linearly with the number of nodes. By

extrapolating the results for various resolutions, as discussed in Section 6.2, the continuum

(zero-mesh-size) limit can be determined. This can be used to get accurate results with

less computational effort.

After the second derivative of the spline function is known, calculation of the midpoint

interpolant or midpoint derivative is as simple as finite difference methods.

Figure 7.1*: Velocity field for
steady two-dimensional
convection

In Chapter 6, the validity of this method was

demonstrated by comparison to results from experi-

ments and other computer simulations.

Steady (time-independent) convection is the sim-

plest to simulate numerically. Both the cubic spline

method and second-order centered finite-difference

methods are used successfully to simulate the steady

flow. Steady results are obtained, with double-precision accuracy, within a thousand
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sound-traversal times. The results from both methods, extrapolated to the continuum

limit, agree within 1%.

2000 4000 6000 8000
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Figure 8.1*: Time profile of
the heat flux for harmonic
convection

The first type of time-dependent convection, re-

ferred to as harmonic, oscillatory, or periodic, has a

simple sinusoidal time profile for observables, such as

the heat flux. Here, periodic convection commences

near Ra = 80, 000 with a cycle time corresponding

to 0.2 of the thermal diffusion time. This is consis-

tent with ab initio molecular dynamics simulations in

a slightly different two-dimensional geometry. Consistency with molecular dynamics sim-

ulations is desirable because they are inherently compressible.

Figure 8.2.a*: Drop in heat
flux in experiment with
mercury

As the system is driven further from equilibrium the

system makes a transition to chaotic convection. Sim-

ulations of a two-dimensional ideal gas reveal that there

is a drop in the Nusselt number associated with this

transition. This is the result of well-established simula-

tions where transient effects are small. The transition

and the corresponding drop in the dimensionless heat

flux occurs between a Rayleigh number of 200,000 and 300,000. This is consistent with

experiments with liquid mercury (a nearly incompressible fluid with a low Prandtl number)

and gaseous helium conducted by different researchers. The temperature histogram at a
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point in the center of the simulated cell makes a transition from a dual-maximum to a

single-maximum as the system goes from periodic to chaotic. This was also reported in

the mercury experiment.

Figure 9.2*: Dimensionless
heat flux from turbulent
convection

Quantitative agreement can be seen in a plot of the

dimensionless heat flux from convection Nu−1 verses

the Rayleigh number of the system. The well-known

scaling relation, Nu − 1 ∼ Ra2/7, is recovered. This

scaling relation is seen in numerous experiments and

simulations of turbulent convection. This agreement

not only validates the numerical method discussed in

Chapters 4-6, but also suggests that hard turbulence is possible for two-dimensional com-

pressible fluids.

10.2 Two-dimensional compressible convection

Once validated, this numerical approach was used to investigate many aspects of

thermal convection. This includes demonstrating the existence of coexisting steady com-

pressible flows, revealing a drop in the dimensionless heat flux at the transition to chaotic

flow, revealing a dual morphology region in which harmonic and chaotic flows may coexist,

the characterization of the entropy production and Lyapunov instability of these flow, and

a characterization of turbulent compressible convection.
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10.2.1 Coexisting attractors in compressible convection
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Figure 7.2*: Coexisting solutions (2-, 4-,
and 6-roll) for compressible convection

The fully-converged solutions of the

complete nonlinear viscous compressible

conducting continuum equations estab-

lish the coexistence of several indepen-

dent flow solutions, all for the same

boundary conditions and the same con-

stitutive model. Because they were dis-

covered from randomly-selected initial

conditions, the basins of attraction of

these continuum solutions must have

comparable measures. No doubt the

boundaries separating such basins are

sufficiently complicated to frustrate any

useful analysis. Unlike equilibrium ther-

modynamic states these nonequilibrium

flows cannot be precisely compared with

regard to a sensible definition of “stabil-

ity” because there is no reversible path connecting them.

In Chapter 7, the various aspects of the flows, which have some intuitive connection

with stability, were compared. Such properties include (i) the kinetic and internal en-
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ergies associated with the flows; (ii) the heat fluxes, equivalent to a knowledge of the

internal entropy production; (iii) the growth rates of stationary modes, as measured from

infinitesimal seeds. The first two of these properties suggest the relative stability of the

six-roll pattern, while the growth rate favors the four-roll pattern. The details available

from computer simulations may eventually lead to correlations among these, and other,

measures of relative stability.

There is a logical small-scale-to-large-scale hierarchy of simulation techniques, be-

ginning with microscopic molecular dynamics, continuing through smooth particle ap-

plied mechanics, with its fluctuations, and concluding with fluctuation-free continuum

mechanics. The instabilities which characterize macroscopic turbulence and other flows

can be followed through this hierarchy. The degeneracy found here suggests strongly

that the strange attractors which are pervasive in nonequilibrium time-reversible atom-

istic simulations [59] eventually partition large-system phase spaces into disjoint parts.

Simultaneously the time-reversibility and the ergodicity which characterize the smallest

nonequilibrium systems are lost as the continuum limit is approached.
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10.2.2 Heat flux at the onset of chaotic convection

Figure 8.2*: Simulation
results showing the drop in
Nusselt number at the
transition from harmonic to
chaotic convection

Although our simulations are not an explicit at-

tempt to model the experiments with convecting mer-

cury or helium, the character of the results is very sim-

ilar. Since the simulations use an ideal gas equation

of state, model a compressible fluid, and have a unit

Prandtl number, it is a fair model for the helium gas

experiment. On the other hand, the simulations are

two dimensional. The flows in a 2D system are differ-

ent from those of a 3D system. The simulation are not a very good model for the mercury

experiments - 2D rather than 3D, compressible rather incompressible, and intermediate

rather than low Pr. Despite the difference, the behavior in all three situations have a

common characteristic - a drop in the heat flux as the system makes the transition to

chaotic flow.

10.2.3 Coexistence of “harmonic” and chaotic flows

It was shown in Chapter 8 that for time-dependent convective flows, with Rayleigh

numbers in a region near the transition to chaotic convection, two distinctly different,

but stable, flow morphologies coexists. A relationship is revealed between two important

quantities that characterize these non-equilibrium, time-dependent flows – the entropy

production rate and the rate at which phase-space information is lost.
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Figures 8.3.1*, 8.3.1*, and
8.3.1*: Dimensionless
entropy production,
Lyapunov exponent, and
linear combination over the
dual morphology region

These relations are based on well-established flow sim-

ulations so that the transient effects are minimized.

The flows are also, in general, stable and insensitive to

random perturbations.

The existence of this dual morphology region and

the hysteresis loop in the dimensionless heat flux that

connects the two flow morphologies is also corrobo-

rated by the existence of sharp discontinuities in Nus-

selt number data reported for two independent exper-

iments with two very different fluids – gaseous helium

and liquid mercury. These experiments not only sup-

port these claims, but suggest a universality for this

phenomena.

10.2.4 Entropy production and Lya-

punov instability at the onset of turbu-

lent convection

Because the Nusselt number is identically equal to

the dimensionless entropy production of the system,
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the results suggest that this dynamical system, driven farther from equilibrium, has a

sudden drop in the entropy production as it makes a transition to chaos. The maximum

Lyapunov exponent for the simulation is a measure of the rate at which phase-space

information is lost. The drop in entropy production for the system at the transition is

accompanied by a corresponding increase in this rate of information loss.

10.2.5 Turbulence in two-dimensional compressible convection
Vo

rtic
ity

Figure 9.1.c*: Vorticity fields for turbulent
convection

The presence of hard turbu-

lence is suggested by the scal-

ing relation between the Nusselt

number and the Rayleigh num-

ber. Although this has been

shown for two-dimensional sim-

ulations based on the Oberbeck-

Boussinesq approximation, this is the first for two-dimensional compressible flow. The

scaling relation between the Rayleigh number and the linear sum of the entropy pro-

duction rate and the K-entropy [rate] may shed light on the continuing investigation on

the relation between the dimensionless heat flux and the Rayleigh number. Recently,

a power-law relation between the Lyapunov exponent times a characteristic time of the

system (like a sound traversal time) and the Reynolds number has been announced [82],

〈λ〉 τ0 ∼ Re0.459. This, along with the relation between the Reynolds number and the
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Rayleigh number, further supports the work detailed in this dissertation.
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Part V

Appendix
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Appendix A

Convecting double pendulum

A.1 Introduction

A double pendulum, with thermally-conducting and thermally-expanding masses im-

mersed in a constant-gradient temperature field, assists in transporting heat in a way that

is analogous to buoyancy-driven convection [83]. A Rayleigh-number-like order parameter

is defined for this system and characterizes how far from equilibrium the system is. The

additional entropy produced by the convecting double pendulum is calculated as a function

of the order parameter as the system is driven from regular to chaotic motion.

The intent in studying this model is to characterize the entropy production rate as this

simple, non-equilibrium system is driven to chaotic trajectories. The results are compared

to those of the more complex simulations of a compressible fluid, convecting heat in

two dimensions. The simulations of the convecting fluid suggest that within a range of
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Rayleigh numbers the time-averaged entropy production is related to the K-entropy (the

rate at which phase-space information is lost).

Figure A.1: Diagram of convecting double pendulum. The lower half of the cell is shown.
A diagram of the thermally expanding mass is shown on the left.

The convecting double pendulum is suspended from a point in the center of the ther-

mal cell of height L. Each of the massless rods has a length of L/4 so that the outer mass

may reach the top and bottom thermal boundaries. The constant temperatures for the

lower and upper boundaries is TH and TL respectively with TH > TL. The background

temperature between the boundaries has a linear temperature profile (constant gradient).

The masses interact with the background by exchanging heat at a rate that is proportional

to the difference between the mass temperature and the background temperature. Ad-
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ditionally, the background fluid provides some viscous heating that is proportional to the

mass velocity. The heat conduction and viscous heating proportionality constants define

the constant thermal conduction and viscosity coefficients. The volume of the masses are

allowed to change with temperature, defining the constant expansion coefficient, α.

As for a convecting fluid, gravity acts in a direction opposite to the flow of heat. Here,

the magnitude of gravity is set so that the change in potential energy balances the change

in thermal energy as the mass moves from the bottom to the top of the cell,

mgL = kB∆T. (A.1)

To allow for mechanical equilibrium, the viscous drag force for the characteristic ve-

locity is balanced with the buoyancy force for the characteristic temperature difference,

αmg∆T = η|v|. (A.2)

The “Rayleigh number” for this system is defined as the ratio of the power per area

from convection to conduction,

“Ra” ≡ cm|v|∆T/L2

κ∆T/L
. (A.3)

By using A.1 and A.2 to define the gravity and characteristic velocity, the “Rayleigh
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number” can be expressed as

“Ra” = mckB
α
ηκ

(

∆T
L

)2

. (A.4)

This is similar to the Rayleigh number defined for for a fluid (see 3.19), except that the

density and specific heat are replaced with the mass and heat capacity per unit mass.

For the simulations, all parameters are left constant except for the thermal expansion

coefficient α. As α is increased, the system moves from equilibrium.

Figure A.2: Pendulum masses 1.) absorb heat at a higher background temperature 2.)
expand, rise and 3.) release heat at a lower background temperature.

The thermal entropy of the system changes as each mass absorbs heat from a warmer

surrounding fluid, expands, rises, and releases heat to a lower temperature fluid. The



150

entropy time-rate-of-change is defined as the amount of heat absorbed by each mass

cMδT divided by the fluid temperature per time step. The heat absorbed or released to

the fluid is equal to the diffusion constant times the difference in the local temperatures.

Figure A.3: Entropy production as the convecting double pendulum is driven away from
equilibrium.

A.2 Results and discussion

As the “Rayleigh number” is increased, the system does indeed move from thermal

and mechanical equilibrium. Change in thermal equilibrium is demonstrated in the change

in the thermal entropy production – the time integral of the heat flux divided by the

local fluid temperature. The change in the mechanical equilibrium is demonstrated by the
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change in the pendulum trajectory – from simple-periodic to chaotic.

The time average of the entropy production rate is plotted for the pendulum for various

“Rayleigh numbers” in Figure A.3. The figure shows a critical “Ra” near 37 above which

the entropy production is non-zero. The entropy production continues to increase linearly

to a point near “Ra” = 48 where a jump occurs. The entropy production increases at a

lower rate with increasing “Ra” to a point near 60 after which it decreases with increasing

“Ra”. This is similar to the results discussed in Chapter 8 for the dimensionless internal

entropy production for a convecting fluid. See Figure 8.6. At a point near “Ra” = 72

another jump occurs in the entropy production.

The stroboscopic trajectory of the convecting double pendulum is shown in Figure A.4

for systems with various “Rayleigh numbers”. These figures represent trajectories for the

different regions observed. First, for low “Ra”, there is no motion and no heat transported

(entropy produced) by the pendulum. Above the critical “Ra”, simple motion occurs.

The trajectory at “Ra” = 40, for example, shows the first mass (the one constrained at

a constant distance from the center) moving along a short arc while the second mass

moves in a small loop to the left of the first. The critical “Ra” is also a bifurcation

point where the system may choose one of two mirror-symmetric trajectories. This is

analogous to the bifurcation at the critical Rayleigh number for convecting fluids with

periodic boundaries where a particular roll may be clock-wise or counter-clock-wise. (The

direction of the other roll(s) is(are) then constrained). The jump in the internal entropy

production corresponds to a transition where the second mass moves entirely above the
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Figure A.4: Stroboscopic trajectory of the convecting double pendulum
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first. The decrease in the entropy production corresponds to a region of “Ra” where the

trajectory becomes erratic, possibly chaotic. Above the next jump in entropy production,

the trajectory is chaotic. This is not quantified by a Lyapunov exponent in this preliminary

study, but it is well-known that a double pendulum can have a chaotic trajectory at higher

energies.

A.3 Future work

The convecting double pendulum is a simple (six-dimensional phase space) non-

equilibrium system for which a Rayleigh-number-like order parameter and an entropy-

production quantity can be defined. Phase transitions (in particular, a phase transition

from harmonic to chaotic motion) are present and are analogous to a convecting fluid

Further work includes the determination of the Lyapunov spectrum for comparison to the

convection transition data.
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A.4 Listing

Calculates the motion of a double pendulum.
C

PROGRAM dp
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER (I-N)
DIMENSION x(6)
COMMON/PARMS/ rL1, rL2, g
COMMON/THERM/ alp, rkappa, eta, T1, T2
CHARACTER*50 STATE_FILE /’../dbpend/dpcu80.state’/
CHARACTER*50 OUT_FILE /’../dbpend/dpcu140.state’/

C f77 -O -r8 -o xdpu140 dpconv.f

Ra = 140.0d0
alp= 4.0d0
rkappa= 0.15d0
eta= 0.5d0
eta= alp/Ra/rkappa

Pi=4.0d0*DATAN(1.0d0)
rL1=1.0d0
rL2=1.0d0
rL = 2.0d0*(rL1+rL2)
Th=1.5d0
TL=0.5d0
deltaT=Th-Tl
g=deltaT/rL

C establish initial conditions
write (*,’("reading file: ",a30 )’) STATE_FILE

open(22,file=STATE_FILE,form=’formatted’,status=’OLD’)
DO i=0,1000

read (22,’(i8,2x,2f8.4,2x,2f12.4,2x,2f8.4)’,END=99)
2 iter, x1,x2,x1dot, x2dot, T1, T2
END DO

c write (*,’(i8,2x,2f8.4,2x,2f12.4,2x,2f8.4)’)
c 2 iter, x1,x2,x1dot, x2dot, T1, T2

99 close(22,STATUS=’KEEP’)

x(1)=x1
x(2)=x2
x(3)=x1dot
x(4)=x2dot
x(5)=T1
x(6)=T2

dt=0.001d0
maxiter=10000000

C START ITERATION
c write (*,*) "Starting ... "
c write (*,’(a, 3f12.6)’)
c 2 "alp, et, kappa", alp, eta, rkappa

Do iter=0,1000000
CALL RK(x, dt)

END DO
sdottot=0.0d0
ttot = 0.0d0
DO iter=0,maxiter

if (jmod(iter,maxiter/1000).eq.0) then
open(14,file=OUT_FILE,form=’formatted’,ACCESS=’APPEND’

2 ,STATUS= ’UNKNOWN’)
write(14,’(i8,2x,2f8.4,2x,2f12.4,2x,2f8.4)’) iter/10000,

2 x(1),x(2),x(3),x(4),T1,T2
close(14)

end if
CALL RK(x, dt)
x1 = x(1)
x2 = x(2)
x1dot = x(3)
x2dot = x(4)
T1 = x(5)
T2 = x(6)
y1=2.0d0-Dcos(x1)
y2=y1-Dcos(x2)
T1b=1.5d0-y1/4.0d0
T2b=1.5d0-y2/4.0d0

sd1 = (-rkappa*(T1-T1b))/T1b
sd2 = (-rkappa*(T2-T2b))/T2b
sdot = (sd1+sd2)*dt
sdottot = sdottot + sdot
ttot = ttot + dt

END DO
STOP
END

SUBROUTINE RHS(xx,ff)
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER (I-N)
DIMENSION xx(6), ff(6)
COMMON/PARMS/ rL1, rL2, g
COMMON/THERM/ alp, rkappa, eta, T1, T2

c make things more readuhble
x1 = xx(1)
x2 = xx(2)
x1dot = xx(3)
x2dot = xx(4)
T0=1.0d0
T1 = xx(5)
T2 = xx(6)
vv1=x1dot**2
vv2=x2dot**2 + x1*x2*dcos(x2-x1)*2.0d0
v1=x1dot
v2=x2dot
s1 = Dsin(x1)
s2 = Dsin(x2)
s21 = Dsin(x2-x1)
c21 = Dcos(x2-x1)
y1=rL2+rL1*(1.0d0-Dcos(x1))
y2=y1-rL2*Dcos(x2)
T1b=1.5d0-y1/(2.0d0*(rL1+rL2))
T2b=1.5d0-y2/(2.0d0*(rL1+rL2))

ff(1) = x1dot
ff(2) = x2dot
ff(3) = (s21*(v2*x2dot+c21*v1*x1dot) +

2 g*(c21*s2-2.0d0*s1)) /rL1/(2.0d0-c21*c21)
3 + alp*g*(T1-T0)*rL1*s1 + alp*g*(T2-T0)*rL1*s1*Cos(x2)
4 - eta*v1*rL1

ff(4) = (s21*(2.0d0*v1*x1dot+c21*v2*x2dot) -
2 2.0d0*g*(c21*s1-s2)) /rL2/(c21*c21-2.0d0)
3 + alp*g*(T2-T0)*rL2*s2
4 - eta*v2*rL2

ff(5) = -rkappa*(T1-T1b) + eta*vv1
ff(6) = -rkappa*(T2-T2b) + eta*v2*v2

RETURN
END

SUBROUTINE RK(x, h)
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER (I-N)
DIMENSION x(6), x1(6), f1(6), f2(6), f3(6), f4(6)

hh = h/2.0d0
hhh = h/6.0d0
CALL RHS(x,f1)
DO i=1,6

x1(i) = x(i)+hh*f1(i)
END DO
CALL RHS(x1,f2)
DO i=1,6

x1(i) = x(i)+hh*f2(i)
END DO
CALL RHS(x1,f3)
DO i=1,6

x1(i) = x(i)+h*f3(i)
END DO
CALL RHS(x1,f4)
DO i=1,6

x(i) = x(i) + hhh*(f1(i)+2.0d0*f2(i)+2.0d0*f3(i)+f4(i))
END DO
Pi=4.0d0*DATAN(1.0d0)
x(1)=Dmod(x(1), 2.0d0*Pi)
x(2)=Dmod(x(2), 2.0d0*Pi)

RETURN
END
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Appendix B

FORTRAN codes

B.1 The Navier-Stokes solver

The program used to generate the results discussed in this thesis is made up of the

following header file and main file. The main file consists of an initialization part, cubic

spline subroutines, and a Runge-Kutta integrator.

