
UCRL-TR-209485

Multi-Resolution
Markov-Chain-Monte-Carlo Approach for
System Identification with an Application
to Finite-Element Models

G. Johannesson, R. E. Glaser, C. L. Lee, J. J.
Nitao, W. G. Hanley

February 7, 2005



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 

 
 
 

 

 This work was performed under the auspices of the U.S. Department of Energy by University of 
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. 
 



Multi-Resolution Markov-Chain-Monte-Carlo
Approach for System Identification with an

Application to Finite-Element Models

Gardar Johannesson Ronald E. Glaser Christopher L. Lee
John J. Nitao William G. Hanley

February 2, 2005

Lawrence Livermore National Laboratory

UCRL-TR-209485



 



Abstract

Estimating unknown system configurations/parameters by combining sys-
tem knowledge gained from a computer simulation model on one hand and
from observed data on the other hand is challenging. An example of such in-
verse problem is detecting and localizing potential flaws or changes in a struc-
ture by using a finite-element model and measured vibration/displacement
data. We propose a probabilistic approach based on Bayesian methodology.
This approach does not only yield a single best-guess solution, but a posterior
probability distribution over the parameter space. In addition, the Bayesian
approach provides a natural framework to accommodate prior knowledge.
A Markov chain Monte Carlo (MCMC) procedure is proposed to generate
samples from the posterior distribution (an ensemble of likely system con-
figurations given the data). The MCMC procedure proposed explores the
parameter space at different resolutions (scales), resulting in a more robust
and efficient procedure. The large-scale exploration steps are carried out us-
ing coarser-resolution finite-element models, yielding a considerable decrease
in computational time, which can be a crucial for large finite-element mod-
els. An application is given using synthetic displacement data from a simple
cantilever beam with MCMC exploration carried out at three different reso-
lutions.
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1 Introduction

The problem considered here is that of damage detection and localization in a struc-
ture using a finite-element model and measured vibration and/or displacement data.
This problem belongs to a broader class of inverse problems where one attempts
to identify system configuration(s) that are in agreement with given observed out-
put data. For complex systems, where for example the observed output data is
linked to the system via complicated and computationally expensive numerical for-
ward simulation model, the inverse problem can be challenging. Not only can it be
prohibitively difficult to deterministically search for a single optimal system con-
figuration that is in good agreement with the data, but there might be a variety
of distinct system configurations that can account for the output data. This has
prompted the search for alternative inverse approaches for complex systems that
not only naturally account for the multiple system configurations that match the
data, but are also able to leverage available prior knowledge about the system of
interest. Bayesian methodology (e.g., Bernardo & Smith, 1994) is one such approach
that has gained increased attention in recent years with advances in computational
technology; see, for example Gilks et al. (1996) for applications in various fields and
Aines et al. (2002) and Newmark et al. (2002) for application in geology using the
Stochastic Engine framework. The Bayesian framework provides a natural way to
transfer probabilistically stated prior knowledge of the current system into posterior
knowledge (a distribution) that reflects both the prior information and the observed
data. In all except trivial cases, a Markov Chain Monte Carlo (MCMC) sampling
algorithm (see e.g., Gilks et al., 1996) is used to generate a set of system configura-
tions from the posterior distribution. All posterior inferences are then accomplished
using this MCMC sample (i.e., mean, standard deviation, quantiles, etc.).

In our application, the forward model consists of a numerical finite-element model
of a physical structure, along the lines of Glaser et al. (2003). The parameters of
the system are the material properties of each element in the model, in our case the
stiffness of each element. Given a stiffness configuration, the finite-element model
can be used to predict structural vibrations/displacements behavior, which can then
be compared to corresponding observed behavior.

There are number of challenges in constructing a MCMC algorithm to sample
stiffness configurations from the posterior distribution. The two main challenges
stem from the potentially large number of elements involved and the bimodal na-
ture of each element; it can either be nominal (as expected) or faulted (damaged).
Hence, the prior distribution for each element is bimodal, with one mode repre-
senting nominal stiffness values while the other mode represents “faulted” stiffness
values. As such, the MCMC algorithm has to be able to vary freely (jump) be-
tween the two prior stiffness modes (nominal versus faulted). As the problem is
also high dimensional (the number of elements), a typical local exploration, where
the next state of the chain is simply a small perturbation of the current state, can
yield a badly mixed posterior sample, requiring the generation of an unrealistically
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large number of samples (i.e., computationally expensive model evaluations). More
severely, a locally-exploring MCMC algorithm can ignore important parts of the
sample space as it is “stuck” sampling another portion of the sample space. For
example, if two elements are actually flawed in a finite-element model, it is possi-
ble that an MCMC algorithm would get stuck sampling configurations that only
capture one of the flaws.

Our goal is to build an efficient MCMC sampling algorithm that is able to quickly
explore the large parameter space and yield a well mixed and representative sample.
The approach we take is to alternate between small and large scale exploration. In
addition, we propose to perform the large scale exploration using coarser-resolution
finite-element models in order to reduce computational time. This approach brings
in additional complexity as the number of elements (i.e., the dimension of the pa-
rameter space) is changing. This is a significant deviation from “classical” MCMC
algorithms where the parameter vector is of fixed dimension. However, recently
such problems have been tackled with success, examples being mixture models with
unknown number of components (Richardson & Green, 1997) and the change point
problem when the number of change points is unknown (Green, 1995). MCMC
involving models that change dimension are often referred to as trans-dimensional
MCMC (Green, 2002).

This report is organized as follows: Section 2 gives a brief introduction to
Bayesian methodology and MCMC with emphasis on how to improve MCMC sam-
pling. Section 3 follows with the definition of a Bayesian finite-element model which
captures the potential nominal/flawed bimodal behavior of each element and in-
troduces finite-element modeling at multiple resolutions. Section 4 gives a gen-
eral overview of Green’s reversible-jump MCMC (RJMCMC) approach to multi-
resolution MCMC sampling. Section 5 follows then with an adaption of the RJM-
CMC to the multi-resolution finite-element model of Section 3. An application is
finally given to synthetic data derived for a simple cantilever beam in Section 6.

2 Bayesian Methodology and Markov Chain Monte

Carlo (MCMC)

Bayesian inference methodology (e.g., Bernardo & Smith, 1994) differs from the more
classical (frequentest) statistical inference approach in that not only are the observed
data considered random variables, but also the parameters of the underlying model
(or system). Both approaches specify a probability distribution for the observed
data conditional on the parameters of the model,

L(x) ≡ p(y |x),
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which we refer to as the likelihood, where

y = vector of observed data and

x = vector of model parameters,

and p(y |x) denotes the conditional distribution of y given x. The frequentest
approach aims at maximizing the above likelihood with respect to the unknown
parameters x, which can be an ill-posed and a daunting task for large models. In
the Bayesian framework the parameters are assumed random and given a prior
distribution,

p(x),

that summarizes, in a probabilistic way, our knowledge about the parameters of
the model prior to observing the data. Then, Bayes’ theorem yields the posterior
distribution,

π(x) ≡ p(x |y) ∝ p(y |x)p(x)

which probabilistically summarizes our knowledge of the model, given the observed
data. For large models, inference based upon the above posterior distribution is car-
ried out via stochastic sampling techniques, where in particular the Markov Chain
Monte Carlo (MCMC) sampling methodology has been shown to be successful (e.g.,
Gilks et al., 1996). The MCMC approach generates a sample from a Markov chain
that has the posterior distribution π(x) as its limiting distribution. One way to
accomplish this is to use the Metropolis-Hastings (M-H) algorithm. The M-H algo-
rithm relies on a clever, user-specified proposal distribution to construct the needed
Markov chain. If x is the current state of the chain in question, then a new state
x′ is proposed by a random draw from the proposal distribution, say q(x′ |x). The
newly proposed state is then accepted as the new state of the chain with probability
α(x,x′) = min(1, ρ(x,x′)), where

