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Abstract 
The systems approach to genomics seeks quantitative and predictive descriptions of cells 
and organisms. However, both the theoretical and experimental methods necessary for 
such studies still need to be developed. We are far from understanding even the simplest 
collective behavior of biomolecules, cells or organisms. A key aspect to all biological 
problems, including environmental microbiology, evolution of infectious diseases, and 
the adaptation of cancer cells is the evolvability of genomes. This is particularly 
important for Genomes to Life missions, which tend to focus on the prospect of 
engineering microorganisms to achieve desired goals in environmental remediation and 
climate change mitigation, and energy production. All of these will require quantitative 
tools for understanding the evolvability of organisms. Laboratory biodefense goals will 
need quantitative tools for predicting complicated host-pathogen interactions and finding 
counter-measures. In this project, we seek to develop methods to simulate how external 
and internal signals cause the genetic apparatus to adapt and organize to produce complex 
biochemical systems to achieve survival. This project is specifically directed toward 
building a computational methodology for simulating the adaptability of genomes. 
This project investigated the feasibility of using a novel quantitative approach to studying 
the adaptability of genomes and biochemical pathways. This effort was intended to be the 
preliminary part of a larger, long-term effort between key leaders in computational and 
systems biology at Harvard University and LLNL, with Dr. Bosl as the lead PI. Scientific 
goals for the long-term project include the development and testing of new hypotheses to 
explain the observed adaptability of yeast biochemical pathways when the myosin-II 
gene is deleted and the development of a novel data-driven evolutionary computation as a 
way to connect exploratory computational simulation with hypothesis-driven 
experimentation. This LDRD will focus on developing prototype software for the 
evolutionary computation and demonstrating its efficacy on a well-known biochemical 
pathway in yeast.  
Expected outcomes from this LDRD project included a demonstration of computational 
modeling of evolvability in a biochemical pathway, an important collaboration with the 
Systems Biology department at Harvard University, several proposals to secure external 
long-term funding from one or more sources and the nucleus of a new, focused research 
effort at LLNL in computational genomics, focused principally on Genomes to Life 
goals. All of these goals were achieved. 
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Cell Cycle Regulation and Cytokinesis Pathways  
The ability of cells and organisms to generate heritable alternative strategies through 
genetic variations is not well understood and is a central issue in molecular biology. This 
issue is directly relevant to a variety of medical concerns such as cancer treatment. 
Cancer cells have incredible abilities to accumulate large genetic changes and evolve 
pathways to escape treatments that are intended to block their growth. The ability of cells 
to evolve alternative pathways for survival, their degree of evolutionary fitness, is 
sometimes referred to as evolvability(Gerhart and Kirschner 1997; Kirschner and Gerhart 
1998): “the eukaryotic cell has many systems that are highly plastic and adaptable and … 
these systems can be reorganized to give new function” (Gerhart and Kirschner 1997). A 
predictive understanding of the evolutionary adaptability of cells is critical for 
understanding many diseases and is a central challenge for genomics research that will 
require new computational methods combined with new data and data analysis methods. 
An important research question concerns evolutionary adaptability itself: if we can learn 
to model the evolvability of cellular systems, it may be possible to predict unknown 
regulatory pathways by recapitulating them computationally. 
A common problem encountered when modeling cell processes is the lack of precise 
knowledge of many of the parameters. We hope that one way of discovering network 
parameters and interactions will be to use genetic algorithms to find acceptable 
parameters and networks that can function as adaptations to existing (known) network 
models. Genetic algorithms can incorporate data other than precise numerical parameters, 
such as known physiologically viable ranges for values, as part of the constraints on the 
system. This general approach will be applied to a specific cell pathway that is 
intrinsically important and exhibits adaptive evolutionary abilities. An outstanding 
biological question in this research is to determine just how restrictive nature is when 
designing new pathways (or, when we attempt to discover unknown pathways from 
myriad possibilities).  
We used this LDRD research to investigate the feasibility of needed fundamental 
computational methods. These will then be used to explore an important and difficult 
biological question concerning the cytokinesis and exit cycles in yeast. The cytokinesis 
pathway has shown remarkable adaptive evolution in response to deletions (Tolliday, 
Pitcher et al. 2003). When the myosin-II gene is deleted from the genome in budding 
yeast, suppressors have been observed to emerge at a fast rate and allow cells to divide in 
the absence of myosin. A similar high level of adaptability is observed when the Bee1 
gene, a major activator of the Arp2/3 actin nucleation complex, is deleted. The genetic or 
epigenetic changes that cause these and other suppressors is not known, or whether they 
are the same changes in all cases or many different new pathways. The methods 
developed in this ldrd will be used to generate new hypotheses to explain these observed 
suppressors. 