B.1.1 Header file

The header file defines the system size and allocated array memory. Common variables

are defined. The variables are initialized from another file or a good guess.

CCCCCC------------------------------------------------------------------X
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER (I-N)

C s :Nx=18,Ny=9 sa:Nx=24,Ny=12 sb:Nx=30,Ny=15
C m :Nx=36,Ny=18 ma:Nx=48,Ny=24 mb:Nx=60,Ny=30
C l :Nx=72,Ny=36 la:Nx=96,Ny=48 lb:Nx=120,Ny=60
C h :Nx=144,Ny=72 ha:Nx=192,Ny=96 hb:Nx=240,Ny=120
C
C p1:Nx=34,Ny=17 p2:Nx=38,Ny=19 p3:Nx=46,Ny=23
C p4:Nx=58,Ny=29 p5:Nx=62,Ny=31 p6:Nx=74,Ny=37

PARAMETER (Nx=72,Ny=36)
PARAMETER (Nn=Ny+1)

C
C grid variables (G1)

COMMON/G1ST/G1Rho(Nx,Nn),U(Nx,Nn),V(Nx,Nn),E(Nx,Nn)

COMMON/G1CONS/Xm(Nx,Nn),Ym(Nx,Nn),Te(Nx,Nn)
COMMON/G1CDOT/Xmdot(Nx,Nn),Ymdot(Nx,Nn),Tedot(Nx,Nn)

C
C cell variables (G2)

COMMON/G2ST/Rho(Nx,Ny)
COMMON/G2CDOT/rhodot(Nx,Ny)
COMMON/G2HOLD/G2ux(Nx,Ny),G2uy(Nx,Ny),G2vx(Nx,Ny),G2vy(Nx,Ny)

C
C Grid3 variables

COMMON/G3FLX/Gxm(Nx,Ny),Gym(Nx,Ny),Gte(Nx,Ny),Frho(Nx,Ny)
COMMON/G3Gry/uy(Nx,Ny), vy(Nx,Ny), ey(Nx,Ny)
COMMON/G3ST/G3Rho(Nx,Ny),G3u(Nx,Ny),G3v(Nx,Ny),G3e(Nx,Ny)
COMMON/G3Grx/G3ux(Nx,Ny), G3vx(Nx,Ny)

C
C Grid4 variables

COMMON/G4FLX/Fxm(Nx,Nn),Fym(Nx,Nn),Fte(Nx,Nn),Grho(Nx,Nn)
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COMMON/G4Grx/ux(Nx,Nn), vx(Nx,Nn), ex(Nx,Nn)
COMMON/G4ST/G4Rho(Nx,Nn),G4u(Nx,Nn),G4v(Nx,Nn),G4e(Nx,Nn)
COMMON/G4Gry/G4uy(Nx,Nn), G4vy(Nx,Nn)

C

COMMON/PARM/ delta,g,rLy,rLx,rkappa,eta,Th,Tl,bulk,Pi,rolls
COMMON/RPARM/ iter

C

B.1.2 Setup and initialization

The input and output files are defined as are the run parameters such as the Rayleigh

and Prandtl numbers.

Cubic Spline on staggered grid for
Continuum mechanics are used on a rectangular grid to
Calculate the Rayleigh-Be’nard flow patterns.
Conservative form of differential equations are used.

PROGRAM rbcufd
INCLUDE ’rbcu.h’

C set up output data files
C name output files
c
c CHARACTER*50 IN_STATE_FILE /’steady/cufd1M2l.state’/

CHARACTER*50 OUT_STATE_FILE /’steady/cufd25C2l.state’/
CHARACTER*50 KE_FILE /’steady/cufd25C2l.ke’/
CHARACTER*50 NOTE_FILE /’steady/cufd25C2l.note’/

C >>>>>>>>>>>>>>>>>> f77 -O -r8 -o xcu25C2l rbcufd.f

C set initialization
Ra = 2 500.0d0
rolls=2.0d0
IX=0
IY=0
cn=0.5d0
delta=1.0d0
rKb= 1.0d0
bulk=0.0d0
Th = 1.5d0
Tl = 0.5d0
rLy= Ny*delta
rLx= 2.0d0*rLy

C Pr = 0.025d0
Pr = 1.0d0
eta= rLy*Sqrt(Pr/Ra)
rkappa=eta/Pr
g = -rKb*(Th-Tl)/rLy
dt=delta*cn/Sqrt(2.0*Th)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
tottime=15000.0d0
maxiter=INT(tottime/dt)
iprkefreq=INT(maxiter/100)

c$IF(THREE_D_STOKES_FLUID)
bulk=eta/3.0d0

c$ENDIF
C Write info to note file

Pi=4.0d0*DATAN(1.0d0)
open(9,file=NOTE_FILE,form=’formatted’,STATUS= ’UNKNOWN’)
write(9,’(A)’) "(*rb note file*)"
write(9,’("rolls,Nx,Ny",f8.2,i8,i8)’) rolls,Nx,Ny
write(9,’("Rn,g,eta,rLy ",4f16.6)’) Ra,g,eta,rLy
close(9)

C
C initialize variables

CALL INITIAL(IN_STATE_FILE,dt)
CCCCCC
c$IF(PRINT_KE_FILE)

totrho=0.0d0
totKx=0.0d0
totKy=0.0d0
DO i=1,Nx

totrho=totrho+Rho(i,1)
DO j=2,Ny

totrho=totrho+Rho(i,j)
totKx=totKx+G1rho(i,j)*u(i,j)*u(i,j)/2.0d0
totKy=totKy+G1rho(i,j)*v(i,j)*v(i,j)/2.0d0

END DO
END DO
open(14,file=KE_FILE,form=’formatted’,ACCESS=’APPEND’

2 ,STATUS= ’UNKNOWN’)
write(14,’(f10.3,2(3x,f18.14))’)
2 time, totKX/totrho,totkY/totrho
close(14)

c$ENDIF
CCCCCC
C START ITERATION

DO iter=1,maxiter
CALL RK(dt)
time=time+dt

write(9,’(A)’) "at RK"
c$IF(PRINT_KE_FILE) uncomment the following lines
C output to ke grid center data file

if (jmod(iter,iprkefreq).eq.0) then
totrho=0.0d0
DO i=1,Nx

DO j=1,Ny
totrho=totrho+Rho(i,j)

END DO

END DO
totKx=0.0d0
totKy=0.0d0
DO i=1,Nx

DO j=2,Ny
totKx=totKx+G1rho(i,j)*u(i,j)*u(i,j)/2.0d0
totKy=totKy+G1rho(i,j)*v(i,j)*v(i,j)/2.0d0

END DO
END DO
open(14,file=KE_FILE,form=’formatted’,ACCESS=’APPEND’,

2 STATUS= ’UNKNOWN’)
write(14,’(f10.3,2(3x,f18.14))’)

2 time, totKX/totrho,totkY/totrho
close(14)

end if
c$ENDIF

END DO
c$IF(PRINT_STATE_FILE) uncomment the following lines

open(22,file=OUT_STATE_FILE,form=’formatted’,ACCESS=’APPEND’,
2 STATUS= ’UNKNOWN’)
DO i=1,Nx

DO j=1,Ny
write (22,’(2i5,4f24.18)’) i,j,rho(i,j),u(i,j),v(i,j),e(i,j)

END DO
j=Ny+1
write (22,’(2i5,4f24.18)’) i,j,u(i,j),v(i,j),e(i,j)

END DO
close(22)

c$ENDIF
STOP
END

C
C-----------------------------------------------------------------------X
C Sets initial and boundary values

SUBROUTINE INITIAL(IN_STATE_FILE,dt)
INCLUDE ’rbcu.h’
CHARACTER*50 IN_STATE_FILE
DIMENSION f1(Nx), f2(Ny+1), f1b(Nx), f2b(Ny+1)

C initialize grid point values (note period bc in x-direction)
cc$IF(READ_STATE_FILE) uncomment these lines
c open(22,file=IN_STATE_FILE,form=’formatted’,status=’OLD’)
c DO i=1,Nx
c DO j=1,Ny
c read (22,’(2i5,4f24.18)’,END=99)ii,jj,rho(i,j),
c 2 u(i,j),v(i,j),e(i,j)
c if(i.ne.ii) write(*,*) "error"
c if(j.ne.jj) write(*,*) "error"
c END DO
c j=Ny+1
c read (22,’(2i5,4f24.18)’,END=99)ii,jj,
c 2 u(i,j),v(i,j),e(i,j)
c END DO
c 99 close(22,STATUS=’KEEP’)
cC enforce boundary conditions
c DO i=1,Nx
c e(i,1)=Th
c u(i,1)=0.0d0
c v(i,1)=0.0d0
c u(i,Ny+1)=0.0d0
c v(i,Ny+1)=0.0d0
c e(i,Ny+1)=Tl
c END DO
c$ELSE
C initialize velocity field

DO i=1,Nx
DO j=1,Ny+1

u(i,j)=0.0d0
v(i,j)=0.0d0

END DO
END DO

C initialize internal energy
DO j=1,Ny+1

T = Th + (Tl-Th)*(j-1)/(Ny)
DO i=1,Nx

e(i,j)=T
END DO

END DO
C initialize cell center values

DO j=1,Ny
DO i=1,Nx

rho(i,j)=1.0d0
END DO

END DO
C PERTURBATION
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j=int(Ny/2)
DO i=1,Nx

rho(i,j)=rho(i,j)*(1.0d0+0.1d0*Dsin(i*Pi/Nx))
END DO

cc$IF(RAYLEIGH_BENARD) uncomment these lines
cC initialize velocity field
c DO i=1,Nx
c u(i,1)=0.0d0
c v(i,1)=0.0d0
c u(i,Ny+1)=0.0d0
c v(i,Ny+1)=0.0d0
c END DO
c velfacy=0.10d0
c velfacx= velfacy/(rolls*0.50d0)
c DO j=2,Ny
c facj=(j-(Ny+1)/2)*Pi/(Ny-1)
c DO i=1,Nx
cC faci=((i+0.50d0)-(Nx+1)/2)*Pi/(Nx-1)
cC faci=((i-1)-Nx/2)*Pi/Nx
c faci=((float(i)-0.50d0)-Nx/2)*Pi/Nx
c u(i,j)=DSin(rolls*faci)*DSin(2.0d0*facj)*velfacx
c v(i,j)=DCos(rolls*faci)*DCos(facj)*velfacy
c END DO
c END DO
cc$ENDIF
c$ENDIF
C interpolate density value to all grids
C interpolate new density to other grids
C rho -> G4rho

DO i=1,Nx
DO j=1,Ny

f2(j)=rho(i,j)
END DO

C CALL PADEFbINTV(f2,f2b,Ny-1)
CALL CubeFbINT(f2,f2b,delta,Ny-1)
DO j=2,Ny

G4rho(i,j)=f2b(j-1)
END DO

END DO
C rho -> G3rho

DO j=1,Ny
DO i=1,Nx

f1(i)=rho(i,j)
END DO

C CALL PadePbINTV(f1,f1b,Nx)
CALL CubePbINT(f1,f1b,delta,Nx)
G3rho(1,j)=f1b(Nx)
DO i=2,Nx

G3rho(i,j)=f1b(i-1)
END DO

END DO
C G3rho -> G1rho

DO i=1,Nx
DO j=1,Ny

f2(j)=G3rho(i,j)
END DO

C CALL PADEFbINTV(f2,f2b,Ny-1)
CALL CubeFbINT(f2,f2b,delta,Ny-1)
DO j=2,Ny

G1rho(i,j)=f2b(j-1)
END DO

END DO

C
C initialize "conserved" variables on grid

DO j=1,Ny+1
DO i=1,Nx

Xm(i,j) = G1rho(i,j)*u(i,j)
Ym(i,j) = G1rho(i,j)*v(i,j)
Te(i,j) = G1rho(i,j)*(e(i,j)

& +(u(i,j)*u(i,j)+v(i,j)*v(i,j))/2.0d0)
END DO

END DO
cc$IF(INITIAL_TRAP) uncomment these lines
c uuumax=0.0d0
c rhominmin=2.0d0
c Ni=int(rolls/2.0)
c iNx=INT(Nx/Ni)
c inittime=INT(2000/dt)
c DO iter=1,inittime
c CALL RKI(dt)
c time=time+dt
cc if (jmod(iter,100).eq.0) then
c DO ii=1,Ni-1
c DO i=1,iNx
c in=ii*iNx+i
c rho(in,1)=rho(i,1)
c DO j=2,Ny
c G1rho(in,j)=G1rho(i,j)
c rho(in,j)=rho(i,j)
c Xm(in,j) = Xm(i,j)
c Ym(in,j) = Ym(i,j)
c Te(in,j) = Te(i,j)
c u(in,j) = u(i,j)
c v(in,j) = v(i,j)
c e(in,j) = e(i,j)
c END DO
c END DO
c END DO
c END DO
c DO ii=1,Ni-1
c DO i=1,iNx
c in=ii*iNx+i
c rho(in,1)=rho(i,1)
c DO j=2,Ny
c G1rho(in,j)=G1rho(i,j)
c rho(in,j)=rho(i,j)
c Xm(in,j) = Xm(i,j)
c Ym(in,j) = Ym(i,j)
c Te(in,j) = Te(i,j)
c u(in,j) = u(i,j)
c v(in,j) = v(i,j)
c e(in,j) = e(i,j)
c END DO
c END DO
c END DO
cc$ENDIF

RETURN
END

C
C-----------------------------------------------------------------------X
C

INCLUDE ’rk.sub.f’

INCLUDE ’cubic.sub.f’

B.1.3 Cubic spline subroutines

The cubic spline representation of the variable is determined for periodic (PB) or fixed

(FB) boundaries. The interpolant (INT) or gradient (DX) is returned. The subroutine

CUBEPBDX, for example, returns the gradient for a periodic boundary case.

