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Section 1: The Proposal 
 
Motivation 
 
Probabilistic inverse techniques, like the Markov Chain Monte Carlo (MCMC) algorithm, 
have had recent success in combining disparate data types into a consistent model.  The 
Stochastic Engine (SE) initiative was a technique that developed this method and applied 
it to a number of earth science and national security applications.  For instance, while the 
method was originally developed to solve ground flow problems (Aines et al.), it has also 
been applied to atmospheric modeling and engineering problems.  The investigators of 
this proposal have applied the SE to regional-scale lithospheric earth models, which have 
applications to hazard analysis and nuclear explosion monitoring.  While this broad 
applicability is appealing, tailoring the method for each application is inefficient and 
time-consuming. 
 
Stochastic methods invert data by probabilistically sampling the model space and 
comparing observations predicted by the proposed model to observed data and 
preferentially accepting models that produce a good fit, generating a posterior 
distribution.  In other words, the method “inverts” for a model or, more precisely, a 
distribution of models, by a series of forward calculations.  While powerful, the technique 
is often challenging to implement, as the mapping from model space to data needs to be 
“customized” for each data type.  For example, all proposed models might need to be 
transformed through sensitivity kernels from 3-D models to 2-D models in one step in 
order to compute path integrals, and transformed in a completely different manner in the 
next step.   
 
We seek technical enhancements that widen the applicability of the Stochastic Engine by 
generalizing some aspects of the method (i.e. model-to-data transformation types, 
configuration, model representation).  Initially, we wish to generalize the transformations 
that are necessary to match the observations to proposed models.  These transformations 
are sufficiently general not to pertain to any single application.  This is a new and 
innovative approach to the problem, providing a framework to increase the efficiency of 
its implementation.  The overall goal is to reduce response time and make the approach as 
“plug-and-play” as possible, and will result in the rapid accumulation of new data types 
for a host of both earth science and non-earth science problems. 
 
Scope 
 
Implementation of the SE to wide-ranging applications is currently hampered by the need 
to customize the model-to-data mapping required for each data type.  In order to make 
progress on this front, it will be necessary to first characterize the different transformation 
types, illustrated with specific examples.  This will then allow us to generalize the 
implementation of each transformation into generic mapping classes.   
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By constructing classes, we will be providing a framework for a large range possible 
transformations that will be necessary for future data types.  We will start by 
characterizing all possible transformations for three-dimensional (i.e. x, y, z or lat, lon, 
depth) but time-independent models.  We will then consider transformations of time-
dependent four-dimensional models (x, y, z, t).  While the former is appropriate for earth 
science problems where the earth is essentially static, the latter is relevant to other 
applications like ground-water flow or atmospheric problems.  
 
In one application, we have applied the SE probabilistic inverse technique to make high-
resolution, regional seismic earth models applicable to problems of non-proliferation.  
The study area selected was the region of Eastern Asia in the vicinity of the Yellow Sea 
and Korean Peninsula (YSKP).  This region is a high-priority area for nuclear explosion 
monitoring, where it is important to accurately characterize the seismic velocity structure.   
 
As an example, one data type used in regional structural problems is a receiver function, 
which measures reverberations directly under a seismic receiver.  As such, they are 
sensitive to the depth structure under a given point.  For a given set of points, then, we 
are essentially collapsing the 3-D model along the z-axis to a series of 1-D models though 
depth-dependent sensitivity kernels (Figure 1.1).  This is an extremely common 
transformation for surface observable data, either by itself or in combination with other 
transformations. 

 

 
  
 
Figure 1.1.  Example of one data type which is a series of depth-dependent-only 
sensitivity kernels. 
 
In some cases, several transformations might be possible for the same data.  Seismic 
waveforms are another data type that can be used to construct and test regional earth 
models.  Depending on the approximation desired, the model transformation can either be 
1-D (average structure along source-receiver path), 2-D (slice through the model along 
the path), or fully 3-D (which might only be a volume along the path). 
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By classifying the fundamental transformations, and combinations of transformations, 
new data types can be quickly assimilated into the problem.  Furthermore, future 
applications can make use of these general transformations in order to quickly implement 
the SE technique.  This will have broad applications to a wide variety of investigations.   
 
Approach 
 
Our approach is to answer a set of questions.  First, does the approach of generalizing the 
mapping from model to data enhance the implementation of SE problems?  We will 
answer this question by first performing a census of existing model transformations.  
These will be taken from several SE applications.  By tabulating existing transformations, 
we will establish classes of these transformations.  We will then build out the framework 
to include all relevant instances of each class. 
 
Once these classes are established we will then ask how this generalization method 
improves the integration of new data and speed its operation.  We will specifically test 
this for a relevant problem by selecting data sets which utilize the same model 
transformation.  We will then assess the value of this approach for the integration of new 
data sets. 
 
Finally, what are other possible generalizations (i.e. configuration, model representation) 
we can make to improve efficiency?  While this cannot be fully investigated in the 
current proposal, this is clearly an opportunity to try and explore other strategies at 
improving implementation of the SE approach. 
 
Expected Results 
 
From this research, we will develop a framework for quickly and easily incorporating 
different data types into probabilistic inverse techniques like the SE.  We will report on 
our findings of the generalization of the mappings, focusing on the ability of such an 
approach to successfully increase the efficiency of implementation.  While the framework 
will be general and hence applicable to multiple products, we will also be providing 
instances of its application in order to deliver concrete examples of possible benefits.  For 
a relevant earth science problem (a high-resolution regional seismic model of YSKP), we 
will provide results.  
 
This project is highly relevant to the Energy and Environment (E&E) Directorate’s 
strategic needs, which include data driven simulations of complex systems, particularly 
those that are relevant to earth science problems.  In particular, this would help facilitate 
interaction with GEON (Keller, 2003), a consortium which provides cyberinfrastructure 
for the geosciences, and which LLNL is a team member.  The E&E Directorate shares 
GEON’s goals to provide infrastructure that manages, preserves, and accesses earth 
science data and fosters studies that address complex scientific problems.  This proposal 
directly addresses this need. 
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Depending on the specific application, this research is also relevant to several overall 
missions of the lab.  For example, the nuclear explosion monitoring application supports 
National Security efforts in Nonproliferation & Arms Control and Technologies for 
Monitoring.  Other earth and atmospheric science applications support the lab’s efforts in 
environmental technologies, such as environmental remediation and atmospheric release. 
 
This research has several potential follow-ons.  First, if this technique appears promising, 
we can prepare a new proposal to further develop this approach and develop other 
potential generalizations that can improve efficiency and increase response time.  This 
proposal would continue to address data driven simulations of complex systems for a 
variety of applications. 
 