ρ(x,x′) ≡ π(x′)q(x |x′)
π(x)q(x′ |x)

is the acceptance ratio. Note, to evaluate ρ, the likelihood needs to be evaluated
at the proposed x′. Hence, if the likelihood relies on a computationally expensive
forward model (i.e., a model that predicts the data given the parameters), it is
highly desirable, and often crucial to perform as few model evaluations as possible
when exploring the posterior distribution. However, finding a proposal distribution
that both explores the parameter space effectively and yields accepted proposals
at a good rate is difficult. Typically, most proposal distributions propose a new
set of parameters by only modifying a small subset (often just a single parameter)
of the current parameter configuration. For systems that are well-behaved (locally
smooth), this approach yields only a small change in the likelihood, hence a high
acceptance rate, but results in a chain that traces the parameter space in a local
manner, using very small steps that result in a badly mixed sample. In addition,
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such a local exploration of the parameter space can trap the MCMC sampler in
an area surrounded by a “wall” of low likelihood which can only be escaped by
“bolder” (more global) parameter proposals. Numerous methods have been pro-
posed to circumvent this problem. One popular approach is to work with a sequence
of likelihoods, say L0(x), L1(x), . . . , where L0(x) = L(x) and Li(x), i = 1, 2, . . . ,
are smoother (“flatter”) versions of L(x), for example, created by “heating up” the
original likelihood; Li(x) = L(x)1/Ti , 1 < T1 < T2 < . . . (see Liu, 2001, on temper-
ing). Hence, proposals evaluated using the flatter (hotter) likelihoods yield smaller
changes in the likelihood, hence higher acceptance rate, allowing the sampler to
escape local modes. The flatter likelihoods can then be combined with more global,
large-scale proposals to facilitate better exploration of the parameter space. As out-
lined above, heated or not, the likelihood has the same computational overhead (i.e.,
the same forward model). However, for a large-scale proposal distribution evaluated
using a heated (i.e., less accurate) likelihood, one might be able to utilize a less
accurate (coarser resolution), computationally faster forward model. It is exactly
this approach that we shall investigate; combining less accurate likelihoods with
coarser-resolution forward models to facilitate MCMC sampling.

3 Bayesian Finite-Element Structural Flaw De-

tection Model

Assume we have a finite-element model of a physical structure (or a mechanical
system), for example, of a house, of a bridge of an airplane, etc. Further, assume we
have a prior knowledge about the material and other properties of each element that
comprises the finite-element model, given that the current condition of the structure
is as expected, that is, nominal, without any faults. However, given observed data
that can be linked to the current condition of the structure, we want to identify
elements, if any, that deviate from nominal behavior due to changes in element
properties (e.g., material stiffness). Hence, our goal is to assert, in a probabilistic
way, if the structure behaves as expected (i.e., nominal), and if not try to localize
where and how much the structure deviates from nominal behavior (i.e., identify
potentially flawed elements).

Let

si = the stiffness (Young’s modulus) value of the i-th element

in a finite-element model, i = 1, . . . , N , where N is the total number of elements
in the model. Before observing any informative data on the current status of the
structure, we assume that the prior distribution of each of the si is given by,

p0(si) if the i-th element is nominal,

p1(si) if the i-th element is potentially flawed.
(1)
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Typically, the prior distribution of a nominal element can be specified as a narrow
distribution centered at the expected nominal stiffness value of each element, while
flawed stiffness values have a much wider distribution covering a broad range of
different types of potential flaws. We take both p0(si) and p1(si) to be given by a
shifted and scaled Beta distribution with density,

p`(s) =
Γ(α` + β`)

Γ(α`)Γ(β`)

1

s+
` − s−`

(
s− s−`
s+

` − s−`

)α`−1(
1− s− s−`

s+
` − s−`

)β`−1

, s−` ≤ s ≤ s+
` ,

(2)
where (s−` , s

+
` , α`, β`), s

−
` < s+

` , are all known parameters, ` = 0, 1. Figure 1 shows
p0(s) and p1(s) in the case when

(s−0 , s
+
0 , α0, β0) = (1.80e+11, 2.00e+e11, 5, 5) and

(s−1 , s
+
1 , α1, β1) = (1.00e+9, 1.85e+11, 3, 3),

which are the parameter values used in our application in Section 6.
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Figure 1: The prior distribution of Young’s modulus values associated with nominal
elements (right) and of potentially flawed elements (left).

The prior stiffness distribution (1) can also be written as

p(si | `i) = (1− `i)p0(si) + `ip1(si),

where

`i =

{
0 if the i-th element is nominal,

1 if the i-th element is potentially flawed.
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However, ` ≡ {`i : i = 1, . . . , N} is not known and one of our goals is to perform
inference on `. We therefore treat ` as a random variable and assume the following
prior distribution,

p(`) =
N∑

n=0

p(` |n)p(n),

where

n ≡
N∑

i=1

`i = the number of potentially flawed elements

and p(` |n) is the prior distribution of ` given there are n number of flaws. The
discrete prior distribution for the number of flaws, p(n), can be any discrete distri-
bution on 0, . . . , N . Similarly, p(` |n) can be any proper distribution for the possible
configurations of ` that satisfy n =

∑
i `i. We take p(n) as the Binomial distribution

with a known rate parameter λ;

p(n) =

(
N

n

)
λn(1− λ)N−n, n = 0, . . . , N, λ ∈ [0, 1], (3)

and p(` |n) as a uniform distribution on all possible configurations with n flaws;

p(` |n) = 1/

(
N

n

)
,

where
(

N
n

)
is the number of ways to have n flaws among N elements. Hence, in

this case, the marginal prior distribution of p(`) is simple ` is p(`) = λn(1− λ)N−n,
which one could also derive by simply assuming that the elements are independently
potentially flawed with prior probability λ (i.e., `i ∼ Bernoulli(λ), independently,
i = 1, . . . , N).

The joint prior distribution of s ≡ {si : i = 1, . . . , N} and ` is then given by

p(s, `) = p(s | `)p(`), (4)

where p(s | `) =
∏N

i=1 p(si | `i) and p(`) =
∑N

n=0 p(` |n)p(n).

As in the previous section, let y be the observed data and let

p(y | s) = the probability distribution of y, conditional on s, (5)

which we shall refer to as the data model or simply the likelihood. For example, y
can be a set of nodal displacement data observed when applying a given force to the
structure. In general, evaluating (5) requires running a computationally expensive
forward model, the NIKE3D solver in our case, where the computational burden
increases with N , the number of finite-elements in the model.
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Given the data model (5) and the prior distribution (4), the posterior distribution
of s and ` is given by Bayes’ theorem as

π(s, `) ≡ p(s, ` |y) ∝ p(y | s)p(s | `)p(`). (6)

The posterior distribution above can then be used to answer a variety of questions
related to the stiffness properties, including

• The posterior probability of the i-th element being potentially flawed, given
by Pr(`i = 1 |y)

• The posterior probability of the total number of potentially flawed elements,
as given by p(n |y), and recall that n =

∑
i `i.

• The posterior probability that the stiffness of the i-th element is lower than
a given threshold, say so, given by Pr(si < so |y), or is within a given range,
say from s− to s+, given by Pr(s− < si < s+ |y).

Due to the complexity of the model, the posterior distribution (6) is not avail-
able in closed form and we resort to MCMC to generate samples from the posterior
distribution to use for inference. In doing so, there are two particular issues that
need to be resolved. As N , the number of finite-elements, increases, the number
of possible different configurations of ` expands drastically, while at the same junc-
ture, the time needed to evaluate the data model (5) increases due to the growing
demands of a more complex (higher dimension) forward model. To be able to ex-
plore the parameter space sufficiently well as N increases, the Markov chain has to
be both able to explore the parameter space in a local fashion (by proposing small
changes in the parameter configuration) and in a global fashion (by proposing large
changes in the parameter configuration) to be able to escape local modes of the pos-
terior distribution and trace the parameter space more efficiently. To differentiate
between two parameter configurations that are very similar (e.g., a small change in
the spatial location of a single small structural flaw), a fine resolution finite-element
model is needed. However, to differentiate between two parameter configurations
that are significantly different (e.g., a large change in the spatial location of a single
large structural flaw), a much coarser-resolution finite-element model is sufficient.
Hence, to both reduce the computational time associated with evaluating the for-
ward model and to facilitate better exploration of the parameter space, we propose
using finite-element models at different resolutions of the same structure. The com-
putationally expensive finer-resolutions models are used to explore finer details of
the parameter space while the computationally efficient coarser-resolution models
are used to explore the larger aspects of the structure.