CUBIC.F
Contains subroutines related to the
cubic spline interpolation of state variables.
C
C-----------------------------------------------------------------------X
C

subroutine TRIDIA(a,b,c,r,u,n)
C subroutine tridia solves system Au=r where A is tridiagonal
C with major and minor diags c and a resp. and main diag b.
C b is diagonal, a/c are lower/upper off-diagonals

IMPLICIT REAL*8 (A-H,O-Z)
parameter (nmax=1000)
dimension gam(nmax),a(n),b(n),c(n),r(n),u(n)
if(b(1).eq.0.0d0) pause
bet=b(1)
u(1) = r(1)/bet
do 11 j=2,n

gam(j)=c(j-1)/bet
bet=b(j)-a(j)*gam(j)

if(bet.eq.0.0d0) then
write(*,*) j,a(j),b(j),c(j)
pause

end if
u(j)=(r(j)-a(j)*u(j-1))/bet

11 continue
do 12 j=n-1,1,-1

u(j)=u(j)-gam(j+1)*u(j+1)
12 continue

return
end

C
C-----------------------------------------------------------------------X
C*****Random Number Generator

FUNCTION RANDOM(IX,IY)
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER (I-N)
I = 1029*IX+1731
J = I + 1029*IY + 507*IX - 1731
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IX = MOD(I,2048)
J = J + (I-IX)/2048
IY = MOD(J,2048)
RANDOM = (IX+2048*IY)/4194304.0d0
RETURN
END

C
C-----------------------------------------------------------------------X
C

subroutine CubePbDX(f,fp,h,n)
C subroutine that determines derivatives with periodic b.c’s
C assumes function is on grid and derivative is on cell center
C otherwise the index must be adjusted
C ASSUMES M=0 at endpoints
C USES DBTDLU and DBTDSOL

IMPLICIT REAL*8 (A-H,O-Z)
dimension f(n),fp(n)
dimension am(n,n), bm(3,n-1), rm(1,n-1), cm(n,1), xm(n)
data ldb/3/, ldr/1/, ml/1/, mu/1/, mp/1/
ldc=n

c Set elements of matrix A in normal (full) form
do 20 j = 1,n

do 10 i = 1,n
if (j-i .le. mu .and. i-j .le. ml) then

am(i,j) = 1.0d0
else

am(i,j) = 0.0d0
endif

10 continue
am(j,j) = 4.0d0

20 continue
am(1,n)=1.0d0
am(n,1)=1.0d0

c Load b, r, c from A
m = ml + mu + 1
nmp = n - mp
do 50 j = 1,nmp

do 30 k = 1,m
i = k + j - mu - 1

30 if (i .ge. 1 .and. i .le. nmp) bm(k,j) = am(i,j)
do 40 k = 1,mp

40 rm(k,j) = am(k+nmp,j)
50 continue

do 70 k = 1,mp
do 60 i = 1,n

60 cm(i,k) = am(i,k+nmp)
70 continue
c
C SETUP RHS:

xm(1)=(6.0d0/h/h)*(f(2)-2.0d0*f(1)+f(N))
DO i=2,N-1

xm(i)=(6.0d0/h/h)*(f(i+1)-2.0d0*f(i)+f(i-1))
END DO
xm(N)=(6.0d0/h/h)*(f(1)-2.0d0*f(N)+f(N-1))

c
c Call solver routines and print results

call dbbfa (n, ml, mu, mp, bm, rm, cm, ldb, ldr, ldc, ier)
if (ier .ne. 0) then

write(6,130) ier
130 format(//’Error return from dbbFA. ier =’,i4)

stop
endif
call dbbsl (n, ml, mu, mp, bm, rm, cm, ldb, ldr, ldc, xm)
DO i=1,n-1

fp(i)=(f(i+1)-f(i))/h - (h/24.0d0)*(xm(i+1)-xm(i))
END DO
fp(n)=(f(1)-f(n))/h - (h/24.0d0)*(xm(1)-xm(n))
RETURN
end

C
C-----------------------------------------------------------------------X
C

subroutine CDPbDX(f,fp,h,n)
C USES CENTERED DIFFERENCE
C subroutine that determines derivatives with periodic b.c’s
C assumes function is on grid and derivative is on cell center
C otherwise the index must be adjusted

IMPLICIT REAL*8 (A-H,O-Z)
dimension f(n),fp(n)
DO i=1,n-1

fp(i)=(f(i+1)-f(i))/h
END DO
fp(n)=(f(1)-f(n))/h
RETURN
end

C
C-----------------------------------------------------------------------X
C

subroutine CubePbINT(f,fbar,h,n)
C subroutine that determines derivatives with periodic b.c’s
C assumes function is on grid and derivative is on cell center
C otherwise the index must be adjusted
C ASSUMES M=0 at endpoints
C USES DBTDLU and DBTDSOL

IMPLICIT REAL*8 (A-H,O-Z)
dimension f(n),fbar(n)
dimension am(n,n), bm(3,n-1), rm(1,n-1), cm(n,1), xm(n)
data ldb/3/, ldr/1/, ml/1/, mu/1/, mp/1/
ldc=n

c Set elements of matrix A in normal (full) form
do 20 j = 1,n

do 10 i = 1,n
if (j-i .le. mu .and. i-j .le. ml) then

am(i,j) = 1.0d0
else

am(i,j) = 0.0d0
endif

10 continue
am(j,j) = 4.0d0

20 continue
am(1,n)=1.0d0
am(n,1)=1.0d0

c Load b, r, c from A
m = ml + mu + 1
nmp = n - mp
do 50 j = 1,nmp

do 30 k = 1,m
i = k + j - mu - 1

30 if (i .ge. 1 .and. i .le. nmp) bm(k,j) = am(i,j)
do 40 k = 1,mp

40 rm(k,j) = am(k+nmp,j)
50 continue

do 70 k = 1,mp
do 60 i = 1,n

60 cm(i,k) = am(i,k+nmp)
70 continue

c
C SETUP RHS:

xm(1)=(6.0d0/h/h)*(f(2)-2.0d0*f(1)+f(N))
DO i=2,N-1

xm(i)=(6.0d0/h/h)*(f(i+1)-2.0d0*f(i)+f(i-1))
END DO
xm(N)=(6.0d0/h/h)*(f(1)-2.0d0*f(N)+f(N-1))

c
c Call solver routines and print results

call dbbfa (n, ml, mu, mp, bm, rm, cm, ldb, ldr, ldc, ier)
if (ier .ne. 0) then

write(6,130) ier
130 format(//’Error return from dbbFA. ier =’,i4)

stop
endif
call dbbsl (n, ml, mu, mp, bm, rm, cm, ldb, ldr, ldc, xm)
DO i=1,n-1

fbar(i)=(f(i+1)+f(i))/2.0d0 - (h*h/16.0d0)*(xm(i+1)+xm(i))
END DO
fbar(n)=(f(1)+f(n))/2.0d0 - (h*h/16.0d0)*(xm(1)+xm(n))
RETURN
end

C
C-----------------------------------------------------------------------X
C

subroutine CubeFbDx(f,fy,h,n)
C differentiates with fixed b.c’s
C ip=1 -> odd function, ip=2 -> even function

IMPLICIT REAL*8 (A-H,O-Z)
dimension f(n+1),fy(n), rMom(n+1)
dimension am(n+1),bm(n+1),cm(n+1),rm(n+1)

C SETUP RHS:
rm(1)=0.0d0
DO i=2,N

rm(i)=(6.0d0/h/h)*(f(i+1)-2.0d0*f(i)+f(i-1))
END DO
rm(N+1)=0.0d0

C SETUP LHS:
am(1)=0.0d0
bm(1)=4.0d0
cm(1)=0.0d0
DO i=2,N

am(i)=1.0d0
bm(i)=4.0d0
cm(i)=1.0d0

END DO
am(N+1)=0.0d0
bm(N+1)=4.0d0
cm(N+1)=0.0d0

C SOLVE SYSTEM:
call tridia(am,bm,cm,rm,rMom,N+1)
DO i=1,N

fy(i)=(f(i+1)-f(i))/h - (h/24.0d0)*(rMom(i+1)-rMom(i))
END DO
RETURN
END

C
C-----------------------------------------------------------------------X
C

subroutine CDFbDx(f,fy,h,n)
C USES CENTERED DIFFERENCE
C differentiates with fixed b.c’s

IMPLICIT REAL*8 (A-H,O-Z)
dimension f(n+1),fy(n)
DO i=1,N

fy(i)=(f(i+1)-f(i))/h
END DO
RETURN
END

C
C-----------------------------------------------------------------------X
C

subroutine CubeFbInt(f,fbar,h,n)
C interpolation with fixed b.c’s

IMPLICIT REAL*8 (A-H,O-Z)
dimension f(n+1),fbar(n), rMom(n+1)
dimension am(n+1),bm(n+1),cm(n+1),rm(n+1)

C SETUP RHS:
rm(1)=0.0d0
DO i=2,N

rm(i)=(6.0d0/h/h)*(f(i+1)-2.0d0*f(i)+f(i-1))
END DO
rm(N+1)=0.0d0

C SETUP LHS:
am(1)=0.0d0
bm(1)=4.0d0
cm(1)=0.0d0
DO i=2,N

am(i)=1.0d0
bm(i)=4.0d0
cm(i)=1.0d0

END DO
am(N+1)=0.0d0
bm(N+1)=4.0d0
cm(N+1)=0.0d0

c$IF(FD)
c DO i=1,N
c fbar(i)=(f(i+1)+f(i))/2.0d0
c END DO
c$ENDIF
c$IF(CUBIC)
C SOLVE SYSTEM:

call tridia(am,bm,cm,rm,rMom,N+1)
DO i=1,N

fbar(i)=(f(i+1)+f(i))/2.0d0 - (h*h/16.0d0)*(rMom(i+1)+rMom(i))
END DO

c$ENDIF
RETURN
END

C
C-----------------------------------------------------------------------
C

SUBROUTINE DBBFA (N, ML, MU, MP, B, R, C, LDB, LDR, LDC, IER)
DOUBLE PRECISION B(LDB,*), R(LDR,*), C(LDC,*)
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C-----------------------------------------------------------------------
C LU factorization of border-banded matrix without pivoting.
C Double precision version.
C Call DBBFA to factor a given matrix A, then call DBBSL to solve
C a system Ax = b with given vector b.
C
C Input arguments:
C
C N = order of matrix
C ML = lower half-bandwidth (.LT. N)
C MU = upper half-bandwidth (.LT. N)
C MP = width of border at right and lower edges (.LE. N).
C B = LDB by N-MP array with band elements (LDB .ge. ML+MU+1).
C Element a(i,j) is to be stored in B(I-J+MU+1,J) for
C 1 .LE. I,J .LE. N-MP and -ML .LE. J-I .LE. MU.
C R = LDR by N-MP array with lower edge elements (LDR .GE. MP).
C a(i,j) is to be stored in R(I-N+MP,J) for
C N-MP+1 .LE. I .LE. N and 1 .LE. J .LE. N-MP.
C C = LDC by MP array with right edge elements (LDC .GE. N).
C a(i,j) is to be stored in C(I,J-N+MP) for
C 1 .LE. I .LE. N and N-MP+1 .LE. J .LE. N.
C LDB = declared first dimension of B, must be .GE. ML+MU+1.
C LDR = declared first dimension of R, must be .GE. MP.
C LDC = declared first dimension of C, must be .GE. N.
C
C
C Output arguments:
C
C IER = error flag.
C IER = -1 means integer input parameters were illegal.
C IER = 0 means the LU factorization was successful.
C IER = K .GT. 1 means the K-th pivot was found to be zero.
C B, R, C arrays contain a representation of the L and U factors.
C
C Routines called: DSCAL, DAXPY (from the BLAS collection)
C-----------------------------------------------------------------------

DOUBLE PRECISION ONE, T, ZERO
DATA ONE/1.0D0/, ZERO/0.0D0/

C
C Test inputs.

IF (N .LE. 0) GO TO 500
IF (ML .GE. N .OR. MU .GE. N .OR. MP .GT. N) GO TO 500
IF (LDB .LT. ML+MU+1 .OR. LDR .LT. MP .OR. LDC .LT. N) GO TO 500

C
C Set auxiliary constants.

NM1 = N - 1
NMP = N - MP
NMPP1 = NMP + 1
MU1 = MU + 1
MU2 = MU + 2
IER = 0

C
C Generate LU factors of band and lower border (stages 1 .. N-MP).

DO 160 K = 1,NMP
KP1 = K + 1

C Form K-th pivot.
T = B(MU1,K)
IF (T .EQ. ZERO) GO TO 550
T = ONE/T
B(MU1,K) = T

C Form L elements in band.
LEN1 = MIN(NMP-K,ML)
T = -T
CALL DSCAL (LEN1, T, B(MU2,K), 1)

C Form L elements in lower border.
CALL DSCAL (MP, T, R(1,K), 1)

C Update matrix elements in band and lower border.
JHI = MIN(NMP,K+MU)
DO 150 J = KP1,JHI
T = B(K-J+MU1,J)
CALL DAXPY (LEN1, T, B(MU2,K), 1, B(KP1-J+MU1,J), 1)
CALL DAXPY (MP, T, R(1,K), 1, R(1,J), 1)

150 CONTINUE
160 CONTINUE

C
C Update matrix elements in right border from stages 1 .. N-MP.

DO 240 K = 1,NMP
KP1 = K + 1
DO 230 J = NMPP1,N

T = C(K,J-NMP)
LEN1 = MIN(NMP-K,ML)
CALL DAXPY (LEN1, T, B(MU2,K), 1, C(KP1,J-NMP), 1)
CALL DAXPY (MP, T, R(1,K), 1, C(NMPP1,J-NMP), 1)

230 CONTINUE
240 CONTINUE
C
C Generate LU factors in lower right block (stages N-MP+1 .. N-1).
C

DO 340 K = NMPP1,NM1
KP1 = K + 1

C Form K-th pivot.
T = C(K,K-NMP)
IF (T .EQ. ZERO) GO TO 550
T = ONE/T
C(K,K-NMP) = T

C Form L elements.
T = -T
CALL DSCAL (N-K, T, C(KP1,K-NMP), 1)

C Update matrix elements.
DO 330 J = KP1,N
T = C(K,J-NMP)
CALL DAXPY (N-K, T, C(KP1,K-NMP), 1, C(KP1,J-NMP), 1)

330 CONTINUE
340 CONTINUE
C
C Form last pivot and return

IF (MP .EQ. 0) RETURN
K = N
T = C(N,MP)
IF (T .EQ. ZERO) GO TO 550
C(N,MP) = ONE/T
RETURN

C
C Error return on illegal input.
500 IER = -1

RETURN
C Error return on zero pivot.
550 IER = K

RETURN
END

C
SUBROUTINE DBBSL (N, ML, MU, MP, B, R, C, LDB, LDR, LDC, X)
DOUBLE PRECISION B(LDB,*), R(LDR,*), C(LDC,*), X(*)

C-----------------------------------------------------------------------
C Solution of border-banded matrix without pivoting, given the LU
C factorization by DBBFA. Assumes factorization was successful and
C factor information has not been changed. For systems Ax = b,
C with A factored by DBBFA, call DBBSL once for each RHS vector b.
C
C Input arguments:
C
C N = order of matrix
C ML = lower half-bandwidth
C MU = upper half-bandwidth
C MP = width of border at right and lower edges
C B, R, C = arrays as output by factorization
C LDB, LDR, LDC = declared first dimension of B, R, C, respectively
C (assumed to be the same as in factorization)
C X = array of length .GE. N containing right-hand side vector b
C
C
C Output arguments:
C
C X = solution vector
C
C Routines called: DSCAL, DAXPY (from the BLAS collection)
C-----------------------------------------------------------------------

DOUBLE PRECISION T
C Set auxiliary constants.

NM1 = N - 1
NMP = N - MP
NMPP1 = NMP + 1
MU1 = MU + 1
MU2 = MU + 2

C
C Apply inverse of L (columns 1 .. N-MP).

DO 130 K = 1,NMP
KP1 = K + 1
LEN1 = MIN(NMP-K,ML)
CALL DAXPY (LEN1, X(K), B(MU2,K), 1, X(KP1), 1)
CALL DAXPY (MP, X(K), R(1,K), 1, X(NMPP1), 1)

130 CONTINUE
C
C Apply inverse of L (columns N-MP+1 .. N-1).

DO 150 K = NMPP1,NM1
KP1 = K + 1
CALL DAXPY (N-K, X(K), C(KP1,K-NMP), 1, X(KP1), 1)

150 CONTINUE
C
C Apply inverse of U (columns N .. N-MP+1).

DO 220 K = N,NMPP1,-1
X(K) = X(K)*C(K,K-NMP)
T = -X(K)
CALL DAXPY (K-1, T, C(1,K-NMP), 1, X(1), 1)

220 CONTINUE
C
C Apply inverse of U (columns N-MP .. 1).

DO 240 K = NMP,1,-1
X(K) = X(K)*B(MU1,K)
ILO = MAX(1,K-MU)
IBLO = ILO - K + MU1
T = -X(K)
CALL DAXPY (K-ILO, T, B(IBLO,K), 1, X(ILO), 1)

240 CONTINUE
C

RETURN
END

C
subroutine daxpy(n,da,dx,incx,dy,incy)

c
c constant times a vector plus a vector.
c uses unrolled loops for increments equal to one.
c jack dongarra, linpack, 3/11/78.
c
c double precision dx(1),dy(1),da *************************

double precision dx(n),dy(n),da
integer i,incx,incy,ix,iy,m,mp1,n

c
if(n.le.0)return
if (da .eq. 0.0d0) return
if(incx.eq.1.and.incy.eq.1)go to 20

c
c code for unequal increments or equal increments
c not equal to 1
c

ix = 1
iy = 1
if(incx.lt.0)ix = (-n+1)*incx + 1
if(incy.lt.0)iy = (-n+1)*incy + 1
do 10 i = 1,n

dy(iy) = dy(iy) + da*dx(ix)
ix = ix + incx
iy = iy + incy

10 continue
return

c
c code for both increments equal to 1
c
c
c clean-up loop
c

20 m = mod(n,4)
if( m .eq. 0 ) go to 40
do 30 i = 1,m
dy(i) = dy(i) + da*dx(i)

30 continue
if( n .lt. 4 ) return

40 mp1 = m + 1
do 50 i = mp1,n,4

dy(i) = dy(i) + da*dx(i)
dy(i + 1) = dy(i + 1) + da*dx(i + 1)
dy(i + 2) = dy(i + 2) + da*dx(i + 2)
dy(i + 3) = dy(i + 3) + da*dx(i + 3)

50 continue
return
end

C
subroutine dscal(n,da,dx,incx)

c
c scales a vector by a constant.
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c uses unrolled loops for increment equal to one.
c jack dongarra, linpack, 3/11/78.
c
c double precision da,dx(1) ***************************

double precision da,dx(n)

integer i,incx,m,mp1,n,nincx
c

if(n.le.0)return
if(incx.eq.1)go to 20

c
c code for increment not equal to 1
c

nincx = n*incx
do 10 i = 1,nincx,incx

dx(i) = da*dx(i)
10 continue

return
c
c code for increment equal to 1

c
c clean-up loop
c

20 m = mod(n,5)
if( m .eq. 0 ) go to 40
do 30 i = 1,m

dx(i) = da*dx(i)
30 continue

if( n .lt. 5 ) return
40 mp1 = m + 1

do 50 i = mp1,n,5
dx(i) = da*dx(i)
dx(i + 1) = da*dx(i + 1)
dx(i + 2) = da*dx(i + 2)
dx(i + 3) = da*dx(i + 3)
dx(i + 4) = da*dx(i + 4)

50 continue
return
end

B.1.4 Runge-Kutta subroutines

The time integration is accomplished by fourth-order Runge-Kutta.