Another potential follow-on is specific to the regional seismic model application.  If we 
are able to incorporate enough data types to produce a high-resolution model, then we 
will be assessing the feasibility of using stochastic models to lower the nuclear 
monitoring threshold.  In combination with correlation techniques which match new 
waveforms against template waveforms, we could significantly improve the monitoring 
threshold in regions of interest by using model-derived waveforms in lieu of empirical 
data in aseismic regions.  This work would most likely be supported by agencies like the 
NNSA Office of Defense Nuclear Non-Proliferation. 
 
Personnel 
 
Michael Pasyanos is a seismologist/geophysicist with an expertise in seismic surface 
waves and tomographic inversion methods.  His primary work at LLNL has been in the 
ground-based nuclear explosion monitoring (GNEM) group where he has established 
methods to improve the ability to discriminate between earthquakes and nuclear 
explosions using surface waves and geophysical models. 
 
Abelardo Ramirez is a geophysicist with expertise in electrical and electromagnetic 
methods, tomographic and stochastic inversion methods. His primary work at LLNL has 
been in electrical geophysics where he has developed and used methods to map 
subsurface structures and plumes in support of a variety of LLNL programs. 
 
Gregory “Al” Franz is a computer scientist.  His primary work at LLNL is in the Earth 
Sciences group, within the Energy, Environment, Biology and Institutional Computing 
Division of the Computing Applications and Research Department (CAR-EEBI) where 
he has developed software and numerical methods to utilize the Stochastic Engine to 
propose models of the Earth's structure, based upon seismological observations. 
 
Work Plan 
 
FY04 (six-month project) 
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Perform a census of model transformations.  Classify theoretical model transformation 
types.  Develop a framework for set of transformations.  For relevant problem, implement 
one common transformation on several data sets and compile results.  Explore other 
strategies for improving SE approach. 
 
Estimated Budget 
 
Personnel FY04 (FTE) 
MP (9743) 0.25 
AR (9880) 0.25 
GF (9823) 0.50 
Total wages 1.00*6 months = 0.50 FTE   
 
Wages  $88 K 
TID  $2 K 
 
Total  $90 K  
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Section 2: Tool Development 
 
Introduction 
 
The Stochastic Engine (SE) is a data driven computer simulation tool for predicting the 
characteristics of complex systems. The SE integrates accurate simulators with the Monte 
Carlo Markov Chain (MCMC) approach (a stochastic inverse technique) to identify 
alternative models that are consistent with available data and ranks these alternatives 
according to their probabilities. Implementation of the SE is currently cumbersome owing 
to the need to customize the pre-processing and processing steps that are required for a 
specific application.  
 
This project widens the applicability of the Stochastic Engine by generalizing some 
aspects of the method (i.e. model-to-data transformation types, configuration, model 
representation). We have generalized several of the transformations that are necessary to 
match the observations to proposed models. These transformations are sufficiently 
general not to pertain to any single application. This approach provides a framework that 
increases the efficiency of the SE implementation.  The overall goal is to reduce response 
time and make the approach as “plug-and-play” as possible, and will result in the rapid 
accumulation of new data types for a host of both earth science and non-earth science 
problems. 
 
When adapting the SE approach to a specific application, there are various pre-processing 
and processing steps that are typically needed to run a specific problem. Many of these 
steps are common to a wide variety of specific applications. Here we list and describe 
several data transformations that are common to a variety of subsurface inverse problems. 
A subset of these steps have been developed in a generalized form such that they could be 
used with little or no modifications in a wide variety of specific applications. This work 
was funded by the LDRD Program (tracking number 04-ERD-083). 
 
Simple data transformations 
 
The MCMC approach aims to search for subsurface models that are most consistent with 
available data. These models can then be used to calculate other parameters of interest 
such as seismic velocity. Some of the calculations require that the properties in a 3-D 
model be somehow “simplified” in order to be consistent with the physics being modeled. 
Figures 2.1 – 2.10 shows some of the simple data transformations we have identified and 
in many cases have coded. 
 
3-D model to 3-D volume: (refer to Figure 2.1). This transformation is simply a reduction 
in volume size with possible re-sampling.  This is necessary when the forward problem 
requires a full 3-D volume, but not necessarily one that covers the complete 3-D model.  
Instead the codes might only require a single parameter (i.e. Vp only instead of Vp, Vs, 
density, Qp, Qs, etc.) or a small volume along the path, as would be required for finite 
difference codes.  Examples include finite difference codes like E3D (Larsen and Schultz, 



 

 10

1995) or spectral element finite element codes like SPECFEM3D (Komatitsch and 
Tromp, 1999; Komatitsch et al., 2002) for waveform analysis.  This is also required for 
finite difference travel time codes, like the algorithm originally developed by Vidale 
(1988) and further refined by Hole and Zelt (1995), which uses an approximation to the 
Eikonal equation to compute first arrival travel times through regularly gridded velocity 
structures.  
 

 
Figure 2.1. 3-D model to 3-D volume 
3-D model to 2-D map: (refer to Figure 2.2). One such simplification (left side of Figure 
2.2) involves the integration of properties along the vertical direction using depth-
dependent sensitivity kernels as weighting functions; the integrated properties are 
displayed as a 2-D map. When the sensitivity kernel has the shape of a delta function 
with the maximum located at depth Z, this transformation returns the horizontal 
distribution of model values for this depth. The calculation of seismic surface wave group 
velocity or phase velocity is an application that uses this approach. This is also used for 
seismic, body wave travel time calculations to reduce a complex model to a series of 2-D 
surfaces. 
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Figure 2.2. 3-D model to 2-D map 
 
3-D model to 2-D cross-section: (refer to Figure 2.3). In this case, we need to extract a 
distribution of values along a 2-D vertical plane (say, from source to receiver). In some 
cases, the 2-D distribution of values is calculated by averaging the property along the 
normal to the plane of interest. Seismic waveform synthesis using a 2-D version of the 3-
D finite difference programs like E3D (Larsen and Schultz, 1995) is one application that 
uses this approach, as would be programs that calculate travel times using a Gaussian 
beam technique like Xgbm (Davis and Henson, 1993). 
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Figure 2.3. 3-D model to 2-D cross-section 
 
3-D model to 1-D profile: (refer to Figure 2.4). This transformation consists of extracting 
a vertical profile of property values from the 3-D model.  This approach is used when 
calculating teleseismic receiver functions, which are the reverberations and conversions 
of incident P-waves under a seismic station. 
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Figure 2.4. 3-D model to 1-D profile 
 
3-D model to surface: (refer to Figure 2.5). This data transformation is necessary in order 
to extract some types of surface from a 3-D model.  The surface could either be 
isocontours like iso-velocities (i.e. surface having 6.0 km/s P-wave velocity) or a surface 
that might represent physical units such as lithology.  Examples of this would be surfaces 
of basin depth or Moho depth. 
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Figure 2.5. 3-D model to surface 
 
2-D cross-section to 1-D profile: (refer to Figure 2.6). In this case, we extract a 
distribution of values along a 2-D vertical plane, and then average the values to produce a 
“layered-cake” model. Only the values within a given layer are averaged together in order 
to preserve the geological layering, layer boundaries and discontinuities. This approach is 
used when synthesizing waveforms using a simplified 1-D model like reflectivity 
(Kennett, 1985) or a Gaussian beam approach like Xgbm (Davis and Henson, 1993). 
 