Let r = 0, . . . , R index resolution, such that r = 0 corresponds to the finest-
resolution finite-element model, and let Nr be the number of elements at resolution
r. For the moment we shall focus on coarser-resolution models that are hierarchical
in the sense that the resolution-r model is derived by collapsing (or aggregating)
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one or more elements of the (finer) resolution-(r − 1) model into a single element.
Now, let

sr = the stiffness configuration and

`r = the 0/1, nominal/flawed, configuration

associated with resolution r, r = 0, . . . , R. Our main goal is to perform inference
at the finest resolution (i.e., about s0 and `0) and use the coarser-resolution mod-
els to guide and facilitate the MCMC sampling of s0 and `0. This requires not
only traditional (single-resolution) proposal distributions within each resolution,
but also proposal distributions between resolutions (trans-dimensional proposal dis-
tributions). Single-resolution (fixed-dimension) MCMC is well understood, while
trans-dimensional MCMC, which we shall explore further in next section, has only
recently gained attention.

4 Trans-Dimensional Models and Green’s Reversible

Jump MCMC (RJMCMC) Approach

Two approaches, or rather views, have been posted to construct a MCMC sampling
algorithm for trans-dimensional models; the reversible jump approach (Green, 1995)
and the product-space approach (Charlin & Chib, 1995). The former method con-
structs a Markov chain that jumps between models of different dimensions, while the
second approach works with the joint distribution of all models under consideration,
and hence a joint variable vector of fixed dimension (i.e., reducing the problem to
a ’normal’ MCMC of fixed dimension). It can be shown that the reversible jump
approach is an important special case of the product-space approach (Besag, 1997,
2001). This connection between the the reversible jump and the product-space
approach is then further investigated, and extended in Godsill (2001). In what fol-
lows we shall outline, in very general terms, Green’s RJMCMC approach (Green,
1995); see also, for example, Andrieu et al. (2000, 2001), Waagepetersen & Sorensen
(2001), and Green (2002) for overview, and Brooks et al. (2003) for construction of
reversible jump proposal distributions and other issues associated with RJMCMC.

Our general notation is:

y is the observed data.

Mr is the r-th model under consideration; r ∈ {0, . . . , R} and note that R may
be infinity.

xr ∈ Xr is the parameter vector associated with Mr, and note that the xr’s are
typically of different dimensions.

8
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For the moment we shall assume that xr is a continuous parameter vector. If xr

consists both of continuous and discrete components, as in our application where
xr = {sr, `r}, the treatment of the discrete component will become obvious after
the treatment of the continuous component which follows below.

Our model is given by:

pr(y |xr), the conditional density of the observed data y given Mr configured by
xr; i.e., the data model (the likelihood) using the forward model associated
with Mr.

p(r, dxr) = p(dxr | r)p(r), the prior distribution, where p(dxr | r) is the probability
of xr being in a infinitesimal set centered at xr and we have used the shorthand
notation, p(Mr) = p(r).

Our goal is to conduct inference based upon the posterior distribution of (r,xr),

π(r, dxr) ≡ p(r, dxr |y) = πr(dxr)π(r)

via MCMC, where πr(dxr) ≡ p(dxr | r,y) and π(r) ≡ p(r |y). In our application
our focus is mainly on π0(dx0), the posterior distribution at the finest resolution.
In other applications, for example model selection, the main interest is however on
π(r).

Denote by (r,x) = (r,xr) and (r′,x′) = (r′,x′r′) the current state and the next
proposed state of the Markov chain, respectively. As in fixed-dimension MCMC the
ingredients needed are:

q(r′, dx′ | r,x), the proposal distribution used to propose a new state (r′,x′) and

α(r,x; r′,x′), the acceptance probability, the probability of accepting the newly
proposed state.

The relationship between the posterior distribution, the proposal distribution, and
the acceptance ratio is given by (with a little abuse of notation)

α(r,x; r′,x′) = min{1, ρ(r,x; r′,x′)},

where

ρ(r,x; r′,x′) ≡ π(r′, dx′)q(r, dx | r′,x′)
π(r, dx)q(r′, dx′ | r,x)

.

4.1 The Proposal Process

In fixed-dimension MCMC applications it is well defined what the reverse proposal
move is for any given proposal. For example, if one proposes a new Markov chain
state by simply adding a random number to one of the parameter component of the
parameter vector x, the reverse move is simply accomplished by subtracting the same

9
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number from the resulting, proposed parameter. However, in trans-dimensional
MCMC it is not as clear how one constructs the reverse proposal move for a move
that changes the dimension of the parameter space. What is outlined below is a
recipe proposed by Green (1995) and follows very much how one would implement
MCMC in a computer program (fixed-dimensional MCMC or not).

The proposal (r,x) → (r′,x′) is constructed via:

(1) Select r′ ∼ qr(r
′ |x), and then

(2) let x′ = gx
r→r′(x,u), where gx

r→r′ is a deterministic function, u ∈ Ur→r′ , and
u ∼ qr→r′(du |x),

where in general q denotes a (proposal) probability distribution. Hence, one first
proposes a new model index r′ and then proposes x′ as a function of the current value
of the chain, x, plus a random component, u. The reverse proposal, (r′,x′) → (r,x),
is constructed in the same way:

(1) Select r ∼ qr′(r |x′), and then

(2) let x = gx
r′→r(x

′,u′); u′ ∈ U ′r′→r and u′ ∼ qr′→r(du
′ |x′).

Now, to make this proposal process work both within the same model class (i.e.,
when r′ = r) and between model classes (i.e., when r′ 6= r and x and x′ are not
of the same dimension) some care needs to be taken. We require that there is an
one-to-one, differentiable mapping between (x,u) and (x′,u′). This implies that
there exist functions gu

r→r′ and gu
r′→r such that

u′ = gu
r→r′(x,u) and u = gu

r′→r(x
′,u′).

Hence:

(x′,u′) = gr→r′(x,u) ≡
(
gx

r→r′(x,u), gu
r→r′(x,u)

)
and

(x,u) = gr′→r(x
′,u′) ≡

(
gx

r′→r(x
′,u′), gu

r′→r(x
′,u′)

)
,

and in particular, (x,u) = gr′→r(gr→r′(x,u)). A necessary condition for this to hold
is that

dim(x,u) = dim(x′,u′).

That is, the joint dimension of the parameters x and u has to be equal to the joint
dimension of x′ and u′. (Recall we are assuming a continuous parameter spaces.)

Example. Assume we have two models, M1 and M2, where M1 is parameterized
by x, a scalar, but M2 is parameterized by x′ = (x′1, x

′
2), a vector of dimension 2.

Say we propose to move from M1 to M2 by

x′ = (x′1, x
′
2) = gx

1→2(x, u) = (x+ u, x− u),

10
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where u ∼ q(du) is a random perturbation. The reversible move is simply given by

x = gx
2→1(x

′,u′) = (x′1 + x′2)/2 (and u = gu
2→1(x

′,u′) = (x′1 − x′2)/2),

and note that there is no random component involved (i.e., u′ is of ’length’ zero).
We have that dim(x,u) = dim(x′,u′), and equal to 2, as required.