C-----------------------------------------------------------------------X
C

SUBROUTINE RHS(rhonew,Xmnew,Ymnew,Tenew,iNx)
INCLUDE ’rbcu.h’
DIMENSION rhonew(Nx,Ny+1),Xmnew(Nx,Ny+1)
DIMENSION Ymnew(Nx,Ny+1),Tenew(Nx,Ny+1)
DIMENSION f1(Nx), f2(Ny+1), f1b(Nx),f2b(Ny+1), fx(Nx), fy(Ny+1)

C interpolate new density to other grids
C rhonew -> G4rho

DO i=1,iNx
DO j=1,Ny

f2(j)=rhonew(i,j)
END DO

C CALL PADEFbINTV(f2,f2b,Ny-1)
CALL CubeFbINT(f2,f2b,delta,Ny-1)
DO j=2,Ny

G4rho(i,j)=f2b(j-1)
END DO

END DO
C rhonew -> G3rho

DO j=1,Ny
DO i=1,iNx

f1(i)=rhonew(i,j)
END DO

C CALL PadePbINTV(f1,f1b,iNx)
CALL CubePbINT(f1,f1b,delta,iNx)
G3rho(1,j)=f1b(iNx)
DO i=2,iNx

G3rho(i,j)=f1b(i-1)
END DO

END DO
C G3rho -> G1rho

DO i=1,iNx
DO j=1,Ny

f2(j)=G3rho(i,j)
END DO

C CALL PADEFbINTV(f2,f2b,Ny-1)
CALL CubeFbINT(f2,f2b,delta,Ny-1)
DO j=2,Ny

G1rho(i,j)=f2b(j-1)
END DO

END DO
C determine state variables u,v,e from the "new" ones

DO j=2,Ny
DO i = 1,iNx

u(i,j) = Xmnew(i,j)/G1rho(i,j)
v(i,j) = Ymnew(i,j)/G1rho(i,j)
e(i,j) = Tenew(i,j)/G1rho(i,j)

2 -(u(i,j)*u(i,j)+v(i,j)*v(i,j))/2.0d0
END DO

END DO
C interpolate state variables
C u -> G4u

DO j=1,Ny+1
DO i=1,iNx

f1(i)=u(i,j)
END DO

C CALL PadePbINTV(f1,f1b,iNx)
CALL CubePbINT(f1,f1b,delta,iNx)
DO i=1,iNx

G4u(i,j)=f1b(i)
END DO

END DO
C v -> G4v

DO j=1,Ny+1
DO i=1,iNx

f1(i)=v(i,j)
END DO

C CALL PadePbINTV(f1,f1b,iNx)
CALL CubePbINT(f1,f1b,delta,iNx)
DO i=1,iNx

G4v(i,j)=f1b(i)
END DO

END DO

C e -> G4e
DO j=1,Ny+1

DO i=1,iNx
f1(i)=e(i,j)

END DO
C CALL PadePbINTV(f1,f1b,iNx)

CALL CubePbINT(f1,f1b,delta,iNx)
DO i=1,iNx

G4e(i,j)=f1b(i)
END DO

END DO
C u -> G3u

DO i=1,iNx
DO j=1,Ny+1

f2(j)=u(i,j)
END DO

C CALL PADEFbINTV(f2,f2b,Ny)
CALL CubeFbINT(f2,f2b,delta,Ny)
DO j=1,Ny

G3u(i,j)=f2b(j)
END DO

END DO
C e -> G3e CUSP

DO i=1,iNx
DO j=1,Ny+1

f2(j)=e(i,j)
END DO

C CALL PADEFbINTV(f2,f2b,Ny)
CALL CubeFbINT(f2,f2b,delta,Ny)
DO j=1,Ny

G3e(i,j)=f2b(j)
END DO

END DO
C v -> G3v

DO i=1,iNx
DO j=1,Ny+1

f2(j)=v(i,j)
END DO

C CALL PADEFbINTV(f2,f2b,Ny)
CALL CubeFbINT(f2,f2b,delta,Ny)
DO j=1,Ny

G3v(i,j)=f2b(j)
END DO

END DO
C determine gradients of state variables
C u->ux (periodic 1->2)

DO j=1,Ny+1
DO i=1,iNx

f1(i)=u(i,j)
END DO

C CALL CubePbDxV(f1,fx,delta,iNx)
CALL CubePbDx(f1,fx,delta,iNx)
DO i=1,iNx

ux(i,j)=fx(i)
END DO

END DO
C v -> vx (periodic 1->2)

DO j=1,Ny+1
DO i=1,iNx

f1(i)=v(i,j)
END DO

C CALL CubePbDxV(f1,fx,delta,iNx)
CALL CubePbDx(f1,fx,delta,iNx)
DO i=1,iNx

vx(i,j)=fx(i)
END DO

END DO
C e -> ex (periodic 1->2)

DO j=1,Ny+1
DO i=1,iNx

f1(i)=e(i,j)
END DO

C CALL CubePbDxV(f1,fx,delta,iNx)
CALL CubePbDx(f1,fx,delta,iNx)
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DO i=1,iNx
ex(i,j)=fx(i)

END DO
END DO

C u -> uy (even 1->2)
DO i=1,iNx

DO j=1,Ny+1
f2(j)=u(i,j)

END DO
C CALL CubeFbDxV1(f2,fy,delta,Ny,2)

CALL CubeFbDx(f2,fy,delta,Ny)
DO j=1,Ny

uy(i,j)=fy(j)
END DO

END DO
C e -> ey (even 1->2)

DO i=1,iNx
DO j=1,Ny+1

f2(j)=e(i,j)
END DO

C CALL CubeFbDxV1(f2,fy,delta,Ny,2)
CALL CubeFbDx(f2,fy,delta,Ny)
DO j=1,Ny

ey(i,j)=fy(j)
END DO

END DO
C v -> vy (odd 1->2)

DO i=1,iNx
DO j=1,Ny+1

f2(j)=v(i,j)
END DO

C CALL CubeFbDxV1(f2,fy,delta,Ny,1)
CALL CubeFbDx(f2,fy,delta,Ny)
DO j=1,Ny

vy(i,j)=fy(j)
END DO

END DO
C interpolate velocity gradients to opposite grid
C ux->G2ux

DO i=1,iNx
f2(1)=0.0d0
DO j=2,Ny

f2(j)=ux(i,j)
END DO
f2(Ny+1)=0.0d0

C CALL PADEFbINTV(f2,f2b,Ny)
CALL CubeFbINT(f2,f2b,delta,Ny)
DO j=1,Ny

G2ux(i,j)=f2b(j)
END DO

END DO
C vx->G2vx

DO i=1,iNx
f2(1)=0.0d0
DO j=2,Ny

f2(j)=vx(i,j)
END DO
f2(Ny+1)=0.0d0

C CALL PADEFbINTV(f2,f2b,Ny)
CALL CubeFbINT(f2,f2b,delta,Ny)
DO j=1,Ny

G2vx(i,j)=f2b(j)
END DO

END DO
C uy -> G2uy

DO j=1,Ny
DO i=1,iNx

f1(i)=uy(i,j)
END DO

C CALL PadePbINTV(f1,f1b,iNx)
CALL CubePbINT(f1,f1b,delta,iNx)
DO i=1,iNx

G2uy(i,j)=f1b(i)
END DO

END DO
C vy -> G2vy

DO j=1,Ny
DO i=1,iNx

f1(i)=vy(i,j)
END DO

C CALL PadePbINTV(f1,f1b,iNx)
CALL CubePbINT(f1,f1b,delta,iNx)
DO i=1,iNx

G2vy(i,j)=f1b(i)
END DO

END DO
C G2ux->G3ux

DO j=1,Ny
DO i=1,iNx

f1(i)=G2ux(i,j)
END DO

C CALL PadePbINTV(f1,f1b,iNx)
CALL CubePbINT(f1,f1b,delta,iNx)
G3ux(1,j)=f1b(iNx)
DO i=2,iNx

G3ux(i,j)=f1b(i-1)
END DO

END DO
C G2vx->G3vx

DO j=1,Ny
DO i=1,iNx

f1(i)=G2vx(i,j)
END DO

C CALL PadePbINTV(f1,f1b,iNx)
CALL CubePbINT(f1,f1b,delta,iNx)
G3vx(1,j)=f1b(iNx)
DO i=2,iNx

G3vx(i,j)=f1b(i-1)
END DO

END DO
C G2uy->G4uy

DO i=1,iNx
DO j=1,Ny

f2(j)=G2uy(i,j)
END DO

C CALL PADEFbINTV(f2,f2b,Ny-1)
CALL CubeFbINT(f2,f2b,delta,Ny-1)
DO j=2,Ny

G4uy(i,j)=f2b(j-1)
END DO

END DO
C G2vy->G4vy

DO i=1,iNx
DO j=1,Ny

f2(j)=G2vy(i,j)
END DO

C CALL PADEFbINTV(f2,f2b,Ny-1)
CALL CubeFbINT(f2,f2b,delta,Ny-1)
DO j=2,Ny

G4vy(i,j)=f2b(j-1)
END DO

END DO
C
C determine FLUX values

DO i=1,iNx
Grho(i,1)=0.0d0
Grho(i,Ny+1)=0.0d0
DO j=2,Ny

qx=-rkappa*ex(i,j)
Sxx=(bulk+eta)*ux(i,j)+(bulk-eta)*G4vy(i,j)

1 -G4rho(i,j)*G4e(i,j)
Sxy=eta*(vx(i,j)+G4uy(i,j))
G4Te=G4e(i,j)+(G4u(i,j)*G4u(i,j)+G4v(i,j)*G4v(i,j))/2.0d0
Grho(i,j)=G4rho(i,j)*G4v(i,j)
Fxm(i,j)=G4rho(i,j)*G4u(i,j)*G4u(i,j)-Sxx
Fym(i,j)=G4rho(i,j)*G4u(i,j)*G4v(i,j)-Sxy
Fte(i,j)=G4rho(i,j)*G4u(i,j)*G4Te +

1 qx - G4u(i,j)*Sxx - G4v(i,j)*Sxy
END DO

END DO
DO i=1,iNx

DO j=1,Ny
qy=-rkappa*ey(i,j)
Syy=(bulk+eta)*vy(i,j)+(bulk-eta)*G3ux(i,j)

1 -G3rho(i,j)*G3e(i,j)
Sxy=eta*(G3vx(i,j)+uy(i,j))
G3Te=G3e(i,j)+(G3u(i,j)*G3u(i,j)+G3v(i,j)*G3v(i,j))/2.0d0
Frho(i,j)=G3rho(i,j)*G3u(i,j)
Gxm(i,j)=G3rho(i,j)*G3u(i,j)*G3v(i,j)-Sxy
Gym(i,j)=G3rho(i,j)*G3v(i,j)*G3v(i,j)-Syy
Gte(i,j)=G3rho(i,j)*G3v(i,j)*G3Te +

1 qy - G3u(i,j)*Sxy - G3v(i,j)*Syy
END DO

END DO
C Compute Sources (rho has no source)

DO i=1,iNx
DO j=1,Ny

rhodot(i,j)=0.0d0
Xmdot(i,j)=0.0d0
Ymdot(i,j)=G1rho(i,j)*g
Tedot(i,j)=G1rho(i,j)*v(i,j)*g

END DO
END DO

C Compute divergence of the fluxes
C Frho->rhodot (periodic 1->2)

DO j=1,Ny
DO i=1,iNx

f1(i)=Frho(i,j)
END DO

C CALL CubePbDxV(f1,fx,delta,iNx)
C CALL CubePbDx(f1,fx,delta,iNx)

CALL CDPbDx(f1,fx,delta,iNx)
DO i=1,iNx

RhoDot(i,j)=RhoDot(i,j)-fx(i)
END DO

END DO
C Grho->rhodot (odd 1->2)

DO i=1,iNx
f2(1)=0.0d0
DO j=2,Ny

f2(j)=Grho(i,j)
END DO
f2(Ny+1)=0.0d0

C CALL CubeFbDxV1(f2,fy,delta,Ny,1)
C CALL CubeFbDx(f2,fy,delta,Ny)

CALL CDFbDx(f2,fy,delta,Ny)
DO j=1,Ny

RhoDot(i,j)=RhoDot(i,j)-fy(j)
END DO

END DO
C Fxm-> Xmdot (periodic 2->1)

DO j=2,Ny
DO i=1,iNx

f1(i)=Fxm(i,j)
END DO

C CALL CubePbDxV(f1,fx,delta,iNx)
C CALL CubePbDx(f1,fx,delta,iNx)

CALL CDPbDx(f1,fx,delta,iNx)
XmDot(1,j)=XmDot(1,j)-fx(iNx)
DO i=2,iNx

XmDot(i,j)=XmDot(i,j)-fx(i-1)
END DO

END DO
C Gxm-> Xmdot (odd 2->1)

DO i=1,iNx
DO j=1,Ny

f2(j)=Gxm(i,j)
END DO

C CALL CubeFbDxV2(f2,fy,delta,Ny,1)
C CALL CubeFbDx(f2,fy,delta,Ny-1)

CALL CDFbDx(f2,fy,delta,Ny-1)
DO j=2,Ny

XmDot(i,j)=XmDot(i,j)-fy(j-1)
END DO

END DO
C Fym-> Ymdot (periodic 2->1)

DO j=2,Ny
DO i=1,iNx

f1(i)=Fym(i,j)
END DO

C CALL CubePbDxV(f1,fx,delta,iNx)
C CALL CubePbDx(f1,fx,delta,iNx)

CALL CDPbDx(f1,fx,delta,iNx)
YmDot(1,j)=YmDot(1,j)-fx(iNx)
DO i=2,iNx

YmDot(i,j)=YmDot(i,j)-fx(i-1)
END DO

END DO
C Gym-> Ymdot (even 2->1)

DO i=1,iNx
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DO j=1,Ny
f2(j)=Gym(i,j)

END DO
C CALL CubeFbDxV2(f2,fy,delta,Ny,2)
C CALL CubeFbDx(f2,fy,delta,Ny-1)

CALL CDFbDx(f2,fy,delta,Ny-1)
DO j=2,Ny

YmDot(i,j)=YmDot(i,j)-fy(j-1)
END DO

END DO
C Fte-> Tedot (periodic 2->1)

DO j=2,Ny
DO i=1,iNx

f1(i)=Fte(i,j)
END DO

C CALL CubePbDxV(f1,fx,delta,iNx)
C CALL CubePbDx(f1,fx,delta,iNx)

CALL CDPbDx(f1,fx,delta,iNx)
TeDot(1,j)=TeDot(1,j)-fx(iNx)
DO i=2,iNx

TeDot(i,j)=TeDot(i,j)-fx(i-1)
END DO

END DO
C Gte-> Tedot (odd 2->1)

DO i=1,iNx
DO j=1,Ny

f2(j)=Gte(i,j)
END DO

C CALL CubeFbDxV2(f2,fy,delta,Ny,1)
C CALL CubeFbDx(f2,fy,delta,Ny-1)

CALL CDFbDx(f2,fy,delta,Ny-1)
DO j=2,Ny

TeDot(i,j)=TeDot(i,j)-fy(j-1)
END DO

END DO
RETURN
END

C
C------------------------------------------------------------ -----------X
C

SUBROUTINE RK(dt)
INCLUDE ’rbcu.h’
DIMENSION rhonew(Nx,Ny), Xmnew(Nx,Nn), Ymnew(Nx,Nn), Tenew(Nx,Nn)
DIMENSION rhodot1(Nx,Ny),Xmdot1(Nx,Ny),Ymdot1(Nx,Ny),Tedot1(Nx,Ny)
DIMENSION rhodot2(Nx,Ny),Xmdot2(Nx,Ny),Ymdot2(Nx,Ny),Tedot2(Nx,Ny)
DIMENSION rhodot3(Nx,Ny),Xmdot3(Nx,Ny),Ymdot3(Nx,Ny),Tedot3(Nx,Ny)
DIMENSION rhodot4(Nx,Ny),Xmdot4(Nx,Ny),Ymdot4(Nx,Ny),Tedot4(Nx,Ny)

c write(9,’(A)’) "at RK"
DO i=1,Nx

DO j=1,Ny
rhonew(i,j)=rho(i,j)
Xmnew(i,j) = Xm(i,j)
Ymnew(i,j) = Ym(i,j)
Tenew(i,j) = Te(i,j)

END DO
Xmnew(i,Ny+1) = Xm(i,Ny+1)
Ymnew(i,Ny+1) = Ym(i,Ny+1)
Tenew(i,Ny+1) = Te(i,Ny+1)

END DO
CALL RHS(rhonew,Xmnew,Ymnew,Tenew,Nx)