 
Figure 2.6. 2-D cross-section to 1-D profile 
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3-D model to voxel: (refer to Figure 2.7). This transformation consists of extracting a 
single voxel value from a 3-D model. 
 

 
Figure 2.7.  3-D model to voxel 
 
2-D model to pixel: This transformation consists of extracting a single pixel value from a 
2-D model. 
 
Integrate properties along a 2-D great circle path: (refer to Figure 2.8). This 
transformation integrates a property (such as slowness) along a great circle path. This 
transformation is useful when calculating seismic arrival times (which accumulates as 
travel time slowness), group times (which accumulates as group slowness), or amplitudes 
(which accumulates as attenuation). 
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Figure 2.8.  Integrate properties along a 2-D great circle path. 

 
Integrate properties along a general 2-D path: (refer to Figure 2.9). This transformation 
is similar to the one above except that the path of interest follows a general route that is 
specified by the user. This transformation is useful when large contrasts in seismic 
properties are expected to result in significant ray bending where the ray is not expected 
to travel along the great circle path.  Examples are the same as in the integration along the 
great circle path. 
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Figure 2.9.  Integrate properties along a general 2-D or 3-D path. 

 
Map category to physical data. (refer to Figure 2.10). We can use the lithology (the 
general physical characteristics of a rock) as the subsurface model of interest because it is 
typically correlated with many parameters of interest such as seismic velocity and 
density. In these cases, one can choose a categorical simulation approach where each 
category is associated with a discrete property value. For example, if the set of categories 
is gravel ,sand,clay{ }, then gravel → VP1,sand → VP2 ,clay → VP3 , where the VPi  
represent distinct p-wave velocity values or some other property. This mapping from 
category to physical parameter is one of the data transformations we could generalize in 
order to accelerate the implementation of specific applications of the MCMC approach. 
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Figure 2.10.  Map category to physical data values. 
 
Advanced data transformations 
 
Transform from one physical property to another when multiple data sets are inverted 
jointly. The MCMC method simultaneously uses many types of data to refine our 
understanding of complex subsurface systems. Suppose that the system under study 
consists of a plume of fluid injected into a subsurface layer. The actual connection of a 
plume model to an observation is made via a forward model: given a possible plume 
configuration, the forward model predicts the values that would be observed by actual 
measurement. Then, the predicted data are compared to the measured data, yielding an 
estimate of the probability that the proposed plume model is in fact the true model.  By 
staging these comparisons in a series, we can identify probable plume models that are 
consistent with all available data. For example, consider an application where CO2 is 
injected into a geologic reservoir and that cross-borehole electrical resistance and 
borehole tiltmeter surveys have been made to monitor the spatial extent of the CO2 flood. 
To solve the forward problem for the electrical survey data, it is necessary to transform a 
given plume configuration into a 3-D model of electrical resistivities using an appropriate 
petrophysical model. To solve the forward problem for the tiltmeter data, we need to 
transform the plume model to a 3-D pressure field using a different petrophysical model. 
In a staged inversion, these data transformations could be generalized such that a single 
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software module can be used regardless of the type of data available and the 
petrophysical model needed. 
 
Pre-processing of data differences. In some applications, the goal of the inversion is to 
characterize differences that develop due to some forcing condition such as injecting fluid 
into a layer, or due to different frequencies being used to probe the target. In these 
situations, the observations of interest are not the measured quantities themselves, but 
rather, time (or frequency) differences in the data. This type of perturbation analysis 
belongs to the class of time-dependent, 4-D problems (function of x, y, z, and t) rather 
than the simpler 3-D, time-independent problems. An example of a 4-D problem would 
be the use of INSAR (interferometric synthetic aperture radar) data used to monitor small 
changes in ground surface elevation due to tectonic or man-made events. We could 
consider the development a general module that any application could use to generate the 
data differences.  
 
Modeling of realistic spatial distributions of a physical parameter 
 
Natural geologic systems exhibit spatial variability of physical properties such as seismic 
velocity. This spatial variability is typically not random, i.e., it exhibits trends that are 
related to the various geologic processes that produced or distributed the geologic 
materials. When these trends can be quantified, they can be used as a constraint to 
stabilize the MCMC inversion. For example, in sedimentary basins, layers of gravel, 
sand, silt and clay tend to be deposited in a particular order, and tend to have particular 
correlation lengths. In many geologic settings, available data suggests that the values of a 
given property vary in a gradual or “smooth” way from one location to the next. We can 
make use of these trends to produce subsurface models that honor these observations. The 
models produced can also honor data collected along a profile, and spatial correlation 
data. 
 
Honor vertical profile information: When data collected along a profile are available 
(e.g., borehole geophysical logs, core sample properties), we can use it to constrain the 
properties of the subsurface models proposed by the MCMC process. The goal of this 
approach is to produce models that exhibit the same properties along the line where the 
profile data was observed. The profile data can be considered as 100% accurate, and thus 
the proposed model has a probability p = 1.0 that it will honor the data exactly. The data 
can also be considered as somewhat uncertain and the models proposed have a 
probability 0.0 < p ≤1.0  that it will honor the data within some tolerance; in this case p is 
inversely related to the uncertainty.  
 
Honor surface information (maps): This approach is similar to the one above; in this 
case, the goal is to produce models that exhibit the properties observed along the plane 
located at the ground surface. As before, the data can be considered as 100% accurate or 
have some measure of uncertainty. 
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Honor smooth trend - spatial correlations in a local neighborhood: (refer to Figure 
2.11). Many subsurface environments tend to exhibit properties that vary smoothly 
between a given locality and its adjacent neighbors. When inverting for such models it is 
desirable to include a constraint that forces the search to only consider smoothly varying 
models. In these situations, one can introduce a dependency between the local value (e.g., 
voxel or profile) and that of its neighbors. When the pixels consist of continuous values, 
the simplest approach is neighborhood averaging. Each pixel is replaced by the average 
value of the pixels contained in some neighborhood about it. This approach tends to blur 
the image.  An alternative approach is to use a median filter. In this case, a neighborhood 
around the pixel under consideration is used, but this time the pixel value is replaced by 
the median pixel value in the neighborhood. This approach has the advantage that the 
sharpness of image edges is preserved. 
 

 
Figure 2.11.  Transform a “rough” model to a model whose properties vary smoothly 
from one location to the next. 
In cases where the image values consist of categories (e.g., sand, gravel and clay) we can 
consider the following approach. If a given voxel consists of sand, there is a probability p 
such that 0.0 < p ≤1.0  that the surrounding voxels also consist of sand. We can impose 
this type of smoothness constraint by forcing adjacent regions to match identically (or 
within some tolerance) a given voxel or profile. The values of p can be selected using 
prior data (data that can be used to compute or to sample the prior probability 
distribution) and expert judgment. We could develop a generalized module that 
incorporates one or more of these approaches. 
 