Remark. The above presentation assumed that different proposals are only as-
sociated with the model index r. However, one might have more than one type
of proposal move to jump from a parameter configuration of Mr to a parameter
configuration of Mr′ . An index for different proposal types (types of moves) can be
included in the parameter vector u. That is, one would write

u = (m,um),

where m indexes move type and um is the parameter vector used to construct a
proposal from Mr to Mr′ of type m. In this case,

x′ = gx
r→r′(x,u) = g

x(m)
r→r′(x,um)

and
u′ = (m,u′m) = gu

r→r′(x,u) = (m, g
u(m)
r→r′(x,um)).

The proposal distributions qr→r′ consist then of two steps; proposing a move-type,
m ∼ qr→r′(m |x), and then um ∼ qm

r→r′(dum |x). Similarly, we have a reverse
proposal move, from Mr′ to Mr using a proposal of type m. And as before, we
assume that there is an one-to-one relationship between (x,um) and (x′,u′m) for
each m.

4.2 The Acceptance Ratio

Assume that (r,x) 6= (r′,x′); that is, there is a zero probability of proposing the
next state of the Markov chain to be equal to the current state of the chain. The
acceptance ratio can be written as

ρ(r,x; r′,x′) =
π(r′, dx′)qr′→r(r |x′)qr′→r(du

′ |x′)
π(r, dx)qr→r′(r′ |x)qr→r′(du |x)

=
π(r′,x′)qr′→r(r |x′)qr′→r(u

′ |x′)
π(r,x)qr→r′(r′ |x)qr→r′(u |x)

× µ′x(dx
′)µ′u(du

′)

µx(dx)µu(du)
,

(7)

where µ and µ′ are the underlying measures (i.e, π(r, dx) = π(r,x)µx(dx), etc.).
Using the (one-to-one) mapping from (r,x) → (r′,x′), given by gr→r′ , the ratio of
the measures can be written as

µ′x(dg
x
r→r′(x,u))µ′u(dg

u
r→r′(x,u))

µx(dx)µu(du)
.
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Then, in the case when all the underlying measures are Lebesgue and gr→r′ is dif-
ferentiable, the ratio above is given by

Jr→r′(x,u;x′,u′) ≡
∣∣∣∣det

∂gr→r′(x,u)

∂(x,u)

∣∣∣∣ ,
the Jacobian for the change-of-variables transformation gr→r′ . Hence, in this case,
the acceptance ratio is given by

ρ(r,x; r′,x′) =
π(r′,x′)qr′→r(r |x′)qr′→r(u

′ |x′)
π(r,x)qr→r′(r′ |x)qr→r′(u |x)

× Jr→r′(x,u;x′,u′). (8)

Example (continued). The Jacobian for the transformation (x′1, x
′
2) = (x+u, x−

u) can be seen to be equal to −2. Hence, the proposal ratio ρ1→2(x, u;x
′
1, x

′
2) is

given by,

ρ1→2(x, u;x
′
1, x

′
2) =

π2(x
′)

π1(x)q(u)
× 2.

There are number of cases where the underlying measure for all the variables
involved is Lebesgue. However, in our application, xr = (`r, sr), where `r =
(`1, . . . , `Nr) and sr = (s1, . . . , sNr), and `r is an Nr-dimensional discrete variable
while sr is an Nr-dimensional continuous positive variable. Hence, the underlying
measure for `r is a Nr-dimensional counting measure while the underlying measure
for sr is the Lebesgue measure. However, it is only for the continuous variables that
one must deal with the ratios of the underlying measures in the proposal process. In
the proposal process for the discrete component one only has to satisfy a one-to-one
relationship in order to construct the reversible move.

5 The Finite-Element Model RJMCMC

Recall that at any given model resolution the prior distribution is (ignoring the
resolution index r)

p(s, `) = p(s | `)p(`),
where

p(s | `) =
∏N

i=1 p(si | `i) where p(si | `i) = (1− `i)p0(si) + `ip1(si), p0(si) and p1(si)
are both shifted and scaled Beta distributions; see (2) and Figure 1

p(`) =
∑N

n=0 p(` |n)p(n) where n =
∑N

i=1 `i = the number of flaws, p(n) is Bin(λ)
and p(` |n) = 1/

(
N
n

)
.

Currently, we assume that all the parameters associated with the likelihood (the
data model) are known. However, in practice the likelihood might include unknown
parameters, for example, a measurement+model error variance parameter, which
can be included in the set of model parameters and sampled.

12
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We shall now outline the different RJMCMC proposal moves and the current
’default’ values of parameters associated with the proposal distributions. Note that
in this initial study these parameters have not been ’tuned’ in any way to yield
optimal acceptance ratios.

5.1 Proposing What Move to Make Next

Assume that the Markov chain is currently at resolution r. The next type of proposal
move is selected via two stage process:

1. With a user inputed probabilities (qr(r
′ |x)) the chain either stays at its current

resolution, or goes up or down one resolution. By default, the chain stays at
its current resolution with probability 0.9 (else goes up or down with equal
probability).

2. Given the next proposed resolution, r′, the type of proposal move is selected
among all the possible proposal moves available from resolution r to resolution
r′ (with given probabilities). By default, equal probabilities are assigned to
each move within a resolution and between resolutions.

Hence, the multiplicative factor that contributes to ρ(r,x; r′,x′) in (7) is

qr′(r |x′)qr′→r(m |x′)
qr(r′ |x)qr→r′(m |x)

.

We shall now outline the different proposals available within a resolution and
between resolutions

5.2 Within-a-Resolution Proposals

In what follows, q(X) denotes a generic proposal distribution for a random variable
X that may depend on the current status of the Markov chain (i.e., on r and x).
We currently have four different types of proposals within a resolution.

Move 1: Birth/Death of a Flaw

This type of proposal either adds a flaw (birth) or removes a flaw (death) using the
following procedure:

1. A 0/1 Bernoulli variable a ∼ q(a) is drawn with a given success probability
and if a = 1, a birth of a flaw is proposed, else a death of a flaw. Currently,
Pr(a = 1) = p(n+1)/(p(n−1)+p(n+1)), where p(n) is the prior distribution
on the total number of flaws.

2. A location index k ∼ q(k | a) is selected randomly (uniformly) among nominal
elements if a = 1 or among flawed elements if a = 0.

13
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3. A new stiffness value, v ∼ q(dv | k, a), is generated in the nominal range, if
a = 0, and in the flawed range if a = 1 and s′k = v and `′k = a. We take
q(dv | k, a) as the nominal prior distribution of the k-th element if a = 0 or as
the flawed prior distribution if a = 1.

Hence, in the notation of previous section,

u = (a, k, v) ∼ q(dv | a, k)q(k | a)q(a).

The random parameter u′ of the reverse move is easily derived from u and x as
u′ = (a′, k′, v′) where a′ = 0 if a = 1, else a′ = 1 if a = 0, k′ = k, and v′ = sk.

Move 2: Relocate a Flaw

A flaw is relocated to a new location (keeping the same stiffness value), where a
higher probability is given to a nearest neighbor relocation. The proposal process
is as follows:

1. Draw an element location index k1 ∼ q(k1) among the flawed locations, where
q(k1) is currently taken to be a uniform distribution.

2. Draw a 0/1 Bernoulli variable l ∼ q(l | k1), where if l = 1, a relocation to a
nominal nearest neighbor location is suggested, else if l = 0, to any nominal
location. Currently, if k1 has at least one nominal nearest neighbor, Pr(l =
1) = 0.9.

3. Draw a relocation index, k2 ∼ q(k2 | l, k1), where currently q(k2 | l, k1) is either
a uniform distribution over all nominal nearest-neighbor locations (if l = 1)
or all nominal locations (if l = 0).

4. Swamp stiffness values; s = sk2 , sk2 = sk1 , sk1 = s.

Hence,
u = (k1, l, k2) ∼ q(k1)q(l | k1)q(k2 | l, k).

The reverse move is trivial, with u′ = (k′1, l
′, k′2) where k′1 = k2, l

′ = l, and k′2 = k1.

Move 3: Resize a Flaw

Change the stiffness value of a flawed element. The proposal process is:

1. Draw a element location index k ∼ q(k) among the flawed locations, where
q(k) is currently a uniform distribution over all flawed locations.