(Dunham, Badrane et al. 2002) found that exposure to a persistent new environment that 
lacked certain nutrients, caused new strains of budding yeast to evolve that were better 
able to survive in the new conditions. Genome-wide studies of gene expression revealed 
that independently evolved strains exhibited only a small number of possible genome 
expression changes. Durham concluded that the environment and regulatory networks 
limited the number of ways that the genome could be altered to improve fitness. If this 
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observation holds more generally, then we might expect that the number of new solutions 
available to organisms when confronted with new survival problems may be fairly tightly 
constrained. We would expect, then, if an evolutionary model of genetic or regulatory 
adaptation captures the essential features of real adaptive responses, the number of 
solutions generated should be rather small also.  The relevance of this discovery to GtL 
goals is clear: we must understand and predict how natural or engineered genomes will 
respond to their environments if we are to realize DOE mission goals in climate, energy 
and environmental remediation. 

Modeling Complex Systems 
Fundamentally, the mitotic exit system, which includes the Cdc14 early anaphase release 
(FEAR) and mitotic exit network (MEN) pathways, has relatively simple functionality. 
Yet an intricate complex control system has evolved to make the basic functions robust 
under a variety of circumstances. From an engineering perspective, the mitotic exit 
system, like many other biological pathways, is a bona fide complex adaptive system.  
The key difference between complex systems and complicated, but non-complex, 
systems is that the former do not follow a pre-made blueprint but their design emerges 
from evolutionary processes (Holland 1995; Bar-Yam 2000). Traditional top-down 
engineering requires that all system behavior can be determined by specific components 
and that the behavior of the whole is precisely the sum of the parts. This is also an 
assumption that many biologists make implicitly in their effort to understand complicated 
biological processes.   

An important result of evolutionary design, however, is that the dynamics of a complex 
system cannot be understood from its components and their interactions alone. The whole 
is more than the sum of the parts, which also imposes a natural scale on the system, 
below which system functions are lost. Some system functions cannot be found in any 
single component, but exist only when components are combined in a certain 
configuration. In general, evolutionary design proceeds by allowing natural selection to 
manipulate components to construct a (complex) system that achieves the desired global 
behavior. The resulting designs often look very different from those that an engineer 
following traditional design principles would concoct (Antonsson and Cagan 2001).  It is 
important, however, to emphasize that there are significant differences between 
evolutionary algorithms applied to engineering design and the evolutionary processes that 
occur in biological systems. Nevertheless, both natural and artificial evolved systems 
exhibit properties unlike traditionally engineered systems and this perspective may help 
to understand large regulatory networks such as the mitotic exit control system.  The 
purpose of this article is not to provide a comprehensive review of mitotic exit regulators 
and pathways (for that, several excellent recent reviews are available (Morgan 1999; 
Simanis 2003; Murray 2004; Seshan and Amon 2004).  Instead, we focus on several 
important yet puzzling features of the mitotic exit system and attempt an explanation of 
the underlying design principles from the perspective of complex systems constructed 
through evolutionary processes. 
The response of highly complex engineered control systems, such as modern aircraft, the 
space shuttle, and the national electrical supply grid, are regularly analyzed with 
computational models. The nonlinear response of such complex systems cannot be 
understood in any other way. Similarly, the mechanisms involved in many regulatory 
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pathways as well as pathways for structural assembly are highly complex, and 
computational models are being used to understand the dynamics of these systems. A key 
difference between engineered systems and cellular systems is evolvability. This suggests 
the importance of modeling the flexibility of certain important signaling or structural 
pathways during the cell cycle to predict the likelihood for emergence of alternative 
solutions. Modeling of cellular processes usually refers to quantitative rules to describe 
the time series of concentrations of mRNA, proteins, and other biochemicals involved in 
a particular pathway of interest. On different time scale, the pathway itself may change, a 
process referred to as evolvability. Understanding this process is important because it is 
how we believe complex pathways organize from simpler structures. It is also the process 
by which alternative pathways arise when the primary pathway is altered.  
Genetic algorithms are a general class of computational methods that are inspired by 
natural selection and genetics. They are relatively simple to program, are highly robust, 
and have been applied to a wide range of engineering problems (Banzhaf 1998). In 
particular, they have been used to find optimal solutions to engineering systems and to 
generate new solutions for electrical circuit designs. This suggests that genetic algorithms 
might be extremely useful in conjunction with models of regulatory pathways in cells to 
imitate the evolution of alternative pathways. Some initial efforts to use genetic 
algorithms to reverse engineer simple metabolic pathways have been successful. 