C
DO i=1,Nx

rhodot1(i,1)=rhodot(i,1)
DO j=2,Ny

rhodot1(i,j)=rhodot(i,j)
Xmdot1 (i,j) =Xmdot(i,j)
Ymdot1 (i,j) =Ymdot(i,j)
Tedot1 (i,j) =Tedot(i,j)

END DO
END DO

1 continue
DO i=1,Nx

rhonew(i,1)=rho(i,1)+dt*rhodot1(i,1)/2.0d0
DO j=2,Ny

rhonew(i,j)=rho(i,j)+dt*rhodot1(i,j)/2.0d0
Xmnew(i,j) = Xm(i,j)+ dt*Xmdot1(i,j)/2.0d0
Ymnew(i,j) = Ym(i,j)+ dt*Ymdot1(i,j)/2.0d0
Tenew(i,j) = Te(i,j)+ dt*Tedot1(i,j)/2.0d0

END DO
END DO

2 continue
CALL RHS(rhonew,Xmnew,Ymnew,Tenew,Nx)

C
DO i=1,Nx

rhodot2(i,1)=rhodot(i,1)
DO j=2,Ny

rhodot2(i,j)=rhodot(i,j)
Xmdot2(i,j) = Xmdot(i,j)
Ymdot2(i,j) = Ymdot(i,j)
Tedot2(i,j) = Tedot(i,j)

END DO
END DO

3 continue
DO i=1,Nx

rhonew(i,1)=rho(i,1)+dt*rhodot2(i,1)/2.0d0
DO j=2,Ny

rhonew(i,j)=rho(i,j)+dt*rhodot2(i,j)/2.0d0
Xmnew(i,j) = Xm(i,j) +dt*Xmdot2(i,j)/2.0d0
Ymnew(i,j) = Ym(i,j) +dt*Ymdot2(i,j)/2.0d0
Tenew(i,j) = Te(i,j) +dt*Tedot2(i,j)/2.0d0

END DO
END DO

4 continue
CALL RHS(rhonew,Xmnew,Ymnew,Tenew,Nx)

C
DO i=1,Nx

rhodot3(i,1)=rhodot(i,1)
DO j=2,Ny

rhodot3(i,j)=rhodot(i,j)
Xmdot3(i,j) = Xmdot(i,j)
Ymdot3(i,j) = Ymdot(i,j)
Tedot3(i,j) = Tedot(i,j)

END DO
END DO

5 continue
DO i=1,Nx

rhonew(i,1)=rho(i,1)+dt*rhodot3(i,1)
DO j=2,Ny

rhonew(i,j)=rho(i,j)+dt*rhodot3(i,j)
Xmnew(i,j) = Xm(i,j) +dt*Xmdot3(i,j)

Ymnew(i,j) = Ym(i,j) +dt*Ymdot3(i,j)
Tenew(i,j) = Te(i,j) +dt*Tedot3(i,j)

END DO
END DO

6 continue
CALL RHS(rhonew,Xmnew,Ymnew,Tenew,Nx)

C
DO i=1,Nx

rhodot4(i,1)=rhodot(i,1)
DO j=2,Ny

rhodot4(i,j)=rhodot(i,j)
Xmdot4(i,j) = Xmdot(i,j)
Ymdot4(i,j) = Ymdot(i,j)
Tedot4(i,j) = Tedot(i,j)

END DO
END DO

7 continue
DO i=1,Nx

rho(i,1)=rho(i,1)+dt*(rhodot1(i,1)+
2 2.0d0*(rhodot2(i,1)+rhodot3(i,1))+rhodot4(i,1))/6.0d0

DO j=2,Ny
rho(i,j)=rho(i,j)+dt*(rhodot1(i,j)+

2 2.0d0*(rhodot2(i,j)+rhodot3(i,j))+rhodot4(i,j))/6.0d0
Xm(i,j)=Xm(i,j)+dt*(Xmdot1(i,j)+

2 2.0d0*(Xmdot2(i,j)+Xmdot3(i,j))+Xmdot4(i,j))/6.0d0
Ym(i,j)=Ym(i,j)+dt*(Ymdot1(i,j)+

2 2.0d0*(Ymdot2(i,j)+Ymdot3(i,j))+Ymdot4(i,j))/6.0d0
Te(i,j)=Te(i,j)+dt*(Tedot1(i,j)+

2 2.0d0*(Tedot2(i,j)+Tedot3(i,j))+Tedot4(i,j))/6.0d0
END DO

END DO
8 continue

RETURN
END

C
C------------------------------------------------------------ -----------X
C

SUBROUTINE RKI(dt)
INCLUDE ’rbcu.h’
DIMENSION rhonew(Nx,Ny), Xmnew(Nx,Nn), Ymnew(Nx,Nn), Tenew(Nx,Nn)
DIMENSION rhodot1(Nx,Ny),Xmdot1(Nx,Ny),Ymdot1(Nx,Ny),Tedot1(Nx,Ny)
DIMENSION rhodot2(Nx,Ny),Xmdot2(Nx,Ny),Ymdot2(Nx,Ny),Tedot2(Nx,Ny)
DIMENSION rhodot3(Nx,Ny),Xmdot3(Nx,Ny),Ymdot3(Nx,Ny),Tedot3(Nx,Ny)
DIMENSION rhodot4(Nx,Ny),Xmdot4(Nx,Ny),Ymdot4(Nx,Ny),Tedot4(Nx,Ny)

Ni=INT(rolls/2.0)
c if(rolls.eq.4.0) Ni=1
c if(rolls.eq.4.0) Ni=2
c if(rolls.eq.6.0) Ni=3

iNx=INT(Nx/Ni)
DO i=1,iNx

DO j=1,Ny
rhonew(i,j)=rho(i,j)
Xmnew(i,j) = Xm(i,j)
Ymnew(i,j) = Ym(i,j)
Tenew(i,j) = Te(i,j)

END DO
Xmnew(i,Ny+1) = Xm(i,Ny+1)
Ymnew(i,Ny+1) = Ym(i,Ny+1)
Tenew(i,Ny+1) = Te(i,Ny+1)

END DO
CALL RHS(rhonew,Xmnew,Ymnew,Tenew,iNx)

C
DO i=1,iNx

rhodot1(i,1)=rhodot(i,1)
DO j=2,Ny

rhodot1(i,j)=rhodot(i,j)
Xmdot1 (i,j) =Xmdot(i,j)
Ymdot1 (i,j) =Ymdot(i,j)
Tedot1 (i,j) =Tedot(i,j)

END DO
END DO

1 continue
DO i=1,iNx

rhonew(i,1)=rho(i,1)+dt*rhodot1(i,1)/2.0d0
DO j=2,Ny

rhonew(i,j)=rho(i,j)+dt*rhodot1(i,j)/2.0d0
Xmnew(i,j) = Xm(i,j)+ dt*Xmdot1(i,j)/2.0d0
Ymnew(i,j) = Ym(i,j)+ dt*Ymdot1(i,j)/2.0d0
Tenew(i,j) = Te(i,j)+ dt*Tedot1(i,j)/2.0d0

END DO
END DO

2 continue
CALL RHS(rhonew,Xmnew,Ymnew,Tenew,iNx)

C
DO i=1,iNx

rhodot2(i,1)=rhodot(i,1)
DO j=2,Ny

rhodot2(i,j)=rhodot(i,j)
Xmdot2(i,j) = Xmdot(i,j)
Ymdot2(i,j) = Ymdot(i,j)
Tedot2(i,j) = Tedot(i,j)

END DO
END DO

3 continue
DO i=1,iNx

rhonew(i,1)=rho(i,1)+dt*rhodot2(i,1)/2.0d0
DO j=2,Ny

rhonew(i,j)=rho(i,j)+dt*rhodot2(i,j)/2.0d0
Xmnew(i,j) = Xm(i,j) +dt*Xmdot2(i,j)/2.0d0
Ymnew(i,j) = Ym(i,j) +dt*Ymdot2(i,j)/2.0d0
Tenew(i,j) = Te(i,j) +dt*Tedot2(i,j)/2.0d0

END DO
END DO

4 continue
CALL RHS(rhonew,Xmnew,Ymnew,Tenew,iNx)

C
DO i=1,iNx

rhodot3(i,1)=rhodot(i,1)
DO j=2,Ny

rhodot3(i,j)=rhodot(i,j)
Xmdot3(i,j) = Xmdot(i,j)
Ymdot3(i,j) = Ymdot(i,j)
Tedot3(i,j) = Tedot(i,j)

END DO
END DO

5 continue
DO i=1,iNx

rhonew(i,1)=rho(i,1)+dt*rhodot3(i,1)
DO j=2,Ny
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rhonew(i,j)=rho(i,j)+dt*rhodot3(i,j)
Xmnew(i,j) = Xm(i,j) +dt*Xmdot3(i,j)
Ymnew(i,j) = Ym(i,j) +dt*Ymdot3(i,j)
Tenew(i,j) = Te(i,j) +dt*Tedot3(i,j)

END DO
END DO

6 continue
CALL RHS(rhonew,Xmnew,Ymnew,Tenew,iNx)

C
DO i=1,iNx

rhodot4(i,1)=rhodot(i,1)
DO j=2,Ny

rhodot4(i,j)=rhodot(i,j)
Xmdot4(i,j) = Xmdot(i,j)
Ymdot4(i,j) = Ymdot(i,j)
Tedot4(i,j) = Tedot(i,j)

END DO
END DO

7 continue
DO i=1,iNx

rho(i,1)=rho(i,1)+dt*(rhodot1(i,1)+
2 2.0d0*(rhodot2(i,1)+rhodot3(i,1))+rhodot4(i,1))/6.0d0

DO j=2,Ny
rho(i,j)=rho(i,j)+dt*(rhodot1(i,j)+

2 2.0d0*(rhodot2(i,j)+rhodot3(i,j))+rhodot4(i,j))/6.0d0

Xm(i,j)=Xm(i,j)+dt*(Xmdot1(i,j)+
2 2.0d0*(Xmdot2(i,j)+Xmdot3(i,j))+Xmdot4(i,j))/6.0d0

Ym(i,j)=Ym(i,j)+dt*(Ymdot1(i,j)+
2 2.0d0*(Ymdot2(i,j)+Ymdot3(i,j))+Ymdot4(i,j))/6.0d0

Te(i,j)=Te(i,j)+dt*(Tedot1(i,j)+
2 2.0d0*(Tedot2(i,j)+Tedot3(i,j))+Tedot4(i,j))/6.0d0

END DO
END DO

c
iNx2=iNx/2
DO i=1,iNx2-1

DO j=1,Ny
rho(iNx2+i,j)=rho(iNx2-i,j)

END DO
END DO
DO i=1,iNx2

DO j=2,Ny
Xm(iNx2+i,j)=-Xm(iNx2-i+1,j)
Ym(iNx2+i,j)=Ym(iNx2-i+1,j)
Te(iNx2+i,j)=Te(iNx2-i+1,j)

END DO
END DO

8 continue
RETURN
END

B.2 Calculation of maximum Lyapunov exponent

The maximum Lyapunov exponent is obtained by determining the Lagrange multiplier

needed to readjust the phase-space distance between a reference trajectory and a perturbed

one.

Cubic Spline on staggered grid for
Continuum mechanics are used on a rectangular grid to
Calculate the Rayleigh-Be’nard flow patterns.
Conservative form of differential equations are used.
c$SAVE_LOCALS ON
c$SYMDEBUG
c$WARNINGS ON
c$OPTION RANGE ON

PROGRAM rbcufd
INCLUDE ’rbculy.h’
CHARACTER*50 LY_FILE /’Rax5/cufd500Mlc.ly’/
CHARACTER*50 STATE_FILE /’Rax5/cufd500Mlc.state’/

C f77 -O -r8 -o xly500 rbly.f

Ra = 500 000.0d0
dr=0.1d0
Npsd=4*Nx*(Ny-1)
factor=dr*Sqrt(1.0d0/(Npsd))
IX=0
IY=0
cn=0.9d0
delta=1.0d0
rKb= 1.0d0
bulk=0.0d0
Th = 1.5d0
Tl = 0.5d0
rLy= Ny*delta
eta=rLy/Sqrt(Ra)
rkappa=eta
g= -rKb*(Th-Tl)/rLy
dt=delta*cn/Sqrt(2.0*Th)
tottime=20000.0d0
maxiter=INT(tottime/dt)
iprfreq=maxiter/5

c$IF(THREE_D_STOKES_FLUID)
bulk=eta/3.0d0

c$ENDIF
C
C initialize variables

CALL INITIAL(STATE_FILE)
CCCCCC
CCCCCC
C START ITERATION

sum=0.0d0
time=0.0d0
DO iter=1,INT(maxiter)

c follow first trajectory
CALL SUBS(rho1,u1,v1,e1,rho,u,v,e)
CALL CONSV()
CALL RK(dt)
CALL SUBS(rho,u,v,e,rho1,u1,v1,e1)

c follow second trajectory
CALL SUBS(rho1,u1,v1,e1,rho,u,v,e)
CALL CONSV()
CALL RK(dt)

CALL SUBS(rho,u,v,e,rho1,u1,v1,e1)
c calculate distance

CALL DIST(dis)
sum=sum+Log(dis/dr)

c rescale distance
CALL RESC(dis)
time=time+dt
if (jmod(iter,100).eq.0) then

exp=(sum)/time
open(14,file=LY_FILE,form=’formatted’,ACCESS=’APPEND’,

2 STATUS= ’UNKNOWN’)
write(14,’(f10.3,3x,f18.14)’) time,exp
close(14)

end if
END DO

CCCCCCCCCCCCCCCCCCC SECOND HALF CCCCCCCCCCCCCCCCCCCCC
c sum=0.0d0
c time=0.0d0
c DO iter=1,INT(maxiter/2)
cc follow first trajectory
c CALL SUBS(rho1,u1,v1,e1,rho,u,v,e)
c CALL CONSV()
c CALL RK(dt)
c CALL SUBS(rho,u,v,e,rho1,u1,v1,e1)
cc follow second trajectory
c CALL SUBS(rho1,u1,v1,e1,rho,u,v,e)
c CALL CONSV()
c CALL RK(dt)
c CALL SUBS(rho,u,v,e,rho1,u1,v1,e1)
cc calculate distance
c CALL DIST(dis)
c sum=sum+Log(dis/dr)
cc rescale distance
c CALL RESC(dis)
c time=time+dt
c if (jmod(iter,100).eq.0) then
c exp=(sum)/time
c open(14,file=LY2_FILE,form=’formatted’,ACCESS=’APPEND’,
c 2 STATUS= ’UNKNOWN’)
c write(14,’(f10.3,3x,f18.14)’) time,exp
c close(14)
c end if
c END DO

STOP
END

C
C-----------------------------------------------------------------------X
C Sets initial and boundary values

SUBROUTINE INITIAL(STATE_FILE)
INCLUDE ’rbculy.h’
CHARACTER*50 STATE_FILE

C initialize grid point values (note period bc in x-direction)
open(22,file=STATE_FILE,form=’formatted’,status=’OLD’)
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DO i=1,Nx
DO j=1,Ny

read (22,’(2i5,4f24.18)’,END=99)ii,jj,rho(i,j),
2 u(i,j),v(i,j),e(i,j)

if(i.ne.ii) write(*,*) "error"
if(j.ne.jj) write(*,*) "error"

END DO
j=Ny+1
read (22,’(2i5,4f24.18)’,END=99)ii,jj,

2 u(i,j),v(i,j),e(i,j)
END DO

99 close(22,STATUS=’KEEP’)
C enforce boundary conditions

DO i=1,Nx
e(i,1)=Th
u(i,1)=0.0d0
v(i,1)=0.0d0
u(i,Ny+1)=0.0d0
v(i,Ny+1)=0.0d0
e(i,Ny+1)=Tl

END DO
CALL SUBS(rho,u,v,e,rho1,u1,v1,e1)

DO i=1,Nx
DO j=1,Ny

rho2(i,j)=rho1(i,j)+factor
END DO

END DO
DO i=1,Nx

DO j=1,Nn
u2(i,j)=u1(i,j)+factor
v2(i,j)=v1(i,j)+factor
e2(i,j)=e1(i,j)+factor

END DO
END DO
RETURN
END

SUBROUTINE DIST(dis)
INCLUDE ’rbculy.h’
dis=0.0d0
DO i=1,Nx

DO j=1,Ny
dis=dis+(rho2(i,j)-rho1(i,j))**2.0d0

END DO
END DO
DO i=1,Nx

DO j=1,Nn
dis=dis+(u2(i,j)-u1(i,j))**2.0d0
dis=dis+(v2(i,j)-v1(i,j))**2.0d0
dis=dis+(e2(i,j)-e1(i,j))**2.0d0

END DO
END DO
dis=Sqrt(dis)
RETURN
END

SUBROUTINE RESC(dis)
INCLUDE ’rbculy.h’
DO i=1,Nx

DO j=1,Ny
rho2(i,j)=rho1(i,j)+(rho2(i,j)-rho1(i,j))*dr/dis

END DO
END DO
DO i=1,Nx

DO j=1,Nn
u2(i,j)=u1(i,j)+(u2(i,j)-u1(i,j))*dr/dis
v2(i,j)=v1(i,j)+(v2(i,j)-v1(i,j))*dr/dis
e2(i,j)=e1(i,j)+(e2(i,j)-e1(i,j))*dr/dis