2. Draw a stiffness change value ∆s ∼ q(d∆s | k) and let s′k = sk + ∆s. The only
constraint on the distribution q(d∆s | k) is that the new stiffness value is still
considered a potential flaw (i.e., `′k = `k = 1). In our current implementation,
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q(d∆s | k) is taken to be a shifted and scaled Beta distribution with range
(s−1 − s, s+

1 − s) and recall that s−1 ≤ s ≤ s+
1 . The two shape parameters of the

Beta distribution q(d∆s | k), say α and β, are selected such to yield a mode
at zero and constrained such that α + β = c · (α1 + β1), where α1 and β2 are
the shape parameters of the prior distribution of flawed stiffness values. The
scaling parameter c is taken to be equal to 2 be default (based on a small
empirical study).

Hence, we have
u = (k,∆s) ∼ q(k)q(d∆ | k).

The reverse move has u′ = (k′,∆s′), where k′ = k and ∆s = −∆s.

Move 4: Resize a Nominal

Change the stiffness value of a nominal element. The proposal process is as in
the case of resizing the stiffness of a flawed element. The range of the shifted and
scaled Beta distribution involved is taken to be (s−0 − s, s+

0 − s) and the two shape
parameters, say α and β, are taken to yield a mode at zero and constrained such
that α+ β = c · (α0 + β0), where the scaling parameter c = 2 by default.

Other Possible Moves

Possible additional moves include updating potential variance parameters associated
with the likelihood, particularly a scaling parameter associated with the size of the
model error. Note that this move does not require a new evaluation of the forward
model and is therefore ’inexpensive’.

5.3 Between Resolution Moves

To simplify notation (and to be in line with our final application), assume that
each element at resolution r is derived by aggregating two elements at resolution
(r − 1). We shall refer to the resulting aggregated coarse-resolution element as the
parent and the two finer-resolution elements as the children (then again, the parent
element at resolution r is a child of an element at resolution (r + 1), and so forth).
Denote by sp the stiffness and `p the status of a coarse-resolution parent element
and denote by sc1 and sc2 the stiffness and `c1 and `c2 the status of its two children
elements. We consider two different type of moves, based on a weighted arithmetic
mean aggregation and a weighted harmonic mean aggregation, respectively. Both
moves have deterministic fine-to-coarse-resolution proposal while the coarse-to-fine-
resolution proposals involve random variables (the dimension-matching variables).
We shall outline both type of moves, with slightly more emphasis on the trans-
dimensional move based on weighted harmonic mean aggregation.
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Weighted Harmonic Mean Aggregation (WHMA)

The deterministic fine-to-coarse-resolution proposal move is given by

s′p = 1/(wc1/sc1 + wc2/sc2), (weighted harmonic mean)

where the weights wc1 and wc2 sum to one. The parent element is considered po-
tentially flawed, `′p = 1, if at least one of the children is potentially flawed (that is,
if `c1 + `c2 > 0).

The coarse-to-fine-resolution proposal move is given by

s′c1 = spwc1(1 + up) and s′c2 = spwc2(1 + 1/up),

where up ∼ q(up), up > 0. Note that this yields

sp = 1/(wc1/s
′
c1

+ wc2/s
′
c2

) and up = (wc2/s
′
c2

)/(wc1/s
′
c1

).

The proposal distribution q(up) is taken to be a shifted and scaled Beta distribution
with parameters that depend on the status of the parent element (`p) and its Young’s
modulus value (sp). There are two main cases:

The Parent Element is Nominal (`p = 0). In this case both children are pro-
posed to be nominal (i.e., `′c1 = `′c2 = 0). This is accomplished by specifying
the range of the shifted and scaled Beta proposal distribution q(up) such that
both s′c1 and s′c2 are in the nominal prior range. By default, the mean of q(up)
is taken to be equal to the midpoint of the range, which only leaves one degree
of freedom to fully specify the two Beta scaling parameters of q(up), say α

and β. The current default approach is to constrain α + β = α̂ + β̂, where α̂
and β̂ are the shape parameters of a Beta distribution approximation to the
true distribution of the weighted harmonic mean of s′c1 and s′c2 , when both are
assumed to be distributed according to the nominal prior distribution. The
(multiplicative) contribution to the proposal ratio ρ(r,x; r′,x′) of (8) is

qr′→r(u
′ |x′)

qr→r′(u |x)
× Jr→r′(x,u;x′,u′) =

1

q(up)
×
(
spwc1wc2(1 + 1/up)

2
)
.

The Parent Element is Potentially Flawed (`p = 1). In this case either one
or both children are proposed potentially flawed. The proposal process is:

1. Draw a 0/1 Bernoulli variable a with Pr(a = 1) = q(a = 1). By default,
q(a = 1) = q2(sp)/(q1(sp) + q2(sp)), where q1(sp) and q2(sp) are Beta
distribution approximations to the prior distributions of the weighted
harmonic mean of s′c1 and s′c2 when either one of them or both of them
are potentially flawed, respectively.

2. Then, according to the value of a:
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i If a = 1, then both children are proposed to be potentially flawed
(`′c1 = `′c2 = 1). The parameters of q(up) are specified in a manner
similar to the case when both children are proposed to be nominal,
except now they are both potentially flawed. In this case the (mul-
tiplicative) contribution to the proposal ratio ρ(r,x; r′,x′) of (8) is

1

q(a = 1)q(up)
×
(
spwc1wc2(1 + 1/up)

2
)
.

ii If a = 0, then one of the children is proposed potentially flawed (with
equal probability assigned to each). Again, the parameters of q(up)
are specified in a manner similar to the case above, but with one of
children assumed nominal and the other one potentially flawed. The
contribution to the proposal ratio ρ(r,x; r′,x′) is

1

0.5q(a = 0)q(up)
×
(
spwc1wc2(1 + 1/up)

2
)
.

Weighted Arithmetic Mean Aggregation (WAMA)

In this approach, the deterministic fine-to-coarse-resolution proposal move is given
by

s′p = wc1sc1 + wc2sc1 (weighted arithmetic mean)

where the weights wc1 and wc2 sum to one. As in the WHMA approach, the parent
element is considered potentially flawed if at least one of the children is potentially
flawed.

The coarse-to-fine-resolution proposal move is given by

s′c1 = sp + w−1
c1
up and s′c2 = sp − w−1

c2
up,

where up ∼ q(up). As in the WHMA approach, the proposal distribution q(up) is
taken to be a shifted and scaled Beta distribution with parameters that depend on
the status of the parent element, such that if:

The Parent Element is Nominal. Then both children are proposed to be nom-
inal and the parameters of q(up) are specified accordingly (and guided by the
prior distribution). The (multiplicative) contribution to the proposal ratio
ρ(r,x; r′,x′) of (8) is

qr′→r(u
′ |x′)

qr→r′(u |x)
× Jr→r′(x,u;x′,u′) =

1

q(up)
×
(

1

wc1wc2

)
.

The Parent Element is Potentially Flawed. Then either one or both chil-
dren are proposed potentially flawed, as in the WHMA case. The proposal
process is:
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1. Draw a 0/1 Bernoulli variable a with Pr(a = 1) = q(a = 1) specified in a
manner similar to the WHMA case.