Data-driven Modeling and Experimental Verification 
One of the appealing aspects of a genetic algorithm simulation of yeast cell cycle 
pathways is that they can also be investigated experimentally. Certain key components of 
a pathway can be deleted and the suppressors (cells that can now circumvent the 
requirement for this component) that arise naturally can be analyzed. Not only are 
microarray data, known biochemical processes and biological constraints used to drive 
the genetic algorithm, but laboratory experiments can also be carried out that correspond 
to the computational experiments. For this proposal, synthetic and microarray data will be 
used to demonstrate the effectiveness of our approach. Our original plan was to use a 
differential equation model for the pathway dynamics. During a month long visit to the 
Systems Biology department at Harvard University we altered this plan and decided to 
use a type of functional Petri net for the model. 

A Method for Studying Evolutionary Adaptation in Cellular Systems 
Several significant results were expected from this research. First, our specific goal is to 
establish that new hypotheses can be generated for unknown elements in a biochemical 
pathway. To do this, we will use a known mathematical model of the relevant pathways, 
analyze existing data or simulate synthetic data if needed, and use the model in a genetic 
algorithm to generate new hypotheses. The mathematical model can later be extended or 
modified to study more complicated models of the cytokinesis and exit cycle pathways in 
yeast. Perhaps most importantly, a computational method will be developed by 
combining existing algorithms that take into account the evolutionary adaptability of 
biological systems. This evolutionary modeling approach, when combined with recent 
and new data collection technologies, will introduce a new approach for understanding 
the system-level molecular response of cellular processes in a wide variety of contexts 
that will have direct relevance to DOE mission-critical biological questions. Figure 1 is a 
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schematic diagram showing the analogy between natural evolution and adaptation and the 
computational ideas that will be explored in this research project. 

 

 

Figure 1. Evolutionary pressures on the phenotype of real organisms cause hereditable changes to 
the genome code, which changes the chemical properties of expressed proteins, changing the 
system. Analogously, the fitness values assigned to system output select for appropriate changes to 
the computational genome. 

 