Honor spatial correlation data – Fourier transform approach: This method can also 
produce realistic models of subsurface heterogeneity using prior knowledge. It is 



 

 21

conceptually similar to the previous approach but is implemented by characterizing 
correlation length scales in the frequency domain. This method models variability as a 
stochastic process that can be characterized by its spatial covariance structure (e.g. 
Hubbard et al., 1999). Spatial covariance is used to determine the degree to which two or 
more spatial random variables are related (e.g. the thickness of sand and clay layers) The 
spatial covariance structure is based on data such as core sample observations, outcrop 
maps and the distances separating the observations. It assumes that the subsurface model 
is composed of variations characterized by different length scales. The spatial covariance 
function is expressed as a spectral density function using Fourier transformation. 
 
Honor spatial correlation data and profile information – TSIM: TSIM is a categorical 
geostatistical approach that can produce realistic models of subsurface heterogeneity 
using prior knowledge (Carle, 2003). This methodology combines disparate types of 
observational data such as geophysical borehole logs, geologic insight, and geostatistical 
trends to produce a consolidated body of knowledge indicating those layer configurations 
that are most consistent with the available data.  It makes use of data such as the number 
and type of materials (e.g. gravel, sand, clay), the relative volumetric proportions for each 
of the materials, and horizontal and vertical correlation lengths. It uses the transition 
probability statistic to analyze spatial variability of geologic materials and to formulate 
co-kriging equations. This approach makes use of spatial cross correlations (how 
different geologic materials tend to locate in space relative to each other). It also honors 
profile information in a way that is more realistic than described previously under “Honor 
vertical profile information”. TSIM assumes that the profile data has a measure of 
uncertainty; thus, the probability that a given model will honor the profile data is no 
longer 1.0; instead it is inversely proportional to the data uncertainty. 
 
Post-processing model transformations 
 
As the Markov chain generates samples, it is important to verify that these samples are 
statistically representative of the posterior distribution. The methodology used to perform 
this verification is referred to as “convergence analysis”. Convergence analysis tools 
developed during a previous project assumed that the posterior samples consisted of 2-D 
or 3-D distribution of values within a mesh; all the mesh elements are assumed to be of 
the same size.  
 
The same assumption is made by the tools previously developed for “posterior analysis”; 
i.e., the tools used to estimate the properties of the posterior distribution produced by the 
MCMC approach. These tools summarize the relevant information in the posterior 
samples so that it can be visualized and understood. 
 
Transform a columnar model to a 3-D mesh model: (refer to Figure 2.12). An application 
of interest produces models where the properties of the domain are defined by a series of 
layers arranged within columns. Multiple columns specify the distribution of seismic 
property values in 3-D space. To use existing tools, it is necessary to transform from one 
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parameter space (column model) to another (3-D mesh model). We are developing the 
tools necessary to perform this transformation. 
 

 
Figure 2.12.  Transform a columnar model to a 3D mesh model. 

 
Probability distribution transformations 
 
There are several probability distribution used when generating various types of random 
variables used by the MCMC process. In general, these require transforming from one 
type of distribution to another such as transforming a uniform distribution to a normal (or 
vice versa), or a general distribution to a standard distribution (or vice versa). We have 
used the following transformations for our work: 

a) Transform a general normal distribution to a standard normal distribution. 
b) Transform a standard normal distribution to a standard uniform distribution. 
c) Transform a standard uniform distribution to a standard normal distribution. 
d) Transform a standard normal distribution to a general normal distribution. 

 
Implemented transformations 
Several codes have been constructed to implement some of the transformations listed 
above. Most of these programs have been coded in the popular Python programming 
language. Python is an object-oriented language used for both stand-alone programs and 
scripting applications (Lutz and Ascher, 1999). The few that are written in “C” are 
identified by a “*”. 
 
Transformation: Module name: Class/method: 
3-D model to 3-D   
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volume 
3-D model to 2-D map starting_model_for_swaves.py 

forward_body_script.py 
Surface_Waves 
Project 

3-D model to 2-D cross-
section 

layers08.py Layer_Plot.ConvertLayersToXYZ 
 

3-D model to 1-D profile models.py Model.get_vertical_profile 
3-D model to surface forward_body_script.py ForwardBody.Project 
2-D cross-section to 1-D 
profile 

  

3-D model to voxel   
2-D grid to pixel starting_model_for_swaves.py Starting_Model.Surface_Waves 
Integrate properties 
along a 2-D great circle 
path 

BodyForward.c 
SurfForward.c 

BodyForward 
SurfForward 

Integrate properties 
along a general 2-D path 

  

Integrate properties 
along a general 3-D path 

forward_body_script.py Forward_Rcvr.Conversion 

Map category to physical 
data 

  

Transform from one 
physical property to 
another when multiple 
data sets are inverted 
jointly 

  

Pre-processing of data 
differences 

  

Honor vertical profile 
information 

forward_rcvr_script.py Forward_Rcvr.Conversion 

Honor surface 
information (maps) 

  

Honor smooth trend - 
spatial correlations in a 
local neighborhood 

models.py Model.NeighborhoodWeightedAverageFilter 

Honor spatial correlation 
data – Fourier transform 
approach 

  

Honor spatial correlation 
data and profile 
information – TSIM 

  

Transform a columnar 
model to a 3-D mesh 
model 

super_script_meshmodel_v2_file_list.py chng_col2grid 

Transform general 
normal distribution to a 
standard normal 
distribution 

Sampler.c* RDist() 

Transform standard 
normal distribution to a 
standard uniform 
distribution 

Sampler.c* P() 

Transform standard 
uniform distribution to a 

Sampler.c* UniformToNormal() 
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standard normal 
distribution 
Transform a standard 
normal distribution to a 
general normal 
distribution 

Sampler.c* RDist() 

Table 1 lists the transformations that have been implemented as part of this project. 
 
Applications 
 
Here we present how we are currently employing some of these transformations in an 
application to construct regional models of the crust and upper mantle for the Yellow Sea 
– Korean Peninsula (YSKP) region, using three different data types (receiver functions, 
surface wave dispersion, body wave travel times). A detailed description of this work has 
been submitted for publication in Earth and Planetary Science Letters: "Reconciling data 
using Markov Chain Monte Carlo: An application to the Yellow Sea - Korean Peninsula 
region" (Pasyanos et al., 2004). Below we list the various steps in the processing 
sequence and the transformations used for the YSKP work. 
 