2. Then, according to the value of a:

i If a = 1, then both children are proposed to be potentially flawed
and the parameters of q(up) are specified accordingly. This yields

qr′→r(u
′ |x′)

qr→r′(u |x)
× Jr→r′(x,u;x′,u′) =

1

q(a = 1)q(up)
×
(

1

wc1wc2

)
,

ii If a = 0, then one of the children is proposed potentially flawed (with
equal probability) and the parameters of q(up) specified accordingly.
This yields

qr′→r(u
′ |x′)

qr→r′(u |x)
× Jr→r′(x,u;x′,u′) =

1

0.5q(a = 0)q(up)
×
(

1

wc1wc2

)
,

6 Application to Simple Cantilever Beam

Our application is to a finite-element model of a simple cantilever beam of length 100
with one of its end anchored to a wall, as in Glaser et al. (2003). The characteristics
of the beam are modeled (at the finest resolution, resolution 0) by a finite-element
model with 40 element of identical size. A coarser 20 element model (resolution 1) is
formed by joining pairs of adjacent elements of the 40 element model, and similarly,
a 10 element model (resolution 2) is formed by joining pairs of adjacent elements of
the 20 element model. Hence, the 11 nodes of the resolution-2 10 element model are
at locations (measured from the wall) 0, 10, 20, ..., 100, while for the resolution-1
20 element model the node locations are 0, 5, 10, ..., 100, and for the resolution-0 40
element model the node locations are 0, 2.5, 5, ..., 100. Figure 2 shows a schematic
view of the beam at the three resolutions.

The Young’s modulus value of the material used to construct the beam is speci-
fied to be 1.9e+11. However, the actual Young’s modulus values associated with the
(as-build, nominal) 40 elements of the resolution-0 model are not taken to be ex-
actly equal to this nominal value, but rather are randomly scattered around 1.9e+11
(which can be thought to be due to natural spatial variation in the material proper-
ties). In addition, two of the 40 elements, element 5 and 25, are assigned a consid-
erably lower Young’s modulus value than the specified nominal value for the beam’s
material and reflect damages (flaws) in the beam. Figure 3 shows the assumed
true Young’s modulus values of the 40 elements that make up the finest-resolution
finite-element model.

In this exercise, our data consists of the computed nodal displacements (using
NIKE3D at resolution 0) plus an added synthetic Gaussian measurement error noise.
The nodal displacements are computed at 10 locations along the beam when the
following three different sets of forces are applied (as in Glaser et al., 2003):
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Resolution 0 (41 nodes)
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Resolution 1 (21 nodes)
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Resolution 2 (11 nodes)
● ● ● ● ● ● ● ● ● ● ●

Figure 2: A simple cantilever beam with one end anchored to a wall shown at three
resolutions.
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Figure 3: The actual (true) Young’s modulus values of the 40 elements that make up
the finest-resolution, resolution-0, finite-element model (red dotted line segments).
Also shown is the nominal Young’s modulus value for the beam’s material.

1. A downward force of (relative) strength 1 applied at location 100 (at the free
end of beam).
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2. A downward force of strength 1/2 applied to locations 50 and 100.

3. A downward force of strength 1/2 applied to location 100 and an upward force
of strength 1/2 applied to location 50.

For each of the three sets of forces applied, both vertical (up-down) and angular
nodal displacement are measured at locations 10, 20, ..., 100. The observed dis-
placements (the data) are then taken to be equal to the true nodal displacements
plus a Gaussian random error with standard deviation of 1.0e-6 in the case of verti-
cal displacement and with standard deviation equal to 1.0e-7 in the case of angular
displacement. Figure 4 shows (1) the true nodal displacement, as computed using
NIKE3D at resolution 0, (2) the nodal displacement when all elements are assigned
a nominal Young’s modulus value of 1.9e+11, and (3) the observed displacements.
Figure 5 shows then the difference in nodal displacement between a model config-
ured with the true stiffness values and nominal stiffness values, and the difference
between the observed displacement and the nominal displacement. To summarize,
the current stiffness configuration (with two flaws) results only in a small difference
in the computed displacements compared to a model configured with all 40 elements
having a nominal, 1.9e+11, Young’s modulus value (Figure 4). The task of deter-
mining if the characteristics of the beam deviate significantly from a nominal beam
and if so, where and how much, becomes even harder with the added measurement
noise (Figure 5).

We shall now outline the specification of the prior distribution and the likelihood
used at each resolution.

6.1 Specification of the Prior Distribution and the Likeli-
hood

The Prior Distribution

The prior distribution associated with resolution-0 (the finest-resolution) model is
fully specified by the parameters of the shifted and scaled Beta distribution for the
nominal and the potentially flawed Young’s modulus values, along with the binomial
rate for the number of potentially flawed elements; see (2) and (3). These parameters
are take to be:

Nominal Beta Param.: s− = 1.80e+11, s+ = 2.0e+11, α = 5, β = 5

Flawed Beta Param.: s− = 1.00e+09, s+ = 1.85e+11, α = 3, β = 3

Binomial Flaw Rate: λ = 0.05 (expected # flaws = 2).

(9)

The prior distributions at resolutions 1 and 2 are of the same format as at reso-
lution 0. However, instead of specifying the parameters of the prior distribution for
each of the coarser-resolution models independently, they are derived from the prior
distribution at resolution 0. This is done with the help of an element aggregation
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Figure 4: The top three graphs show the vertical true (two flaws), nominal (no
flaws), and observed displacement under the three set of forces considered. The
bottom row shows the angular displacement.

rule that specifies how a Young’s modulus value at a coarse resolution is derived
from it’s children Young’s modulus values at a finer resolution. We consider two
aggregation rules; a weighted arithmetic mean and a weighted harmonic mean, given
by:

s = w1s1 + w2s1 (weighted arithmetic mean)

s =
1

w1

s1
+ w2

s2

(weighted harmonic mean),
(10)

where s1 and s2 are the finer-resolution children Young’s modulus values and w1

and w2 are pre-specified weights. These two aggregation rules correspond to the
two suggested between-resolution proposal methods in Section 5.3. In what follows
we take w1 = w2 = 1/2, motivate by equal sized elements. Then, in the case of
aggregation via harmonic means, the parameters of the shifted and scaled Beta
prior distribution of s are derived to yield an approximation to the true distribution
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Figure 5: The top three graphs show the difference in vertical displacement between
a model configured with two flawed elements (the truth) and one configured with
all element as nominal (nominal) and also the difference between the the observed
displacement and displacement resulting from the nominal model. The bottom row
shows the difference in angular displacement.

of s = (w1s
−1
1 + w2s

−1
2 )−1 in terms of matching the first two moments (i.e., mean

and variance). For example, if both s1 and s2 are considered to be nominal, then
s is considered to be a nominal with Beta prior approximating the distribution of
(w1s

−1
1 + w2s

−1
2 )−1. Similarly, the Beta prior distribution of a potentially flawed

element is derived by approximating the distribution of (w1s
−1
1 + w2s

−1
2 )−1 when

one or both of the finer resolution elements are flawed (as determined by the bino-
mial flaw rate). This yields the following parameters for resolution 1 (derived from
resolution-0 priors):

Nominal Beta Param.: s− = 1.80e+11, s+ = 2.0e+11, α = 10.5, β = 10.5

Flawed Beta Param.: s− = 1.00e+09, s+ = 1.92e+11, α = 4.0, β = 2.6

Binomial Flaw Rate: λ = 0.0975 (expected # flaws = 1.95).

(11)

22



Johannesson et al. Multi-Resolution MCMC for System Identification

And for resolution 2 (derived from the resolution-1 priors):

Nominal Beta Param.: s− = 1.80e+11, s+ = 2.0e+11, α = 21.5, β = 20.5

Flawed Beta Param.: s− = 1.00e+09, s+ = 1.96e+11, α = 5.5, β = 2.4

Binomial Flaw Rate: λ = 0.1855 (expected # flaws = 1.85).

(12)

Figure 6 shows the Beta prior distributions at the three resolutions.
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Figure 6: The shifted and scaled Beta prior distributions for the Young’s modulus
value of a nominal and a potentially flawed element at the three resolutions as
derived via simple harmonic mean aggregation rule.

A similar method was employed to derive the parameters for the prior distribu-
tions when a simple arithmetic mean aggregation approach was used.