END DO
END DO
RETURN
END

SUBROUTINE SUBS(rhoa,ua,va,ea,rhob,ub,vb,eb)
INCLUDE ’rbculy.h’
DIMENSION Rhoa(Nx,Nn),Ua(Nx,Nn),Va(Nx,Nn),Ea(Nx,Nn)
DIMENSION Rhob(Nx,Nn),Ub(Nx,Nn),Vb(Nx,Nn),Eb(Nx,Nn)
DO i=1,Nx

DO j=1,Ny
rhob(i,j)=rhoa(i,j)

END DO
END DO
DO i=1,Nx

DO j=1,Nn
ub(i,j)=ua(i,j)
vb(i,j)=va(i,j)
eb(i,j)=ea(i,j)

END DO
END DO
RETURN
END

SUBROUTINE CONSV()
INCLUDE ’rbculy.h’
DIMENSION f1(Nx), f2(Ny+1), f1b(Nx), f2b(Ny+1)

C interpolate density value to all grids
C interpolate new density to other grids
C rho -> G4rho

DO i=1,Nx
DO j=1,Ny

f2(j)=rho(i,j)
END DO
CALL CubeFbINT(f2,f2b,delta,Ny-1)
DO j=2,Ny

G4rho(i,j)=f2b(j-1)
END DO

END DO
C rho -> G3rho

DO j=1,Ny
DO i=1,Nx

f1(i)=rho(i,j)
END DO
CALL CubePbINT(f1,f1b,delta,Nx)
G3rho(1,j)=f1b(Nx)
DO i=2,Nx

G3rho(i,j)=f1b(i-1)
END DO

END DO
C G3rho -> G1rho

DO i=1,Nx
DO j=1,Ny

f2(j)=G3rho(i,j)
END DO
CALL CubeFbINT(f2,f2b,delta,Ny-1)
DO j=2,Ny

G1rho(i,j)=f2b(j-1)
END DO

END DO
C
C initialize "conserved" variables on grid

DO j=1,Ny+1
DO i=1,Nx

Xm(i,j) = G1rho(i,j)*u(i,j)
Ym(i,j) = G1rho(i,j)*v(i,j)
Te(i,j) = G1rho(i,j)*(e(i,j)

& +(u(i,j)*u(i,j)+v(i,j)*v(i,j))/2.0d0)
END DO

END DO
RETURN
END

C
C-----------------------------------------------------------------------X
C

SUBROUTINE RHS(rhonew,Xmnew,Ymnew,Tenew,iNx)
INCLUDE ’rbculy.h’
DIMENSION rhonew(Nx,Ny+1),Xmnew(Nx,Ny+1)
DIMENSION Ymnew(Nx,Ny+1),Tenew(Nx,Ny+1)
DIMENSION f1(Nx), f2(Ny+1), f1b(Nx),f2b(Ny+1), fx(Nx), fy(Ny+1)

C interpolate new density to other grids
C rhonew -> G4rho

DO i=1,iNx
DO j=1,Ny

f2(j)=rhonew(i,j)
END DO

C CALL PADEFbINTV(f2,f2b,Ny-1)
CALL CubeFbINT(f2,f2b,delta,Ny-1)
DO j=2,Ny

G4rho(i,j)=f2b(j-1)
END DO

END DO
C rhonew -> G3rho

DO j=1,Ny
DO i=1,iNx

f1(i)=rhonew(i,j)
END DO

C CALL PadePbINTV(f1,f1b,iNx)
CALL CubePbINT(f1,f1b,delta,iNx)
G3rho(1,j)=f1b(iNx)
DO i=2,iNx

G3rho(i,j)=f1b(i-1)
END DO

END DO
C G3rho -> G1rho

DO i=1,iNx
DO j=1,Ny

f2(j)=G3rho(i,j)
END DO

C CALL PADEFbINTV(f2,f2b,Ny-1)
CALL CubeFbINT(f2,f2b,delta,Ny-1)
DO j=2,Ny

G1rho(i,j)=f2b(j-1)
END DO

END DO
C determine state variables u,v,e from the "new" conserved ones

DO j=2,Ny
DO i = 1,iNx

u(i,j) = Xmnew(i,j)/G1rho(i,j)
v(i,j) = Ymnew(i,j)/G1rho(i,j)
e(i,j) = Tenew(i,j)/G1rho(i,j)

& -(u(i,j)*u(i,j)+v(i,j)*v(i,j))/2.0d0
END DO

END DO
C interpolate state variables
C u -> G4u

DO j=1,Ny+1
DO i=1,iNx

f1(i)=u(i,j)
END DO

C CALL PadePbINTV(f1,f1b,iNx)
CALL CubePbINT(f1,f1b,delta,iNx)
DO i=1,iNx

G4u(i,j)=f1b(i)
END DO

END DO
C v -> G4v

DO j=1,Ny+1
DO i=1,iNx

f1(i)=v(i,j)
END DO

C CALL PadePbINTV(f1,f1b,iNx)
CALL CubePbINT(f1,f1b,delta,iNx)
DO i=1,iNx

G4v(i,j)=f1b(i)
END DO

END DO
C e -> G4e

DO j=1,Ny+1
DO i=1,iNx

f1(i)=e(i,j)
END DO

C CALL PadePbINTV(f1,f1b,iNx)
CALL CubePbINT(f1,f1b,delta,iNx)
DO i=1,iNx

G4e(i,j)=f1b(i)
END DO

END DO
C u -> G3u

DO i=1,iNx
DO j=1,Ny+1

f2(j)=u(i,j)
END DO

C CALL PADEFbINTV(f2,f2b,Ny)
CALL CubeFbINT(f2,f2b,delta,Ny)
DO j=1,Ny

G3u(i,j)=f2b(j)
END DO

END DO
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C e -> G3e CUSP
DO i=1,iNx

DO j=1,Ny+1
f2(j)=e(i,j)

END DO
C CALL PADEFbINTV(f2,f2b,Ny)

CALL CubeFbINT(f2,f2b,delta,Ny)
DO j=1,Ny

G3e(i,j)=f2b(j)
END DO

END DO
C v -> G3v

DO i=1,iNx
DO j=1,Ny+1

f2(j)=v(i,j)
END DO

C CALL PADEFbINTV(f2,f2b,Ny)
CALL CubeFbINT(f2,f2b,delta,Ny)
DO j=1,Ny

G3v(i,j)=f2b(j)
END DO

END DO
C determine gradients of state variables
C u->ux (periodic 1->2)

DO j=1,Ny+1
DO i=1,iNx

f1(i)=u(i,j)
END DO

C CALL CubePbDxV(f1,fx,delta,iNx)
CALL CubePbDx(f1,fx,delta,iNx)
DO i=1,iNx

ux(i,j)=fx(i)
END DO

END DO
C v -> vx (periodic 1->2)

DO j=1,Ny+1
DO i=1,iNx

f1(i)=v(i,j)
END DO

C CALL CubePbDxV(f1,fx,delta,iNx)
CALL CubePbDx(f1,fx,delta,iNx)
DO i=1,iNx

vx(i,j)=fx(i)
END DO

END DO
C e -> ex (periodic 1->2)

DO j=1,Ny+1
DO i=1,iNx

f1(i)=e(i,j)
END DO

C CALL CubePbDxV(f1,fx,delta,iNx)
CALL CubePbDx(f1,fx,delta,iNx)
DO i=1,iNx

ex(i,j)=fx(i)
END DO

END DO
C u -> uy (even 1->2)

DO i=1,iNx
DO j=1,Ny+1

f2(j)=u(i,j)
END DO

C CALL CubeFbDxV1(f2,fy,delta,Ny,2)
CALL CubeFbDx(f2,fy,delta,Ny)
DO j=1,Ny

uy(i,j)=fy(j)
END DO

END DO
C e -> ey (even 1->2)

DO i=1,iNx
DO j=1,Ny+1

f2(j)=e(i,j)
END DO

C CALL CubeFbDxV1(f2,fy,delta,Ny,2)
CALL CubeFbDx(f2,fy,delta,Ny)
DO j=1,Ny

ey(i,j)=fy(j)
END DO

END DO
C v -> vy (odd 1->2)

DO i=1,iNx
DO j=1,Ny+1

f2(j)=v(i,j)
END DO

C CALL CubeFbDxV1(f2,fy,delta,Ny,1)
CALL CubeFbDx(f2,fy,delta,Ny)
DO j=1,Ny

vy(i,j)=fy(j)
END DO

END DO
C interpolate velocity gradients to opposite grid
C ux->G2ux

DO i=1,iNx
f2(1)=0.0d0
DO j=2,Ny

f2(j)=ux(i,j)
END DO
f2(Ny+1)=0.0d0

C CALL PADEFbINTV(f2,f2b,Ny)
CALL CubeFbINT(f2,f2b,delta,Ny)
DO j=1,Ny

G2ux(i,j)=f2b(j)
END DO

END DO
C vx->G2vx

DO i=1,iNx
f2(1)=0.0d0
DO j=2,Ny

f2(j)=vx(i,j)
END DO
f2(Ny+1)=0.0d0

C CALL PADEFbINTV(f2,f2b,Ny)
CALL CubeFbINT(f2,f2b,delta,Ny)
DO j=1,Ny

G2vx(i,j)=f2b(j)
END DO

END DO
C uy -> G2uy

DO j=1,Ny
DO i=1,iNx

f1(i)=uy(i,j)

END DO
C CALL PadePbINTV(f1,f1b,iNx)

CALL CubePbINT(f1,f1b,delta,iNx)
DO i=1,iNx

G2uy(i,j)=f1b(i)
END DO

END DO
C vy -> G2vy

DO j=1,Ny
DO i=1,iNx

f1(i)=vy(i,j)
END DO

C CALL PadePbINTV(f1,f1b,iNx)
CALL CubePbINT(f1,f1b,delta,iNx)
DO i=1,iNx

G2vy(i,j)=f1b(i)
END DO

END DO
C G2ux->G3ux

DO j=1,Ny
DO i=1,iNx

f1(i)=G2ux(i,j)
END DO

C CALL PadePbINTV(f1,f1b,iNx)
CALL CubePbINT(f1,f1b,delta,iNx)
G3ux(1,j)=f1b(iNx)
DO i=2,iNx

G3ux(i,j)=f1b(i-1)
END DO

END DO
C G2vx->G3vx

DO j=1,Ny
DO i=1,iNx

f1(i)=G2vx(i,j)
END DO

C CALL PadePbINTV(f1,f1b,iNx)
CALL CubePbINT(f1,f1b,delta,iNx)
G3vx(1,j)=f1b(iNx)
DO i=2,iNx

G3vx(i,j)=f1b(i-1)
END DO

END DO
C G2uy->G4uy

DO i=1,iNx
DO j=1,Ny

f2(j)=G2uy(i,j)
END DO

C CALL PADEFbINTV(f2,f2b,Ny-1)
CALL CubeFbINT(f2,f2b,delta,Ny-1)
DO j=2,Ny

G4uy(i,j)=f2b(j-1)
END DO

END DO
C G2vy->G4vy

DO i=1,iNx
DO j=1,Ny

f2(j)=G2vy(i,j)
END DO

C CALL PADEFbINTV(f2,f2b,Ny-1)
CALL CubeFbINT(f2,f2b,delta,Ny-1)
DO j=2,Ny

G4vy(i,j)=f2b(j-1)
END DO

END DO
C
C determine FLUX values

DO i=1,iNx
Grho(i,1)=0.0d0
Grho(i,Ny+1)=0.0d0
DO j=2,Ny

qx=-rkappa*ex(i,j)
Sxx=(bulk+eta)*ux(i,j)+(bulk-eta)*G4vy(i,j)

1 -G4rho(i,j)*G4e(i,j)
Sxy=eta*(vx(i,j)+G4uy(i,j))
G4Te=G4e(i,j)+(G4u(i,j)*G4u(i,j)+G4v(i,j)*G4v(i,j))/2.0d0
Grho(i,j)=G4rho(i,j)*G4v(i,j)
Fxm(i,j)=G4rho(i,j)*G4u(i,j)*G4u(i,j)-Sxx
Fym(i,j)=G4rho(i,j)*G4u(i,j)*G4v(i,j)-Sxy
Fte(i,j)=G4rho(i,j)*G4u(i,j)*G4Te +

1 qx - G4u(i,j)*Sxx - G4v(i,j)*Sxy
END DO

END DO
DO i=1,iNx

DO j=1,Ny
qy=-rkappa*ey(i,j)
Syy=(bulk+eta)*vy(i,j)+(bulk-eta)*G3ux(i,j)

1 -G3rho(i,j)*G3e(i,j)
Sxy=eta*(G3vx(i,j)+uy(i,j))
G3Te=G3e(i,j)+(G3u(i,j)*G3u(i,j)+G3v(i,j)*G3v(i,j))/2.0d0
Frho(i,j)=G3rho(i,j)*G3u(i,j)
Gxm(i,j)=G3rho(i,j)*G3u(i,j)*G3v(i,j)-Sxy
Gym(i,j)=G3rho(i,j)*G3v(i,j)*G3v(i,j)-Syy
Gte(i,j)=G3rho(i,j)*G3v(i,j)*G3Te +

1 qy - G3u(i,j)*Sxy - G3v(i,j)*Syy
END DO

END DO
C Compute Sources (rho has no source)

DO i=1,iNx
DO j=1,Ny

rhodot(i,j)=0.0d0
Xmdot(i,j)=0.0d0
Ymdot(i,j)=G1rho(i,j)*g
Tedot(i,j)=G1rho(i,j)*v(i,j)*g

END DO
END DO

C Compute divergence of the fluxes
C Frho->rhodot (periodic 1->2)

DO j=1,Ny
DO i=1,iNx

f1(i)=Frho(i,j)
END DO

C CALL CubePbDxV(f1,fx,delta,iNx)
CALL CubePbDx(f1,fx,delta,iNx)

C CALL CDPbDx(f1,fx,delta,iNx)
DO i=1,iNx

RhoDot(i,j)=RhoDot(i,j)-fx(i)
END DO

END DO
C Grho->rhodot (odd 1->2)

DO i=1,iNx
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f2(1)=0.0d0
DO j=2,Ny

f2(j)=Grho(i,j)
END DO
f2(Ny+1)=0.0d0

C CALL CubeFbDxV1(f2,fy,delta,Ny,1)
CALL CubeFbDx(f2,fy,delta,Ny)

C CALL CDFbDx(f2,fy,delta,Ny)
DO j=1,Ny

RhoDot(i,j)=RhoDot(i,j)-fy(j)
END DO

END DO
C Fxm-> Xmdot (periodic 2->1)

DO j=2,Ny
DO i=1,iNx

f1(i)=Fxm(i,j)
END DO

C CALL CubePbDxV(f1,fx,delta,iNx)
CALL CubePbDx(f1,fx,delta,iNx)

C CALL CDPbDx(f1,fx,delta,iNx)
XmDot(1,j)=XmDot(1,j)-fx(iNx)
DO i=2,iNx

XmDot(i,j)=XmDot(i,j)-fx(i-1)
END DO

END DO
C Gxm-> Xmdot (odd 2->1)

DO i=1,iNx
DO j=1,Ny

f2(j)=Gxm(i,j)
END DO

C CALL CubeFbDxV2(f2,fy,delta,Ny,1)
CALL CubeFbDx(f2,fy,delta,Ny-1)

C CALL CDFbDx(f2,fy,delta,Ny-1)
DO j=2,Ny

XmDot(i,j)=XmDot(i,j)-fy(j-1)
END DO

END DO
C Fym-> Ymdot (periodic 2->1)

DO j=2,Ny
DO i=1,iNx

f1(i)=Fym(i,j)
END DO

C CALL CubePbDxV(f1,fx,delta,iNx)
CALL CubePbDx(f1,fx,delta,iNx)

C CALL CDPbDx(f1,fx,delta,iNx)
YmDot(1,j)=YmDot(1,j)-fx(iNx)
DO i=2,iNx

YmDot(i,j)=YmDot(i,j)-fx(i-1)
END DO

END DO
C Gym-> Ymdot (even 2->1)

DO i=1,iNx
DO j=1,Ny

f2(j)=Gym(i,j)
END DO

C CALL CubeFbDxV2(f2,fy,delta,Ny,2)
CALL CubeFbDx(f2,fy,delta,Ny-1)

C CALL CDFbDx(f2,fy,delta,Ny-1)
DO j=2,Ny

YmDot(i,j)=YmDot(i,j)-fy(j-1)
END DO

END DO
C Fte-> Tedot (periodic 2->1)

DO j=2,Ny
DO i=1,iNx

f1(i)=Fte(i,j)
END DO

C CALL CubePbDxV(f1,fx,delta,iNx)
CALL CubePbDx(f1,fx,delta,iNx)

C CALL CDPbDx(f1,fx,delta,iNx)
TeDot(1,j)=TeDot(1,j)-fx(iNx)
DO i=2,iNx

TeDot(i,j)=TeDot(i,j)-fx(i-1)
END DO

END DO
C Gte-> Tedot (odd 2->1)

DO i=1,iNx
DO j=1,Ny

f2(j)=Gte(i,j)
END DO

C CALL CubeFbDxV2(f2,fy,delta,Ny,1)
CALL CubeFbDx(f2,fy,delta,Ny-1)