Base Sampler 
 Honor smooth trend  
 
Stage 1 (Receiver functions) 
 3-D model to 1-D profile 
 
Stage 2 (Surface wave dispersion) 
 3-D model to 2-D map 
 Integrate along great circle path 
 
Stage 3 (Body wave travel times) 
 3-D model to 2-D map 
 3-D model to surface 
 Integrate along great circle path 
 
Convergence analysis 
 Transform a columnar model to a 3-D mesh model 
 
Clustering analysis 
 Transform a columnar model to a 3-D mesh model 
 
While we have primarily focused our efforts on the YSKP application, we can now easily 
apply the transformations developed to other geophysical problems. We now present an 
example of the procedure for the construction of a seismic model of the Las Vegas Valley 
and southern Nevada using data sets available for this region. This model is of interest for 
predicting ground motions for the Test Site Readiness Program. The order of the stages 
listed is arbitrary. 
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Base Sampler 
 Honor smooth trend 
 
Stage 1 (Geotechnical shear wave profiles) 
 3-D model to 1-D profile 
 
Stage 2 (Seismic reflection profiles) 
 3-D model to 2-D map 
 3-D model to surface 
 Integrate along great circle path 
 
Stage 3 (Receiver functions) 
 3-D model to 1-D profile 
 
Stage 4 (Surface wave dispersion) 
 3-D model to 2-D map 
 Integrate along great circle path 
 
Stage 5 (Body wave travel times) 
 3-D model to 2-D map 
 3-D model to surface 
 Integrate along great circle path 
 
Stage 6 (Gravity) 
 3-D model to 2-D map 
 
Convergence analysis 
 Transform a columnar model to a 3-D mesh model 
 
Clustering analysis 
 Transform a columnar model to a 3-D mesh model 
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Section 3: Applications 
 
Abstract 
 
 In an effort to build seismic models that are most consistent with multiple seismic 
data sets, we have applied a new method known as the Stochastic Engine (SE).  The SE 
uses a Markov Chain Monte Carlo (MCMC) technique to sample models from a prior 
distribution and test them against multiple data types to generate a posterior distribution.  
While computationally expensive, this approach has several advantages over a single 
deterministic model: the use of prior model information; the reconciliation of different 
data types that constrain the model; the estimation of uncertainties of model parameters, 
properly migrating data uncertainties into model uncertainties; allowing non-Gaussian or 
multi-modal distributions; and the estimation of uncertainties on predicted observable 
signals.  In this paper, we use this method to determine the crust and upper mantle 
structure of the Yellow Sea and Korean Peninsula (YSKP) region.  We outline the 
technique and how it has been implemented, observe the behavior of the inversion, and 
demonstrate with examples the many advantages of this approach.   
 
Introduction 
 
A classic dilemma in earth sciences is the inability to reliably fit several data types 
simultaneously.   Attempts to fit one type of data produce results that are often contrary 
to results obtained using other types of data.  Trying to fit both data sets simultaneously 
are often difficult or impossible.  Here we present the results of a stochastic method that 
should be applicable in these and other scenarios.  This method, which the developers 
have referred to as the Stochastic Engine (SE), employs Bayesian inference though the 
use of a Markov Chain Monte Carlo (MCMC) algorithm.  The algorithm is used to 
sample models from a prior distribution, test it against one or more data types, and 
generate a posterior distribution most consistent with the data and priors.  The posterior 
has a distribution that is consistent with the uncertainties of the data.  The technique has 
been applied to many applications ranging from statistical physics to the spread of 
infectious diseases.  In the earth sciences, this method has recently been successfully 
applied to electrical resistivity changes (Ramirez et al., 2004).  We have applied the same 
technique to seismic data to determine crust and upper mantle structure on a regional 
scale. 
 
Methodology 
 
The method draws samples from the prior distribution, evaluates their acceptability, and 
then forms sample averages to estimate the properties of the system under evaluation.  
MCMC draws these samples by running a cleverly constructed Markov chain for a long 
time (Gilks et al., 1996).  A Markov chain is a sequence of random values whose 
probabilities at a time interval depends upon the value of the number at a previous time.  
A good example would be a random walk.  The Markov chain that we construct here 
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follows a set of rules that preferentially moves to more likely states in the model space, 
but sometimes transitions to less likely states.  The result is a chain that can sample the 
complete model space, efficiently inspect high-likelihood regions, but that is unlikely to 
get trapped in local extrema.  MCMC methods invert data by probabilistically sampling 
the model space with the Markov chain and comparing observations predicted by the 
proposed model to observed data and preferentially accepting models that produce a good 
fit, generating a posterior distribution.   
 
Both Bayes theorem and sampling methods like Monte Carlo have been extensively 
employed in the earth sciences.  Tarantola (1987) employed a Bayesian framework for 
tomography, which incorporates a prior background model into the tomographic 
inversion.  More recently, Taylor et al. (2003) have applied this method to Lg attenuation 
tomography in eastern Asia.  While these types of methods succeed at including prior 
information, they assume the model follows Gaussian statistics.  Furthermore, these 
techniques seek to find a single solution to the problem where the uncertainties are also 
normally distributed.  In our formulation of the problem, no assumptions have been made 
about the prior distribution of models and we find, in fact, that in many instances 
Gaussian distributions are not applicable.  Instead of a single model, what we seek are the 
distributions of models (which may or may not be Gaussian) that are most consistent with 
both our prior information and our observations.  This approach treats the non-uniqueness 
of the inversion directly by allowing for alternative models that are consistent with the 
data and ranking them according to their consistency. 
 
MCMC originated in statistical physics and more recently has starting finding 
applications in many different fields.  Application in the earth sciences has been more 
limited.  In at least one recent application, Shapiro and Ritzwoller (2002) employed 
MCMC, along with a linearized inversion and simulated annealing, to invert for shear 
velocity structure using surface waves.  The methodology proposed here differs from 
previous earth science applications by using multiple stages, each having different data 
sets.  There are several advantages to this approach.  By ordering our stages properly, we 
can quickly reject models that cannot fit the observations that are easiest to calculate.  
The data sets that are more computationally intensive to forward model are relegated to 
later stages, increasing the efficiency of the problem.  Again, what is also different here is 
that we do not seek a single “best” model or to simplify a distribution of models into a 
model with uncertainties.  The posterior distribution of models is the answer to the 
problem that we seek. 
 
Region 
 
We have selected as our study area the region of Eastern Asia in the vicinity of the 
Yellow Sea and Korean Peninsula (YSKP).  A map of the region is shown in Figure 3.1.  
While the circum-Pacific subduction zone is very seismically active, the YSKP area has a 
very low seismicity rate, with some areas of the region being essentially aseismic.  
Furthermore, while some countries in the region like Japan are well-instrumented with 
seismic sensors, there are areas in which we have limited access to seismic data.  While 
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we have selected this region for its interest for explosion monitoring, this area is also 
tectonically interesting.  Whereas cratons usually have fast velocity lithospheric roots that 
extend deep into the asthenosphere and act as keels, the Sino-Korean Paraplatform (the 
craton on which the Korean Peninsula resides) has been affected by the subduction of the 
Pacific and Philippine Sea Plates and has an unusually slow lithospheric upper mantle.  
We wish to examine the unique nature of the cratonic root under this region. 
 