The Likelihood

Given how the data was generated, the likelihood (i.e., the data model in (5)) at
each resolution was simply taken as

pr(y | sr) =
3∏

i=1

pr:i(yi | sr), r = 0, 1, 2,

where y = {y1,y2,y3} are the observed nodal displacement data under each of the
three sets of forces. The force-specific likelihoods are given by,

pr:i(yi | sr) =
10∏

k=1

2∏
j=1

ϕ(yijk − ŷr:ijk;σ
2
r:ijk),
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where yi = {yijk : j = 1, 2, k = 1, . . . , 10}, with j indexing the type of nodal
displacement (vertical or angular) and k indexing nodal location, {ŷr:ijk} are the
predicted nodal displacements at resolution r, and ϕ(·;σ2

r:ijk) is a Gaussian density
with mean zero and variance σ2

r:ijk. The {σ2
r:ijk} are taken to be given by

σ2
r:ijk = ψ2

j + vrτ
2
r:ijk, (13)

where {ψ2
j} are the measurement error variances (ψ1 = 1.0e-6 and ψ2 = 1.0e-7),

{τ 2
r:ijk} are model error variances, and vr are resolution-specific variance scaling pa-

rameters. At the finest resolution we let τ 2
0:ijk = 0, reflecting how the data was

generated. At resolution 1 and 2, an empirical study was made to investigate the
size of the model error with respect to resolution 0. 500 sets of stiffness configura-
tions were generated at the finest resolution from the prior distribution and {ŷ(c)

0:ijk}
computed for each configuration c = 1, . . . , 500. Each of the 500 configurations was
then aggregated down to resolution 1 and 2 using both arithmetic and harmonic
mean, see (10), and the displacements {ŷ(c)

r:ijk}, r = 1, 2, computed for each aggre-
gation method and stiffness configuration c = 1, . . . , 500. Figure 7 summarizes the
result for force configuration 1 (i = 1) and the two aggregation methods in terms of
the empirical standard deviation

sdr:ijk =

(
1

500

500∑
c=1

(ŷ
(c)
r:ijk − ŷ

(c)
0:ijk)

2

)1/2

, r = 1, 2.

There is a noticeable difference between the arithmetic and the harmonic aggregation
approach, with the harmonic approach yielding a considerably better approximation
of the fine-resolution model. Using the result of the empirical study, we take τ 2

r:ijk =

sd2
r:ijk, r = 1, 2.
The argument for the variance scaling parameter vr in (13) is to have the option

of ’increasing’ or ’decreasing’ the accuracy of the coarser-resolution models. Recall
that the coarser-resolution models are mainly used to assist and guide the MCMC
sampler at the finest-resolution. As such, ’heating’ up the likelihood (i.e., make it
flatter) at coarser resolutions might allow the MCMC sampler to move more freely
and yield a better mixed and representative sample, as discussed in Section 2.
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Force 1: Vertical Force 1: Angular
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Figure 7: An empirical estimate of the vertical (left graph) and angular (right graph)
nodal displacement error computed at resolution 1 and 2, versus at resolution 0. The
result of both arithmetic mean and harmonic mean Young’s modulus aggregation
are shown. Dotted horizontal line shows the measurement error standard deviation
used for the two types of displacements.
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6.2 Single-Resolution Results

We ran the MCMC sampler for 10,000 iterations at resolution 0, with the stiffness
of each element initialized at the nominal value (1.9e+11). Figure 8 shows the
configuration of {si} at iteration 50, 500, 5,000, and 10,000. The sampler “finds”
the first flaw (element 5) relative quickly and samples around it, and soon after finds
the second flaw (element 25).

Figure 9 shows the sample trace of elements 5 and 25 (both flawed) and of
elements 15 and 40 (both nominal). The posterior samples for elements 5 and 25
alter between nominal and flawed states. Element 15, a nominal element located
exactly halfway between the two flawed elements, has close to all of is samples in the
nominal range, while element 40, a nominal element at the end of the beam, has a
larger portion of its samples in the flawed range than element 15. This is somewhat
expected as the data provides stronger information about the beam’s properties
at the beginning of the beam (close to the wall), but are basically non-informative
about the last few elements of the beam. Hence, for the last few elements, the sample
of the Young’s modulus values should reflect the prior distribution. In general, by
a crude visual judgment there is a rather short burn-in period, while chain mixing
is not seen to be particularly good for nominal elements. This is both due to the
samplers design and dimension of the problem (40 elements). That is, by default
every fourth proposal is a proposal to resize the Young’s modulus value of a nominal
element. Hence, for example, approximately every 160 (= 4×40) iteration a proposal
is made to resize element 15 (this also hints at how poorly the problem scales with
the size of the model, that is, the number of elements). In addition, no attempt was
made to tune the proposal distributions in this initial analysis and the acceptance
ratio for the four proposal moves is seen to be:

birth/death of a flaw relocate a flaw resize a flaw resize a nominal
0.168 0.607 0.374 0.848

showing a very high acceptance rate for the resizing-a-nominal move, which yields
slower mixing among nominal elements. Similarly, the relocate-a-flaw move (with,
by default, 90% of the time proposing a relocation to a neighboring location) has
a high acceptance rate of 0.607 which can be lowered by lowering the neighboring
relocation rate.

Figure 10 shows (top) the sample trace of the total number of (potential) flaws,

given by n(j) =
∑40

i=1 `
(j)
i , where `

(j)
i is the j-th MCMC sample of `i, and (bottom) the

estimated posterior distribution Pr(n | data). The posterior distribution Pr(n | data)
is estimated by the sample {n(j) : j = 1, 001, . . . , 10, 000}, discarding the first 1,000
samples as a burn-in period (as judged, roughly, by the sample trace of n(j)). There
is a zero posterior probability of having zero or one flaw, with three flaws having the
highest posterior probability. Figure 11 shows estimates of the marginal posterior
probabilities of each of the 40 elements being flawed, as given by Pr(`i = 1 | data)
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and estimated by (discarding the first 1,000 samples as burn-in)

1

9, 000

10,000∑
j=1,001

`
(j)
i .

Figure 11 also shows the Bayes Factor (BF),

Pr(`i = 1 | data)/Pr(`i = 0 | data)

Pr(`i = 1)/Pr(`i = 0)
;

the posterior odds of element i being flawed versus nominal to the prior odds of
element i being flawed versus nominal. (A BF between 3 and 12 is consider a
positive evidence, a BF between 12 and 150 a strong evidence; Raftery, 1996. It
is also helpful to look at 2 log(BF ), which is on the same scale as the likelihood-
ratio in classical statistical testing.) As can be seen, there are positive evidence for
flaws at elements 5–8 and at 25–28. Note that the data is observed at nodes 10,
20, ..., 100 (i.e., no data between nodes 10 and 20, and between nodes 60 and 70).
A further inspection of the sampler shows that there is typically one flaw at the
beginning of the beam that is assigned to one of elements 5–8. For example, the
posterior probability of having at least one flaw among the elements 5–8, given by
Pr(
∑8

i=5 `i > 0 | data), is estimated to be 1.0 (i.e., all samples have at least one flaw
at elements 5–8), while for locations 25–28 it is estimated to be 0.87. This shows the
power of the MCMC approach, where posterior inference can be easily conducted
using the generated MCMC sample {s(j), `(j) : j = 1, 001, . . . , 10, 000}.

Instead of using the samples {`(j)} to detect potential flaws, one can use the
samples {s(j)} directly by looking at the posterior probability of si being below a
given threshold, say so, given by Pr(si < so | data), for any i = 1, . . . , 40. This
probability is simply estimated by counting the number of sampled stiffness values
that fall below the given threshold. Figure 12 shows the empirical histogram of the
MCMC sample of si for elements 4–9 and 24–29, along with a vertical line showing
the true Young’s modulus value. Figure 12 shows that the estimated size of the
flaw at element 5 is closer to the true value than the size of the flaw at element 25.
However, in both cases the exact element-location of the flaw is not well isolated
within the highly probable range of flawed locations (at elements 5–8 and at elements
25–28; recall Figure 11).