Research Activities and Results 
The primary activities required for this project were to extract detailed information about 
the mitotic exit system pathway in yeast from the literature and organize it into pathway 
diagrams. This information served as the organizing information for the long-term 
research program. Figure 2 is a condensation of the results of this effort. A review paper 
discussing outstanding problems in the mitotic exit system has been written and 
submitted. 
A second major effort for this project was to identify an appropriate quantitative model 
for the pathway. I spent a month as a visiting scientist in the Systems Biology department 
at Harvard Medical School in order to investigate this. Our original plan was to use 
differential equations, a common approach taken for modeling metabolic reactions in 
cells. The problem with this approach is that it requires detailed data that is not available 
and is not going to become available in the near future. Furthermore, the kinds of 
questions that biologists wish to ask about biological pathways don’t require that level of 
detail. Rather, the questions concern connectivity of the graph, order of events (not than 
detailed time series), and qualitative time series for the concentrations of major reactions. 
A sequence of both continuous chemical reactions and discrete events characterizes the 
key cellular system dynamics that are of interest for this project.  
With these goals in mind, we developed a modeling strategy based on a graph formalism, 
essentially a functional Petri net, with options for representing continuous reactions using 
functions (Girault and Valk 2003) or fuzzy logic (Ross 2004). A Petri net is a graphical 
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and mathematical modeling tool for simulating the dynamic and concurrent activities of 
systems. As a mathematical tool, Petri systems can be used to model equations of state, 
algebraic equations, and other mathematical models governing systems behavior. As a 
graphical tool, Petri nets can be used as a visual-communications aid similar to flow 
charts, block diagrams, and networks. Simulations of a simple cell cycle were carried out 
using the fuzzy Petri net formalism. Results are shown in figure 3. The time series 
produced by this approach is quite reasonable, even though only semi-quantitative data 
from the literature was used to drive the simulation. A paper detailing this approach will 
be forthcoming after more extensive and intricate modeling and validation is carried out. 
The goal of this project, to show the feasibility of the approach, was achieved. 

The final major task for this project was to show that the pathway model could be 
evolved using a genetic algorithm.  For this we created a target data set using the pathway 
model that was developed. We then created perturbed model pathways with unknown 
species and connections to see if we could evolve the pathway, using the target output 
data, and “discover” the correct unknown pathway. This was accomplished. Realistically, 
biological data tends to be noisy. To simulate noisy data, we added 1%, 5% and 10% 
white noise to the target data and carried out the evolution experiments. Again, the 
correct pathways were discovered even with 10% noise in the data. The results of an 
evolutionary search are shown in figure 4.  

An important goal for this feasibility study was to use these simple preliminary results to 
write more extensive proposals for long term research and development in computational 
cell biology. Three proposals were written based on this work, two to NIH and one to the 
DOE/Genomes to Life program. Two proposals were funded and the third is now 
pending. Thus, all goals for this project were achieved.  
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Figure 2. A simple overview of the mitotic exit system. Sister chromatid separation is 
initiated by activation of the APC/Cdc20 complex, which also triggers the FEAR 
pathway. FEAR has a dual role: it enables completion of chromatid separation and also 
causes transient early release of Cdc14 from its prison in the nucleolus. The MEN 
sustains Cdc14 release, detects proper spindle pole migration into the bud, begins the 
breakdown of mitotic cyclins and initiates cytokinesis, the final step in cell division. 
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Figure 3. Four rules were used to define the dynamics of a simple cell cycle: 1. If cyclin is 
low/med /high, then Cdc14 is steady/inc slowly/inc rapidly; 2. If Cdc14 is low/med /high, then 
APC is steady/inc slowly/inc rapidly;  3. If APC is med/high, then cyclin gene is turned off (no 
cyclin production); 4. All species decay slowly by default. The resulting time series shows the 
time series that results from this rule system. 

. 
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Figure 4. Noisy input data, shown in red in the top graph, was used as the fitness criterion for the 
genetic search algorithm. The correct reactions were discovered and gave the correct output time 
series for the species involved in the cell cycle, shown in the bottom graph. 

 

Exit Plan 
Several proposals have been written to enable continuation of the work started in this 
project. A proposal to the program in Complex Biological Systems Initiative at the 
National Institute of General Medical Sciences (NIGMS) of the NIH was submitted 
through the UC Davis Cancer Center and funded in November 2004. A proposal to the 
DOE Genomes to Life program through UC Merced included a research project built on 
this feasibility study. This project was funded and is now part of the new UC Merced 
Center for Computational Biology. Participation in a new LDRD project, “Characterizing 
the Regulatory Genome: Transcription factor proteins and gene regulation networks in 
living cells”, and ERD LDRD project funded through BBRP was enabled in part through 
this feasibility study. Other proposals to NIH are currently pending. 
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