C CALL CDFbDx(f2,fy,delta,Ny-1)
DO j=2,Ny

TeDot(i,j)=TeDot(i,j)-fy(j-1)
END DO

END DO
RETURN
END

C
C-----------------------------------------------------------------------X
C

SUBROUTINE RK(dt)
INCLUDE ’rbculy.h’
DIMENSION rhonew(Nx,Ny), Xmnew(Nx,Nn), Ymnew(Nx,Nn), Tenew(Nx,Nn)
DIMENSION rhodot1(Nx,Ny),Xmdot1(Nx,Ny),Ymdot1(Nx,Ny),Tedot1(Nx,Ny)
DIMENSION rhodot2(Nx,Ny),Xmdot2(Nx,Ny),Ymdot2(Nx,Ny),Tedot2(Nx,Ny)
DIMENSION rhodot3(Nx,Ny),Xmdot3(Nx,Ny),Ymdot3(Nx,Ny),Tedot3(Nx,Ny)
DIMENSION rhodot4(Nx,Ny),Xmdot4(Nx,Ny),Ymdot4(Nx,Ny),Tedot4(Nx,Ny)
DO i=1,Nx

DO j=1,Ny
rhonew(i,j)=rho(i,j)
Xmnew(i,j) = Xm(i,j)
Ymnew(i,j) = Ym(i,j)
Tenew(i,j) = Te(i,j)

END DO
Xmnew(i,Ny+1) = Xm(i,Ny+1)
Ymnew(i,Ny+1) = Ym(i,Ny+1)
Tenew(i,Ny+1) = Te(i,Ny+1)

END DO
CALL RHS(rhonew,Xmnew,Ymnew,Tenew,Nx)

C
DO i=1,Nx

rhodot1(i,1)=rhodot(i,1)
DO j=2,Ny

rhodot1(i,j)=rhodot(i,j)
Xmdot1 (i,j) =Xmdot(i,j)
Ymdot1 (i,j) =Ymdot(i,j)
Tedot1 (i,j) =Tedot(i,j)

END DO

END DO
1 continue

DO i=1,Nx
rhonew(i,1)=rho(i,1)+dt*rhodot1(i,1)/2.0d0
DO j=2,Ny

rhonew(i,j)=rho(i,j)+dt*rhodot1(i,j)/2.0d0
Xmnew(i,j) = Xm(i,j)+ dt*Xmdot1(i,j)/2.0d0
Ymnew(i,j) = Ym(i,j)+ dt*Ymdot1(i,j)/2.0d0
Tenew(i,j) = Te(i,j)+ dt*Tedot1(i,j)/2.0d0

END DO
END DO

2 continue
CALL RHS(rhonew,Xmnew,Ymnew,Tenew,Nx)

C
DO i=1,Nx

rhodot2(i,1)=rhodot(i,1)
DO j=2,Ny

rhodot2(i,j)=rhodot(i,j)
Xmdot2(i,j) = Xmdot(i,j)
Ymdot2(i,j) = Ymdot(i,j)
Tedot2(i,j) = Tedot(i,j)

END DO
END DO

3 continue
DO i=1,Nx

rhonew(i,1)=rho(i,1)+dt*rhodot2(i,1)/2.0d0
DO j=2,Ny

rhonew(i,j)=rho(i,j)+dt*rhodot2(i,j)/2.0d0
Xmnew(i,j) = Xm(i,j) +dt*Xmdot2(i,j)/2.0d0
Ymnew(i,j) = Ym(i,j) +dt*Ymdot2(i,j)/2.0d0
Tenew(i,j) = Te(i,j) +dt*Tedot2(i,j)/2.0d0

END DO
END DO

4 continue
CALL RHS(rhonew,Xmnew,Ymnew,Tenew,Nx)

C
DO i=1,Nx

rhodot3(i,1)=rhodot(i,1)
DO j=2,Ny

rhodot3(i,j)=rhodot(i,j)
Xmdot3(i,j) = Xmdot(i,j)
Ymdot3(i,j) = Ymdot(i,j)
Tedot3(i,j) = Tedot(i,j)

END DO
END DO

5 continue
DO i=1,Nx

rhonew(i,1)=rho(i,1)+dt*rhodot3(i,1)
DO j=2,Ny

rhonew(i,j)=rho(i,j)+dt*rhodot3(i,j)
Xmnew(i,j) = Xm(i,j) +dt*Xmdot3(i,j)
Ymnew(i,j) = Ym(i,j) +dt*Ymdot3(i,j)
Tenew(i,j) = Te(i,j) +dt*Tedot3(i,j)

END DO
END DO

6 continue
CALL RHS(rhonew,Xmnew,Ymnew,Tenew,Nx)

C
DO i=1,Nx

rhodot4(i,1)=rhodot(i,1)
DO j=2,Ny

rhodot4(i,j)=rhodot(i,j)
Xmdot4(i,j) = Xmdot(i,j)
Ymdot4(i,j) = Ymdot(i,j)
Tedot4(i,j) = Tedot(i,j)

END DO
END DO

7 continue
DO i=1,Nx

rho(i,1)=rho(i,1)+dt*(rhodot1(i,1)+
& 2.0d0*(rhodot2(i,1)+rhodot3(i,1))+rhodot4(i,1))/6.0d0

DO j=2,Ny
rho(i,j)=rho(i,j)+dt*(rhodot1(i,j)+

& 2.0d0*(rhodot2(i,j)+rhodot3(i,j))+rhodot4(i,j))/6.0d0
Xm(i,j)=Xm(i,j)+dt*(Xmdot1(i,j)+

& 2.0d0*(Xmdot2(i,j)+Xmdot3(i,j))+Xmdot4(i,j))/6.0d0
Ym(i,j)=Ym(i,j)+dt*(Ymdot1(i,j)+

& 2.0d0*(Ymdot2(i,j)+Ymdot3(i,j))+Ymdot4(i,j))/6.0d0
Te(i,j)=Te(i,j)+dt*(Tedot1(i,j)+

& 2.0d0*(Tedot2(i,j)+Tedot3(i,j))+Tedot4(i,j))/6.0d0
END DO

END DO
8 continue

RETURN
END

C
C-----------------------------------------------------------------------X
C

subroutine TRIDIA(a,b,c,r,u,n)
C subroutine tridia solves system Au=r where A is tridiagonal
C with major and minor diags c and a resp. and main diag b.
C b is diagonal, a/c are lower/upper off-diagonals

IMPLICIT REAL*8 (A-H,O-Z)
parameter (nmax=1000)
dimension gam(nmax),a(n),b(n),c(n),r(n),u(n)
if(b(1).eq.0.0d0) pause
bet=b(1)
u(1) = r(1)/bet
do 11 j=2,n

gam(j)=c(j-1)/bet
bet=b(j)-a(j)*gam(j)
if(bet.eq.0.0d0) then

write(*,*) j,a(j),b(j),c(j)
pause

end if
u(j)=(r(j)-a(j)*u(j-1))/bet

11 continue
do 12 j=n-1,1,-1

u(j)=u(j)-gam(j+1)*u(j+1)
12 continue

return
end

C
C-----------------------------------------------------------------------X
C*****Random Number Generator

FUNCTION RANDOM(IX,IY)
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER (I-N)
I = 1029*IX+1731
J = I + 1029*IY + 507*IX - 1731
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IX = MOD(I,2048)
J = J + (I-IX)/2048
IY = MOD(J,2048)
RANDOM = (IX+2048*IY)/4194304.0d0
RETURN
END

C
C-----------------------------------------------------------------------X
C

subroutine CubePbDX(f,fp,h,n)
C subroutine that determines derivatives with periodic b.c’s
C assumes function is on grid and derivative is on cell center
C otherwise the index must be adjusted
C ASSUMES M=0 at endpoints
C USES DBTDLU and DBTDSOL

IMPLICIT REAL*8 (A-H,O-Z)
dimension f(n),fp(n)
dimension am(n,n), bm(3,n-1), rm(1,n-1), cm(n,1), xm(n)
data ldb/3/, ldr/1/, ml/1/, mu/1/, mp/1/
ldc=n

c Set elements of matrix A in normal (full) form
do 20 j = 1,n

do 10 i = 1,n
if (j-i .le. mu .and. i-j .le. ml) then

am(i,j) = 1.0d0
else

am(i,j) = 0.0d0
endif

10 continue
am(j,j) = 4.0d0

20 continue
am(1,n)=1.0d0
am(n,1)=1.0d0

c Load b, r, c from A
m = ml + mu + 1
nmp = n - mp
do 50 j = 1,nmp

do 30 k = 1,m
i = k + j - mu - 1

30 if (i .ge. 1 .and. i .le. nmp) bm(k,j) = am(i,j)
do 40 k = 1,mp

40 rm(k,j) = am(k+nmp,j)
50 continue

do 70 k = 1,mp
do 60 i = 1,n

60 cm(i,k) = am(i,k+nmp)
70 continue
c
C SETUP RHS:

xm(1)=(6.0d0/h/h)*(f(2)-2.0d0*f(1)+f(N))
DO i=2,N-1

xm(i)=(6.0d0/h/h)*(f(i+1)-2.0d0*f(i)+f(i-1))
END DO
xm(N)=(6.0d0/h/h)*(f(1)-2.0d0*f(N)+f(N-1))

c
c Call solver routines and print results

call dbbfa (n, ml, mu, mp, bm, rm, cm, ldb, ldr, ldc, ier)
if (ier .ne. 0) then

write(6,130) ier
130 format(//’Error return from dbbFA. ier =’,i4)

stop
endif
call dbbsl (n, ml, mu, mp, bm, rm, cm, ldb, ldr, ldc, xm)
DO i=1,n-1

fp(i)=(f(i+1)-f(i))/h - (h/24.0d0)*(xm(i+1)-xm(i))
END DO
fp(n)=(f(1)-f(n))/h - (h/24.0d0)*(xm(1)-xm(n))
RETURN
end

C
C-----------------------------------------------------------------------X
C

subroutine CDPbDX(f,fp,h,n)
C CENTERED DIFFERENCE DIVERGENCE FOR PERIODIC BOUNDARIES
C subroutine that determines derivatives with periodic b.c’s
C assumes function is on grid and derivative is on cell center
C otherwise the index must be adjusted

IMPLICIT REAL*8 (A-H,O-Z)
dimension f(n),fp(n)
DO i=1,n-1

fp(i)=(f(i+1)-f(i))/h
END DO
fp(n)=(f(1)-f(n))/h
RETURN
end

C
C-----------------------------------------------------------------------X
C

subroutine CubePbINT(f,fbar,h,n)
C subroutine that determines derivatives with periodic b.c’s
C assumes function is on grid and derivative is on cell center
C otherwise the index must be adjusted
C ASSUMES M=0 at endpoints
C USES DBTDLU and DBTDSOL

IMPLICIT REAL*8 (A-H,O-Z)
dimension f(n),fbar(n)
dimension am(n,n), bm(3,n-1), rm(1,n-1), cm(n,1), xm(n)
data ldb/3/, ldr/1/, ml/1/, mu/1/, mp/1/
ldc=n

c Set elements of matrix A in normal (full) form
do 20 j = 1,n

do 10 i = 1,n
if (j-i .le. mu .and. i-j .le. ml) then

am(i,j) = 1.0d0
else

am(i,j) = 0.0d0
endif

10 continue
am(j,j) = 4.0d0

20 continue
am(1,n)=1.0d0
am(n,1)=1.0d0

c Load b, r, c from A
m = ml + mu + 1
nmp = n - mp
do 50 j = 1,nmp

do 30 k = 1,m
i = k + j - mu - 1

30 if (i .ge. 1 .and. i .le. nmp) bm(k,j) = am(i,j)
do 40 k = 1,mp

40 rm(k,j) = am(k+nmp,j)
50 continue

do 70 k = 1,mp
do 60 i = 1,n

60 cm(i,k) = am(i,k+nmp)
70 continue

c
C SETUP RHS:

xm(1)=(6.0d0/h/h)*(f(2)-2.0d0*f(1)+f(N))
DO i=2,N-1

xm(i)=(6.0d0/h/h)*(f(i+1)-2.0d0*f(i)+f(i-1))
END DO
xm(N)=(6.0d0/h/h)*(f(1)-2.0d0*f(N)+f(N-1))

c
c Call solver routines and print results

call dbbfa (n, ml, mu, mp, bm, rm, cm, ldb, ldr, ldc, ier)
if (ier .ne. 0) then

write(6,130) ier
130 format(//’Error return from dbbFA. ier =’,i4)

stop
endif
call dbbsl (n, ml, mu, mp, bm, rm, cm, ldb, ldr, ldc, xm)
DO i=1,n-1

fbar(i)=(f(i+1)+f(i))/2.0d0 - (h*h/16.0d0)*(xm(i+1)+xm(i))
END DO
fbar(n)=(f(1)+f(n))/2.0d0 - (h*h/16.0d0)*(xm(1)+xm(n))
RETURN
end

C
C-----------------------------------------------------------------------X
C

subroutine CubeFbDx(f,fy,h,n)
C differentiates with fixed b.c’s
C ip=1 -> odd function, ip=2 -> even function

IMPLICIT REAL*8 (A-H,O-Z)
dimension f(n+1),fy(n), rMom(n+1)
dimension am(n+1),bm(n+1),cm(n+1),rm(n+1)

C SETUP RHS:
rm(1)=0.0d0
DO i=2,N

rm(i)=(6.0d0/h/h)*(f(i+1)-2.0d0*f(i)+f(i-1))
END DO
rm(N+1)=0.0d0

C SETUP LHS:
am(1)=0.0d0
bm(1)=4.0d0
cm(1)=0.0d0
DO i=2,N

am(i)=1.0d0
bm(i)=4.0d0
cm(i)=1.0d0

END DO
am(N+1)=0.0d0
bm(N+1)=4.0d0
cm(N+1)=0.0d0

C SOLVE SYSTEM:
call tridia(am,bm,cm,rm,rMom,N+1)
DO i=1,N

fy(i)=(f(i+1)-f(i))/h - (h/24.0d0)*(rMom(i+1)-rMom(i))
END DO
RETURN
END

C
C-----------------------------------------------------------------------X
C

subroutine CDFbDx(f,fy,h,n)
C CENTERED DIFFERENCE DIVERGENCE FOR FIXED BOUNDARIES
C differentiates with fixed b.c’s

IMPLICIT REAL*8 (A-H,O-Z)
dimension f(n+1),fy(n)
DO i=1,N

fy(i)=(f(i+1)-f(i))/h
END DO
RETURN
END

C
C-----------------------------------------------------------------------X
C

subroutine CubeFbInt(f,fbar,h,n)
C interpolation with fixed b.c’s

IMPLICIT REAL*8 (A-H,O-Z)
dimension f(n+1),fbar(n), rMom(n+1)
dimension am(n+1),bm(n+1),cm(n+1),rm(n+1)

C SETUP RHS:
rm(1)=0.0d0
DO i=2,N

rm(i)=(6.0d0/h/h)*(f(i+1)-2.0d0*f(i)+f(i-1))
END DO
rm(N+1)=0.0d0

C SETUP LHS:
am(1)=0.0d0
bm(1)=4.0d0
cm(1)=0.0d0
DO i=2,N

am(i)=1.0d0
bm(i)=4.0d0
cm(i)=1.0d0

END DO
am(N+1)=0.0d0
bm(N+1)=4.0d0
cm(N+1)=0.0d0

c$IF(FD)
c DO i=1,N
c fbar(i)=(f(i+1)+f(i))/2.0d0
c END DO
c$ENDIF
c$IF(CUBIC)
C SOLVE SYSTEM:

call tridia(am,bm,cm,rm,rMom,N+1)
DO i=1,N

fbar(i)=(f(i+1)+f(i))/2.0d0 - (h*h/16.0d0)*(rMom(i+1)+rMom(i))
END DO

c$ENDIF
RETURN
END

C
C-----------------------------------------------------------------------
C

SUBROUTINE DBBFA (N, ML, MU, MP, B, R, C, LDB, LDR, LDC, IER)
DOUBLE PRECISION B(LDB,*), R(LDR,*), C(LDC,*)
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C-----------------------------------------------------------------------
C LU factorization of border-banded matrix without pivoting.
C Double precision version.
C Call DBBFA to factor a given matrix A, then call DBBSL to solve
C a system Ax = b with given vector b.
C
C Input arguments:
C
C N = order of matrix
C ML = lower half-bandwidth (.LT. N)
C MU = upper half-bandwidth (.LT. N)
C MP = width of border at right and lower edges (.LE. N).
C B = LDB by N-MP array with band elements (LDB .ge. ML+MU+1).
C Element a(i,j) is to be stored in B(I-J+MU+1,J) for
C 1 .LE. I,J .LE. N-MP and -ML .LE. J-I .LE. MU.
C R = LDR by N-MP array with lower edge elements (LDR .GE. MP).
C a(i,j) is to be stored in R(I-N+MP,J) for
C N-MP+1 .LE. I .LE. N and 1 .LE. J .LE. N-MP.
C C = LDC by MP array with right edge elements (LDC .GE. N).
C a(i,j) is to be stored in C(I,J-N+MP) for
C 1 .LE. I .LE. N and N-MP+1 .LE. J .LE. N.
C LDB = declared first dimension of B, must be .GE. ML+MU+1.
C LDR = declared first dimension of R, must be .GE. MP.
C LDC = declared first dimension of C, must be .GE. N.
C
C
C Output arguments:
C
C IER = error flag.
C IER = -1 means integer input parameters were illegal.
C IER = 0 means the LU factorization was successful.
C IER = K .GT. 1 means the K-th pivot was found to be zero.
C B, R, C arrays contain a representation of the L and U factors.
C
C Routines called: DSCAL, DAXPY (from the BLAS collection)
C-----------------------------------------------------------------------

DOUBLE PRECISION ONE, T, ZERO
DATA ONE/1.0D0/, ZERO/0.0D0/

C
C Test inputs.