 
Figure 3.1.  Tectonic map of Yellow Sea – Korean Peninsula region.  The map also 
shows stations in the YSKP region. 

 
Base sampler 
 
The first step in implementing the SE is to develop a base sampler which samples the 
prior distribution.  Before even doing this, however, the model must be parameterized.  
This can be done in any number of ways, but is somewhat critical to the success of the 
approach.  For our problem, for example, we could set up a large regular grid in longitude 
(x), latitude (y), and depth (z), where each node or cell is specified by seismic parameters 
(i.e. Vp, Vs, density).  A disadvantage of this approach, however, is that we would expect 
to need finer resolution in the shallower sedimentary layers than a layer buried deep in 
the upper mantle.  While this could be rectified by a variable grid, there would likely be a 
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need to impose smoothness between adjacent nodes in order to make the problem 
tractable.   
 
We have instead decided to take a different approach.  While the model is specified by a 
regular grid in latitude and longitude, vertical parameterization is instead accomplished 
through a series of layers representative of geologic structure (i.e. water, upper sediments, 
lower sediments, upper crust, middle crust, lower crust, upper mantle) which are not only 
specified by their seismic parameters, but also by their thickness.  This had many 
advantages including reducing the size of the problem, imposing realistic constraints, and 
making the resulting models more interpretable.   Laterally, we have selected a 2 degree 
by 2 degree parameterization between 23º and 57º latitude and 109º and 147º longitude, 
for a total of 323 (17 x 19) cells.  Combined with 6 variable layers (all but water) and 4 
parameters for each layer (thickness, Vp, Vs, density), this results in a total of 7752 free 
parameters (323 x 6 x 4).  While we would eventually like to go to higher resolution (i.e. 
1º x 1º) and eventually include other parameters (i.e. Qp and Qs), this parameterization 
allowed us to test the methodology and run in a reasonable time period. 
 
The starting model selected for the region was CRUST 2.0 (Bassin et al., 2000) which, 
conveniently enough, is parameterized along the same lines.  In addition to specifying 
actual values (Vp, Vs, density, thickness) at each point, we also needed to provide the 
base sampler with specifications on the variations on these parameters.  This is 
accomplished by providing probability distributions on each value along with minimum 
and maximum values.  This was accomplished by looking at the natural variations in the 
CRUST 2.0 model for this region.  For example, for the upper crust layer, the variation of 
P-wave velocities in the layer is 0.5 km/s with a minimum of 5.0 km/s and a maximum of 
6.2 km/s.  For S-wave velocities, we find a variation of 0.4 km/s with extrema of 2.5 km/s 
and 3.6 km/s, densities have values of 0.7 g/cm3, 2.6 g/cm3, and 2.8 g/cm3, and 
thicknesses values of 4 km, with 1.7 km and 16 km the minimum and maximum.  In the 
water layer, we do not allow the seismic parameters (P-velocity 1.50 km/s, S-velocity 
0.00 km/s, density 1.02 g/cm3) or the thickness (determined from ETOPO5, NGDC, 
1998) to vary.   
 
From the starting model and these constraints, the base sampler can initially select 
models consistent with the a priori distribution.  The seismic parameters are all selected 
independently which produces variations in Vp:Vs and Vp:density ratios.  The ratios are 
checked, however, and unrealistic values of these ratios for the layer type are discarded. 
 
Finally, in order to reduce dependence on the starting model and introduce some 
randomness to initial models for each chain, we have randomly selected 10% of the 
columns and swapped them with other columns.  This randomization is done for each of 
the two chains in our search.  Separate starting points allow us to move within model 
space along different routes.   Compared to standard Monte Carlo sampling, this is often 
a quicker way of sampling the model space, particularly in complex problems.  It is 
generally useful to choose starting points that are widely dispersed in the target 
distribution, both to ensure coverage of the target distribution, as well as to monitor 
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convergence.  Prior to convergence, the run has not had enough time to properly sample 
the model space.  The initial period, referred to as the “burn-in”, is still unduly influenced 
by the starting model.  When convergence is finally reached, each Markov chain will 
have had a sufficient number of steps to independently sample the model space.  After 
convergence, the chains should have similar posterior distributions, which should be 
stationary over enough iterations, referred to as “long run” stationary.  For example, the 
results from the next 1000 iterations should not be markedly different than the previous 
1000 iterations (although the previous 10 and next 10 iterations might be).  Convergence 
can be monitored by detecting when the Markov chains have forgotten their starting 
points and by comparing sequences drawn from different starting points and checking 
that they are indistinguishable (Gelman, 1996). 
 
Markov Chain Monte Carlo 
 
The Markov Chain Monte Carlo method provides a flexible framework that can be 
adapted to perform a variety of analyses and inference tasks. It uses a Markov chain 
state/transition structure to control the sampling process. MCMC techniques enable 
simulation from a targeted distribution by embedding it as a stationary distribution of an 
ergodic Markov chain and simulating the chain until it approaches equilibrium. For 
Bayesian analysis, we are able to adapt the approach to simulate and estimate posterior 
distributions that embody our available prior information and newly acquired 
observational data. MCMC algorithms can assume a variety of forms with the most 
useful to us being the Metropolis framework.  
 
The SE approach is a derivative of the Metropolis algorithm (Metropolis et. al., 1953) as 
described by Mosegaard and Tarantola (1995). This particular MCMC algorithm has 
demonstrated significant potential in solving inverse problems involving complex 
physical systems and supports several key enhancements necessary to mitigate the 
combinatorial demands underlying the MCMC methodology. Within our stochastic 
framework, the solution to an inverse problem is an estimate of the posterior probability 
distribution defined on the corresponding space S  of possible solutions (otherwise 
referred to as states). For any potential solution s0 ∈ S , the SE will provide an estimate of 
the probability and confidence that state s0  is indeed the true solution to the given 
system. This allows future analysis to focus upon the most likely explanations of system 
behavior – thereby improving both the efficiency and effectiveness of follow-on efforts. 
Moreover, results generated from the SE (i.e., the estimated posterior distribution, 
predictions, hypothesis testing, etc.) may be incrementally updated as more data becomes 
available.  
 
The inverse problem under consideration may be described as follows. Let D and M  
denote the data space and model space respectively, and suppose that there exists a 
mapping G  such that:  
      d = G m( )     (1) 
 



 

 31

where m ∈ M  is a parameter vector describing the state of the system of interest and 
d ∈ D  is a vector of measurements taken on that system. The inverse problem occurs 
when a vector of data values is observed, say d0 , and we want to determine the value of 
the parameter vector m0  that gave rise to d0 . In geophysical applications, this problem is 
substantially under-constrained and ill-posed. In such cases, the search for a deterministic 
solution for d0  that is unique and possesses a high degree of confidence is virtually 
impossible, and hence a probabilistic solution is likely to be superior to any classical 
deterministic optimization approach.  
 