The MCMC sampler was also used to sample at resolution 1 and 2 (with the
variance scaling parameter vr equal to 1.0 in (13) for both resolutions). Figure 13
shows the posterior probability of potentially flawed elements at resolution 1 and 2
(based on 10,000 samples, with the first 1,000 samples discarded). As the elements of
the coarser-resolution models are larger, the posterior probability of potential flaws
at the respective elements that include the two actual flawed elements increases.
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Figure 8: Shown are sampled Young’s modulus configurations at iterations (from
top to bottom) 50, 500, 5,000, and 10,000 in the case of a single-resolution sampler
at resolution 0 (40 elements).
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Figure 9: Shown are the sample traces of Young’s modulus values for elements
(from top to bottom) 5, 15, 25, and 40 in the case of a single-resolution sampler for
the 40 element model. Gray dashed line shows the nominal value 1.9e+11 while a
red dotted line shows the true Young’s modulus value assigned to that particular
element. 29
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Figure 11: The posterior probability (top) of potentially flawed elements at resolu-
tion 0 (the prior probability is shown as a dashed line) and (bottom) the associated
Bayes Factor in support of any given element being potentially flawed.
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Figure 12: Histograms of MCMC sampled Young’s modulus values for elements 4–9
and 24–29 along with a vertical (red) line showing the true Young’s modulus value.
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Figure 13: The posterior probability of potentially flawed elements at resolution 1
(top) and at resolution 2 (bottom). Vertical (red) line segments show the location
of the two flawed elements at resolution 0.
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6.3 Multi-Resolution Results

The multi-resolution MCMC sampler was used to generate 10,000 samples, starting
at resolution 2, the coarsest resolution (all with Young’s modulus values equal to
the nominal value of 1.9e+11). The prior probabilities assigned to each of the
three resolutions was (by default) equal. But, once again one can view these prior
probabilities as parameters which tune the proportion of the time the sampler stays
at each resolution. The between-resolution moves were based on the harmonic-mean
aggregation method, as outlined in Section 5.3 with default parameter values. The
sampler visited each resolution 3,445, 2,851, and 3,704 times for resolution 0, 1, and
2, respectively. The acceptance rates for going to finer or coarser resolution model
were:

Finer Res Coarser Res
At Resolution 0 - 0.24
At Resolution 1 0.65 0.79
At Resolution 2 0.30 -

Figure 14 shows how the Markov chain jumps between resolutions. Figure 15 shows
four sets of sampled Young’s modulus values; samples 38 and 39, when the sampler
changes from resolution 2 to 1 for the first time, and samples 90 and 91, when
the sampler changes from resolution 1 to 0 for the first time. As can be seen,
even as soon as at iteration 90 (when entering resolution 0 for the first time), the
Young’s modulus sample shows good variation among nominal elements and a flaw
configuration that reflects the true flaw locations.
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Figure 14: The resolution-trace of the multi-resolution MCMC sampler (resolution
0 is the 40 elements model).

One of the main advantage of the multi-resolution approach over the single-
resolution sampler is “quicker” exploration of the parameter space leading to better
MCMC mixing. Figure 16 shows the sample traces for the same elements as dis-
played in Figure 9 for a single-resolution sampler. It is hard to judge from sample
traces in Figure 16 if the samples show better mixing than those in Figure 9 (we
shall come back to this issue later). Figure 17 and 18 show the posterior evidence of
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flawed elements and can be compared to Figure 11 and 13, respectively. Note that
a single run (of 10,000 iterations) of the multi-resolution MCMC sampler is used in
Figure 17 and 18 while three runs (each of 10,000 iteration) of the single-resolution
MCMC sampler are used to draw Figures 11 and 13.

A more formal way to judge mixing, than simply looking at sample traces in
Figure 16 is to compute the empirical auto-correlation function (ACF). Figure 19
shows the ACF of the Young’s modulus samples from the single-resolution and the
multi-resolution sampler for element 5 (a flawed element). Both samplers have a
1,000 iteration burn-in period, but only every other sample is used in the case of the
single-resolution sampler. This is done to account for different computational cost
by assuming that that evaluation time of the forward model, the NIKE3D finite-
element solver, is approximately linear in the number of elements (a very optimistic
assumption in favor of the single-resolution sampler). In general we see better
mixing in samples from the multi-resolution sampler. This is even more striking for
nominal elements, as can be seen in Figure 20, which shows the ACF for element
15 (a nominal element).
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Figure 15: Shown are sampled Young’s modulus configuration at iterations (from
top to bottom) 38, 39, 89, and 90 in the case of a multi-resolution sampler (the
sampler starts at resolution 2 and enters resolution 1 for the first time at iteration
39 and resolution 0 for the first time at iteration 90).
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Figure 16: Shown are the sample traces of Young’s modulus values for elements
(from top to bottom) 5, 15, 25, and 40 (at resolution 0) generated by the multi-
resolution sampler. Gray dashed line shows the nominal value 1.9e+11 while a
red dotted line shows the true Young’s modulus value assigned to that particular
element. 37
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Figure 17: The posterior probability (top) of potentially flawed elements at resolu-
tion 0 using the multi-resolution MCMC sampler (the prior probability is shown as
a dashed line) and (bottom) the associated Bayes Factor in support of any given
element being potentially flawed.
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Figure 18: The posterior probability of potentially flawed elements at resolution 1
(top) and at resolution 2 (bottom) using the multi-resolution MCMC sampler. Ver-
tical (red) line segments show the location of the two flawed elements at resolution
0.
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Figure 19: Auto-correlation in Young’s modulus samples for element number 5 at
resolution 0 (a flawed element) generated by the single-resolution MCMC sampler
and the multi-resolution MCMC sampler. The top row shows auto-correlation in
{s5(j) : `

(j)
5 = 1} and the bottom row shows the auto-correlation in {s5(j) : `

(j)
5 = 0}.
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Figure 20: Similar to Figure 19, except in the case of element 15 at resolution 0.
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7 Discussion

This initial attempt of using a multi-resolution MCMC inverse approach to perform
flaw detection in a physical structure shows promise. The main goal of the multi-
resolution methodology is to improve on mixing and reduce the computational cost
associated with the forward model (the NIKE3D solver in this case). Improved
mixing allows one to reduce the MCMC sample size needed for meaningful sys-
tem inference, hence reducing the overall computational cost. Such improvement
is accomplished by alternating between small- and large-scale exploration of the
parameter space. It is possible to conduct both small- and large-scale exploration
at a single resolution by moving “blocks” of parameters in a single step. However,
we can reduce the computational cost even further by conducting the large-scale
exploration at coarser resolutions with a speedier forward model. As a byproduct,
inference is performed simultaneously at multiple resolutions.

Our application to the 1-dimensional cantilever beam of Glaser et al. (2003) is in
many ways too “small” to demonstrate the potential benefits of the multi-resolution
approach. Not only is the dynamic of the beam well-described by a relatively coarse
model (i.e., 10 elements), but additionally the coarsening of the 1-dimensional 40
element model results only in modest dimension reduction (from 41 to 21 nodes,
and from 21 to 11 nodes — approximately 1/2 reduction in each step). For larger
3-dimensional structures, coarsening results in a greater reduction in the number
of nodes. For example, one gains approximately (1/2)3 = 1/8 reduction in total
number of nodes using a similar scheme to that used for the 1-dimensional cantilever
beam.

To end on a little example, assume that it is only computationally feasible, due
to time restriction, to evaluate a fine-resolution 3-dimensional finite-element model
1,000 times. A single-resolution MCMC analysis limited to 1,000 iteration may not
even pass the burn-in period, yielding it useless. Now, assume that the forward
model scales linear in the number of nodes (a very mild assumtion). As such, a
single fine-resolution model evaluation can be replaced with 8 medium-resolution
model evaluations (assuming 1/8 reduction in the total number of nodes) or with
64 coarse-resolution model evaluations. Hence, the 1,000 fine-resolution runs can be
replaced with, for example, 700 fine-resolution runs, 1,600 medium-resolution runs,
and 6,400 coarse-resolution runs. That is, using a multi-resolution MCMC approach
would allow one to pass the burn-in period, using coarse- and medium-resolution
models, and yield a well mixed sample for the fine-resolution model.
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