IF (N .LE. 0) GO TO 500
IF (ML .GE. N .OR. MU .GE. N .OR. MP .GT. N) GO TO 500
IF (LDB .LT. ML+MU+1 .OR. LDR .LT. MP .OR. LDC .LT. N) GO TO 500

C
C Set auxiliary constants.

NM1 = N - 1
NMP = N - MP
NMPP1 = NMP + 1
MU1 = MU + 1
MU2 = MU + 2
IER = 0

C
C Generate LU factors of band and lower border (stages 1 .. N-MP).

DO 160 K = 1,NMP
KP1 = K + 1

C Form K-th pivot.
T = B(MU1,K)
IF (T .EQ. ZERO) GO TO 550
T = ONE/T
B(MU1,K) = T

C Form L elements in band.
LEN1 = MIN(NMP-K,ML)
T = -T
CALL DSCAL (LEN1, T, B(MU2,K), 1)

C Form L elements in lower border.
CALL DSCAL (MP, T, R(1,K), 1)

C Update matrix elements in band and lower border.
JHI = MIN(NMP,K+MU)
DO 150 J = KP1,JHI
T = B(K-J+MU1,J)
CALL DAXPY (LEN1, T, B(MU2,K), 1, B(KP1-J+MU1,J), 1)
CALL DAXPY (MP, T, R(1,K), 1, R(1,J), 1)

150 CONTINUE
160 CONTINUE

C
C Update matrix elements in right border from stages 1 .. N-MP.

DO 240 K = 1,NMP
KP1 = K + 1
DO 230 J = NMPP1,N

T = C(K,J-NMP)
LEN1 = MIN(NMP-K,ML)
CALL DAXPY (LEN1, T, B(MU2,K), 1, C(KP1,J-NMP), 1)
CALL DAXPY (MP, T, R(1,K), 1, C(NMPP1,J-NMP), 1)

230 CONTINUE
240 CONTINUE
C
C Generate LU factors in lower right block (stages N-MP+1 .. N-1).
C

DO 340 K = NMPP1,NM1
KP1 = K + 1

C Form K-th pivot.
T = C(K,K-NMP)
IF (T .EQ. ZERO) GO TO 550
T = ONE/T
C(K,K-NMP) = T

C Form L elements.
T = -T
CALL DSCAL (N-K, T, C(KP1,K-NMP), 1)

C Update matrix elements.
DO 330 J = KP1,N
T = C(K,J-NMP)
CALL DAXPY (N-K, T, C(KP1,K-NMP), 1, C(KP1,J-NMP), 1)

330 CONTINUE
340 CONTINUE
C
C Form last pivot and return

IF (MP .EQ. 0) RETURN
K = N
T = C(N,MP)
IF (T .EQ. ZERO) GO TO 550
C(N,MP) = ONE/T
RETURN

C
C Error return on illegal input.
500 IER = -1

RETURN
C Error return on zero pivot.
550 IER = K

RETURN
END

C
SUBROUTINE DBBSL (N, ML, MU, MP, B, R, C, LDB, LDR, LDC, X)
DOUBLE PRECISION B(LDB,*), R(LDR,*), C(LDC,*), X(*)

C-----------------------------------------------------------------------
C Solution of border-banded matrix without pivoting, given the LU
C factorization by DBBFA. Assumes factorization was successful and
C factor information has not been changed. For systems Ax = b,
C with A factored by DBBFA, call DBBSL once for each RHS vector b.
C
C Input arguments:
C
C N = order of matrix
C ML = lower half-bandwidth
C MU = upper half-bandwidth
C MP = width of border at right and lower edges
C B, R, C = arrays as output by factorization
C LDB, LDR, LDC = declared first dimension of B, R, C, respectively
C (assumed to be the same as in factorization)
C X = array of length .GE. N containing right-hand side vector b
C
C
C Output arguments:
C
C X = solution vector
C
C Routines called: DSCAL, DAXPY (from the BLAS collection)
C-----------------------------------------------------------------------

DOUBLE PRECISION T
C Set auxiliary constants.

NM1 = N - 1
NMP = N - MP
NMPP1 = NMP + 1
MU1 = MU + 1
MU2 = MU + 2

C
C Apply inverse of L (columns 1 .. N-MP).

DO 130 K = 1,NMP
KP1 = K + 1
LEN1 = MIN(NMP-K,ML)
CALL DAXPY (LEN1, X(K), B(MU2,K), 1, X(KP1), 1)
CALL DAXPY (MP, X(K), R(1,K), 1, X(NMPP1), 1)

130 CONTINUE
C
C Apply inverse of L (columns N-MP+1 .. N-1).

DO 150 K = NMPP1,NM1
KP1 = K + 1
CALL DAXPY (N-K, X(K), C(KP1,K-NMP), 1, X(KP1), 1)

150 CONTINUE
C
C Apply inverse of U (columns N .. N-MP+1).

DO 220 K = N,NMPP1,-1
X(K) = X(K)*C(K,K-NMP)
T = -X(K)
CALL DAXPY (K-1, T, C(1,K-NMP), 1, X(1), 1)

220 CONTINUE
C
C Apply inverse of U (columns N-MP .. 1).

DO 240 K = NMP,1,-1
X(K) = X(K)*B(MU1,K)
ILO = MAX(1,K-MU)
IBLO = ILO - K + MU1
T = -X(K)
CALL DAXPY (K-ILO, T, B(IBLO,K), 1, X(ILO), 1)

240 CONTINUE
C

RETURN
END

C
subroutine daxpy(n,da,dx,incx,dy,incy)

c
c constant times a vector plus a vector.
c uses unrolled loops for increments equal to one.
c jack dongarra, linpack, 3/11/78.
c
c double precision dx(1),dy(1),da *************************

double precision dx(n),dy(n),da
integer i,incx,incy,ix,iy,m,mp1,n

c
if(n.le.0)return
if (da .eq. 0.0d0) return
if(incx.eq.1.and.incy.eq.1)go to 20

c
c code for unequal increments or equal increments
c not equal to 1
c

ix = 1
iy = 1
if(incx.lt.0)ix = (-n+1)*incx + 1
if(incy.lt.0)iy = (-n+1)*incy + 1
do 10 i = 1,n

dy(iy) = dy(iy) + da*dx(ix)
ix = ix + incx
iy = iy + incy

10 continue
return

c
c code for both increments equal to 1
c
c
c clean-up loop
c

20 m = mod(n,4)
if( m .eq. 0 ) go to 40
do 30 i = 1,m
dy(i) = dy(i) + da*dx(i)

30 continue
if( n .lt. 4 ) return

40 mp1 = m + 1
do 50 i = mp1,n,4

dy(i) = dy(i) + da*dx(i)
dy(i + 1) = dy(i + 1) + da*dx(i + 1)
dy(i + 2) = dy(i + 2) + da*dx(i + 2)
dy(i + 3) = dy(i + 3) + da*dx(i + 3)

50 continue
return
end

C
subroutine dscal(n,da,dx,incx)

c
c scales a vector by a constant.
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c uses unrolled loops for increment equal to one.
c jack dongarra, linpack, 3/11/78.
c
c double precision da,dx(1) ***************************

double precision da,dx(n)

integer i,incx,m,mp1,n,nincx
c

if(n.le.0)return
if(incx.eq.1)go to 20

c
c code for increment not equal to 1
c

nincx = n*incx
do 10 i = 1,nincx,incx

dx(i) = da*dx(i)
10 continue

return
c
c code for increment equal to 1

c
c clean-up loop
c

20 m = mod(n,5)
if( m .eq. 0 ) go to 40
do 30 i = 1,m

dx(i) = da*dx(i)
30 continue

if( n .lt. 5 ) return
40 mp1 = m + 1

do 50 i = mp1,n,5
dx(i) = da*dx(i)
dx(i + 1) = da*dx(i + 1)
dx(i + 2) = da*dx(i + 2)
dx(i + 3) = da*dx(i + 3)
dx(i + 4) = da*dx(i + 4)

50 continue
return
end

B.3 Calculation of internal entropy production

The local internal entropy production is calculated and integrated over the entire

volume.

Cubic Spline on staggered grid for
Continuum mechanics are used on a rectangular grid to
Calculate the Rayleigh-Be’nard flow patterns.
Conservative form of differential equations are used.

PROGRAM entro
INCLUDE ’rbcu.h’

C set up output data files
C name output files
c

CHARACTER*50 IN_STATE_FILE /’Rax5/cufd500Mlc.state’/
CHARACTER*50 E_FILE /’Rax5/cufd500Mlc.e’/

C >>>>>>>>>>>>>>> f77 -O -r8 -o xen500 entro.f

Ra = 500 000.0d0
IX=0
IY=0
cn=0.9d0
delta=1.0d0
rKb= 1.0d0
bulk=0.0d0
Th = 1.5d0
Tl = 0.5d0
rLy= Ny*delta
rLx= 2.0d0*rLy
Pr = 1.0d0
eta= rLy*Sqrt(Pr/Ra)
rkappa=eta/Pr
g = -rKb*(Th-Tl)/rLy
dt=delta*cn/Sqrt(2.0*Th)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
tottime=20000.0d0
maxiter=INT(tottime/dt)
iprfreq=maxiter/1000

c$IF(THREE_D_STOKES_FLUID)
bulk=eta/3.0d0

c$ENDIF
C
C initialize variables

CALL INITIAL(IN_STATE_FILE,dt)
CCCCCC
CCCCCC
C START ITERATION

DO iter=1,maxiter
CALL RK(dt)
time=time+dt

c$IF(PRINT_E_FILE)
C output to ke grid center data file

if (jmod(iter,iprfreq).eq.0) then
C*****************************************************************

totENT=0.0d0
totENM=0.0d0
DO i=1,Nx

ip1=i+1
if(i.eq.Nx) ip1=1
DO j=1,Ny

G2T=(e(i,j)+e(i,j+1)+e(ip1,j)+e(ip1,j+1))/4.0d0
G2T2=G2T*G2T
totENT=totENT- (Fte(i,j)*ex(i,j) + Fte(i,j+1)*ex(i,j+1)

2 + Gte(i,j)*ey(i,j) + Gte(ip1,j)*ey(ip1,j))
3 /(2.0d0*G2T2)

totENM=totENM+ (eta*(G2ux(i,j)-G2vy(i,j))**2
2 + eta*(G2uy(i,j)+G2vx(i,j))**2
3 + bulk*(G2ux(i,j)+G2vy(i,j))**2
4 )/(G2T)

c totENM=totENM+ (2.0d0*eta*(G2ux(i,j)**2+G2vy(i,j)**2)

c 2 + eta*(G2uy(i,j)+G2vx(i,j))**2
c 3 + bulk*(G2ux(i,j)+G2vy(i,j))**2
c 4 )/G2T
c 4 - Rho(i,j)*G2T*(G2ux(i,j)+G2vy(i,j)))/G2T
c totENM=totENM+ (eta*(G2ux(i,j)-G2vy(i,j))**2
c 2 + eta*(G2uy(i,j)-G2vx(i,j))**2
c 3 + bulk*(G2ux(i,j)+G2vy(i,j))**2
c 4 - Rho(i,j)*G2T*(G2ux(i,j)+G2vy(i,j)))/G2T

END DO
END DO

C*****************************************************************
open(14,file=E_FILE,form=’formatted’,ACCESS=’APPEND’

2 ,STATUS= ’UNKNOWN’)
write(14,’(f10.3,2(3x,f18.14))’) time, totENT, totENM
close(14)

end if
c$ENDIF

END DO
STOP
END

C
C-----------------------------------------------------------------------X
C Sets initial and boundary values

SUBROUTINE INITIAL(IN_STATE_FILE,dt)
INCLUDE ’rbcu.h’
CHARACTER*50 IN_STATE_FILE
DIMENSION f1(Nx), f2(Ny+1), f1b(Nx), f2b(Ny+1)

C initialize grid point values (note period bc in x-direction)
c$IF(READ_STATE_FILE)

open(22,file=IN_STATE_FILE,form=’formatted’,status=’OLD’)
DO i=1,Nx

DO j=1,Ny
read (22,’(2i5,4f24.18)’,END=99)ii,jj,rho(i,j),

2 u(i,j),v(i,j),e(i,j)
if(i.ne.ii) write(*,*) "error"
if(j.ne.jj) write(*,*) "error"

END DO
j=Ny+1
read (22,’(2i5,4f24.18)’,END=99)ii,jj,

2 u(i,j),v(i,j),e(i,j)
END DO

99 close(22,STATUS=’KEEP’)
C enforce boundary conditions

DO i=1,Nx
e(i,1)=Th
u(i,1)=0.0d0
v(i,1)=0.0d0
u(i,Ny+1)=0.0d0
v(i,Ny+1)=0.0d0
e(i,Ny+1)=Tl

END DO
c$ENDIF
C interpolate density value to all grids
C interpolate new density to other grids
C rho -> G4rho

DO i=1,Nx
DO j=1,Ny

f2(j)=rho(i,j)
END DO
CALL CubeFbINT(f2,f2b,delta,Ny-1)
DO j=2,Ny

G4rho(i,j)=f2b(j-1)
END DO

END DO
C rho -> G3rho

DO j=1,Ny



170

DO i=1,Nx
f1(i)=rho(i,j)

END DO
CALL CubePbINT(f1,f1b,delta,Nx)
G3rho(1,j)=f1b(Nx)
DO i=2,Nx

G3rho(i,j)=f1b(i-1)
END DO

END DO
C G3rho -> G1rho

DO i=1,Nx
DO j=1,Ny

f2(j)=G3rho(i,j)
END DO

C CALL PADEFbINTV(f2,f2b,Ny-1)
CALL CubeFbINT(f2,f2b,delta,Ny-1)
DO j=2,Ny

G1rho(i,j)=f2b(j-1)
END DO

END DO

C
C initialize "conserved" variables on grid

DO j=1,Ny+1
DO i=1,Nx

Xm(i,j) = G1rho(i,j)*u(i,j)
Ym(i,j) = G1rho(i,j)*v(i,j)
Te(i,j) = G1rho(i,j)*(e(i,j)

& +(u(i,j)*u(i,j)+v(i,j)*v(i,j))/2.0d0)
END DO

END DO
RETURN
END

C
C-----------------------------------------------------------------------X
C

INCLUDE ’rk.sub.f’

INCLUDE ’cubic.sub.f’
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Appendix C

MATHEMATICA scripts

C.1 Velocity and temperature field plots

This MATHEMATICA script generates a plot of the temperature and velocity

fields. The velocity is represented as black arrows whose length is proportional to the

normalized velocity (max |v| ≡ 1.0. The color is represented as a background color from

red (hot) to blue (cold).

Needs["Graphics‘PlotField‘"]
hot[val_] = RGBColor[Sin[val*Pi/2.0],0.5*Sin[val*Pi],Cos[val*Pi/2.0]];

<<new/cufd150MM6hc.dat

dm=Max[Abs[dat]]; dat=dat/dm;

cm=Max[Abs[cdat]]; cdat=cdat/cm;

fg=ListPlotVectorField[dat,DisplayFunction->Identity];
bg=ListContourPlot[cdat, DisplayFunction->Identity,

Contours->25,
ContourLines->False,ColorFunction -> hot];

temp=Show[bg,fg];
optlist=temp[[2]];
fglist=temp[[1]][[2]];

bglist=temp[[1]][[1]];
nt=Dimensions[bglist][[1]];
newbg={};
For[i=1,i<=nt,i++,

fp=bglist[[i]][[1]];
sp=bglist[[i]][[2]];
newbg=Append[newbg,{fp,sp}];

];
new=Drop[temp,1];
new=Prepend[new,{newbg,fglist}];

p=Show[new, DisplayFunction->$DisplayFunction,Frame->False,
AspectRatio->2]

Display["gfile",p]
!psfix -land gfile>cufd20Msc.eps
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C.2 Vorticity field plots

The vorticity of the velocity field is represented as a color scale from blue (counter-

clockwise) to green (clockwise rotation).

(*The Color function returns a scale between
bluegreen[val_] = RGBColor[0.5,Cos[val*Pi/2.0],Sin[val*Pi/2.0]];

<<new/cufd150MM6hc.dat
dm=Max[Abs[dat]];
dat=dat/dm;

nn=Dimensions[dat];nx=nn[[1]];ny=nn[[2]];

(*note that dat file is pairs of (uy, -ux) *)
wdat={};
For[i=1,i<nx,i++,

temp={};
For[j=1,j<ny,j++,

utop=-(dat[[i]][[j+1]][[2]]+dat[[i+1]][[j+1]][[2]])/2;
ubottom=-(dat[[i]][[j]][[2]]+dat[[i+1]][[j]][[2]])/2;

vleft=(dat[[i]][[j]][[1]]+dat[[i]][[j+1]][[1]])/2;
vright=(dat[[i+1]][[j]][[1]]+dat[[i+1]][[j+1]][[1]])/2;
w=(vright-vleft)-(utop-ubottom);
temp=Append[temp,w];

];
wdat=Append[wdat,temp];

];
wm=Max[Abs[wdat]];
wdat=-wdat/wm;
wdat=Transpose[wdat];

b=ListContourPlot[wdat,Contours ->25,DisplayFunction->Identity];
p=Show[b,AspectRatio -> 0.5,DisplayFunction->$DisplayFunction,

ColorFunction->bluegreen,Frame -> False];
Display["gfile",p]
!psfix -epsf -width 4.75 -height 2 -stretch gfile>rb150MMw.eps



173

Bibliography

1. H. Bénard. Les tourbillons cellulaires dans une nappé liquide. Rev. Gén. Sciences
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strömungen infolge von temperaturdifferenzen. Ann. Phys. Chem., 7:271, 1879.
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