The stochastic approach employs a variation of the Metropolis algorithm to generate a 
sequence of samples from M  at rates proportional to their posterior probabilities. These 
samples enable the estimation of the posterior distribution FM D  using the sample 
frequencies corresponding to the sampled models m ∈ M . By design, the models 
generated most frequently are most consistent with both our prior information on M  and 
the observations being processed. Assuming mild regularity conditions, the estimated 
posterior distribution ˆ F M D  converges strongly to the true underlying distribution FM D . 
This estimate is the basis for all subsequent analysis and inference including estimation, 
prediction, confidence assessment and risk/reward trade-off analysis.  
 
Given that the information used to drive the simulation is taken from two distinct sources 
(prior knowledge and observational data) the sampling process can be viewed as 
consisting of two separate components. The first component generates samples according 
to an identified prior distribution ρ(m)  defined over the model space M . These samples 
are called proposal states and constitute possible solutions to the inverse problem, (refer 
to the left hand side of Figure 3.2, base representation box). Specifically, this sampling 
process is manifested as a Markov chain Q, with one-step transition probabilities between 
states m ∈ M  designed to produce a long-run stationary distribution equal to the prior 
ρ(m) . In statistical terms, Q samples ρ(m) .  
 
The second component takes the form of a decision process that either accepts or rejects 
the proposal sample generated from the a priori Markov chain (labeled “stage 1” in 
Figure 3.2). For each visited state, forward simulators are used to predict values of 
measurable parameters such as travel times. These predictions are then compared to 
corresponding measurements to determine the likelihood L(m )  that the given state 
m ∈ M  produced the observed data. An accept/reject decision based upon this likelihood 
is used to modify the prior sampling process. The result is a new Markov chain R, which 
samples the posterior distribution Ρ(m ) .  
 
Formally, Bayes rule relates the prior and posterior distributions as follows: 
 
    Ρ(m) = ρ(m)L(m)    (2) 
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The likelihood L(m )  is a measure of the degree of fit between the data predicted 
assuming the model m and the observed data. For this study, we assumed a likelihood 
function of the form: 
 

    L(m ) = k exp − dpred , i − d0 ,i( )n
σ i

n

i
∑

 

 
 
 

 

 
 
    (3) 

 
where d pred ,i  is the predicted data for a given model m, d0,i  is the vector containing the 
observed measurements, σ i  is the estimated data uncertainty, k is a normalization 
constant, and n ≥1.  For the results described below, we assumed that n = 2 . Note that 
Eq. 3 assumes that the estimated data errors are uncorrelated. 
 
The decision to accept or reject a proposed state is made on the basis of likelihood 
comparisons as indicated by the decision box of stage 1, located on the left hand side of 
Figure 3.2. Suppose that the current state of the Markov chain is mi  and that a 
randomized rule based upon the one-step transition probabilities propose a move to state 
m j . If these transitions were always accepted, then the simulation would be sampling 
from the prior distribution. Instead, suppose that the proposal transition is only accepted 
according to the following rules: 
 

1) For both the current and proposal states mi  and m j , compute the respective 
likelihoods L(m i)  and L(m j)  that these models produced the observed data.  

2) If L(m j) ≥ L(m i) , then accept the proposed transition with probability 1 and 
move to state m j . (Note: The algorithm always accepts the transition when the new state 
provides a better explanation of the data than the current state.)  

3) If L(m j) < L(m i) , then use a randomized decision rule and accept the proposed 
transition with probability L(m j ) L (mi ) <1 and move to state m j . Otherwise, transition 
back to state mi . (Note: By allowing the random walk to transition to a less likely state, 
the process can move out of a local extrema).   
 
The samples generated through this three-step process will have a limiting distribution 
that is proportional to the desired posterior distribution FM |D . That is, the search tends to 
hover in regions of space M  containing states with greater prior propensities and higher 
likelihoods. 
 
Since we have observational data of differing types (e.g., surface wave dispersion and 
body wave travel times), our approach takes advantage of the “cascade” rule (Mosegaard 
and Tarantola, 1995).  In these cases, the errors in prediction are often independent and 
hence the total likelihood expression factors into distinct terms – one for each data type. 
For the above example, the total likelihood can be expressed as follows: 
 
     Ltotal (m) = Lsurf (m)∗ Lbody (m)    (4) 
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This probabilistic structure can be leveraged to streamline the transition process 
employed by the Stochastic Engine. Mosegaard and Tarantola (1995) indicate that 
performing a single Metropolis transition step (step 3 above) that uses the entire 
likelihood expression Ltotal(m)  is equivalent to performing a sequence of Metropolis steps 
– one for each term in the above expression. Once a model is drawn from the prior 
distribution, the forward model is solved initially for the first data type alone (step 1 as 
illustrated by stage 1 in Figure 3.2). At this juncture, the proposed model may be rejected 
or accepted (steps 2 and 3 above). If the decision is to reject the proposal, then the 
forward models in stage 2 (Figure 3.2) are not executed. The Markov chain returns to the 
last accepted state, a new state is proposed and the decision process begins anew with the 
first data type. If the decision at this stage is to accept the proposal, the next data set is 
considered in stage 2, its corresponding forward model is run and a decision to accept or 
reject is made based upon its likelihood. This continues through all of the different types 
of data until the proposal either is accepted at all stages or is rejected at one stage and 
starts over at the beginning of the sequence. Note that proposals accepted by both stages 
are ones that are most likely to be consistent with the prior and both sets of observational 
data. This approach can easily be extended beyond two stages to incorporate additional 
types of data. 
 

 
Figure 3.2.  Flowchart of the stochastic inversion algorithm, along with a schematic of 
the likelihood function distribution of the model space at three different stages: prior 
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distribution, posterior distribution after data from a single stage, posterior distribution 
after data from two stages. 

 
Data 
 
We have used seismic data from a number of sources in the region.  Stations in the 
Global Seismic Network (GSN), both IRIS/USGS and IRIS/IDA constituted the bulk of 
data for the region.  Data from the China Digital Seismic Network (CDSN) provided 
coverage of eastern China.  Seismic data from several stations were obtained from the 
International Monitoring System (IMS).  Where possible, we have used data from 
regional networks, like those of the Korean Meteorological Administration (KMA) and 
Korean Institute of Geoscience and Mineral Resources (KIGAM) in South Korea.  We 
also made use of two PASSCAL deployments in northeast China and in North Korea.  
Taken together, these stations provide good coverage of our study area (Figure 3.1). 
 
The two observational data types that we currently use to construct the model are surface 
wave group velocities and body wave travel times.  Surface wave dispersion 
measurements have been made for thousands of paths across the region using a multiple 
filter analysis technique and, as shown in Figure 3.3, provide excellent coverage 
(Pasyanos et al., 2003).  The data is assembled by taking measurements at 5 second 
intervals between 10 and 100 seconds.  The short period data is sensitive to the 
shallowest earth structure (i.e. sediments), intermediate period data to deeper crustal 
structure (i.e. average crustal velocity, crustal thickness), and long period data more 
exclusively to upper mantle structure.  Combined they do an excellent job of predicting 
average S-wave velocity structure. This surface wave data, however, has the downside of 
large tradeoffs between velocities and the depth of discontinuities, allowing multiple 
models consistent with the same surface wave data.  The resolution of the surface wave 
data (~1º) is greater than the current lateral parameterization.  The uncertainties of the 
group velocity measurements are derived from the broadness of the energy arrival and 
generally range from 0.05 km/s to 0.10 km/s for closer events. 
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Figure 3.3.  Path map of Rayleigh wave group velocity measurements at 30 sec.  Path 
distributions at each period are slightly different. 
 
The second data type that we use is body wave travel times, most notably Pn (P-velocity 
upper mantle head wave), Pg (crustal P-wave), Sn (S-velocity upper mantle head wave), 
and Lg (crustal guided S-wave).  Paths for the various waves are shown in Figure 3.4.  
Coverage is generally not as good as the coverage of surface waves.  This data, however, 
is complementary to the surface wave data both because some phases are more sensitive 
to P-wave velocities, but also because it samples the earth in a matter much different than 
the surface waves.  For example, Pn is sensitive specifically to the P-wave velocity in the 
uppermost mantle, just below the Moho.  By combining this with the surface wave data, 
we can reduce the non-uniqueness caused by the tradeoffs discussed above.  The 
uncertainties of the travel times are derived from the phase and the estimated quality of 
the pick, and reflect the ambiguity of the timing of the arrival.  First arriving P-phases 
generally have smaller uncertainties than phases picked in the coda of earlier-arriving 
phases. 
 



 

 36

 
Figure 3.4.  Path map of body wave travel times.  Colors indicate Pg (cyan), Pn (red), Lg 
(blue), and Sn (green) phases. 
 
While, at this point, we have only included Rayleigh wave group velocities and regional 
travel time measurements, it would be relatively easy to add more datasets in the 
inversion.  Data sets that would be naturally suitable for extensions of this method 
include Love wave group velocities, receiver functions, and waveform modeling.  The 
last would probably have the strongest constraints on the model along paths, but would 
also be the most computationally expensive to implement. 
 
Results 
 
We have made a run consisting of two chains each running 8000 iterations.  The 
simulation was performed on a Compaq computer consisting of 512 processors with a 
processor speed of 667 MHz.  For the run, we used 32 processors, with 16 processors 
dedicated to each chain.  Although the codes have been parallelized, each iteration took 
an average of about 3.5 minutes, in total taking about 20 days.  Separately, we have also 
run a two-chain “prior” distribution.  In these runs, the models proposed by the base 
sampler are automatically accepted.  Because no forward calculations are involved, these 
runs are extremely fast.  They provide us with estimates of prior distribution properties, 
with which we can compare and contrast the posterior distribution’s estimates.  In both 
cases, we have thrown out models from the first 3/4 of the iterations in order to ensure 
that we are past burn in. 
 
The first profile that we consider is at the southeastern corner of our model in the Pacific 
Ocean.  Figure 3.5 shows the profiles from the posterior distribution at that point.  Colors 
indicate the profiles from the two different chains.  The first thing to note is that the two 
chains seemed to be well-mixed, indicating that the convergence has been reached and 
that the chains have “forgotten” their starting point.  The second thing to notes is that 
range of allowable models is very wide.  This point, on the edge of our model, had little 
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or no data to truly test the proposed.   In fact, if we look at the distribution of profiles in 
the prior, we find little or no difference.  This effectively demonstrates, in fact, that in the 
absence of data, the model effectively reproduces the prior.  Looking at histograms of 
parameters in the prior and posterior models (Figure 3.6), we find the same thing to be 
true.  Also notice that the distribution of some parameters (like sediment thickness) is 
clearly non-Gaussian and any attempts to classify them as with mean and standard 
deviation as a Gaussian distribution would be inappropriate.   
 

 
Figure 3.5.  Prior (left) and posterior (right) model distributions for a point in the Pacific 
Ocean at the edge of our model.  Red and black colors indicate results from the two 
chains. 
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Figure 3.6.  Histograms of model parameters for prior and posterior model for the point 
shown in the previous figure for parameters of crustal thickness, sediment thickness, and 
P-velocity of the uppermost mantle. 

 
The second profile that we look at is one in the Yellow Sea at the center of our model.  
Here, we find the results to be quite different.  Figure 3.7 shows the profiles, once again 
demonstrating that the two chains are well-mixed.   In this case, however, the range of 
allowable models has decreased significantly.  The data which covers this region has 
preferentially sampled models which fit well.  And the distribution of profiles is quite 
different than the distribution of the profiles in the prior.  In the presence of data, then, 
the search preferentially samples regions of solution space that are most consistent with 
the data.  Histograms of Moho depth, average crustal velocity, Pn velocity, and sediment 
thickness demonstrate the same (Figure 3.8).  Not only have the peaks changed, but the 
distributions have gotten tighter, indicating lower uncertainties on these parameters.  We 
find variance reductions of the parameters of 42%, 21%, and 56% for Pn velocity, crustal 
thickness, and sediment thickness.  It is possible that these distributions might tighten 
even further as more iterations are made. 
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Figure 3.7.  Prior (left) and posterior (right) model distributions for a point in the Yellow 
Sea at the center of our model. 

 

 
Figure 3.8.  Histograms of model parameters for prior and posterior model for the point 
shown in the previous figure for parameters of crustal thickness, sediment thickness, and 
P-velocity of the uppermost mantle. 
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We have assembled the results from each point to create crustal thickness, sediment 
thickness, and average crustal velocity maps (Figure 3.9).  In addition to the values, we 
have also plotted the uncertainties on each of these parameters, as determined by the 
standard deviation of the parameter for the posterior model.  For crustal thickness, we 
find maps that are generally consistent with our understanding.  We find differences from 
the prior model on the order of 5 km or so.  Compared to the prior model, we are finding 
thicker crust in the Korean Peninsula and thinner crust in the Yellow Sea.  Uncertainties 
are generally higher in the southwestern portion of our study area. 
 

 
Figure 3.9.  Maps of a) crustal thickness, b) upper mantle velocity and c) sediment 
thickness of the posterior model (left-hand columns), along with their associated 
uncertainties (right-hand columns). 
 
Sediment thickness maps generally correspond closely to the prior model.  There are 
differences, but they generally correspond to increases or decreases in thickness to 
existing sedimentary basins rather than the dissolution of existing basins or the creation 
of new basins.  Differences on the order of a km or so are seen.  Unsurprisingly, 
uncertainties are higher in basins and low in regions with little or no sedimentary cover. 
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Maps of average crustal thickness show generally low values in the Sino-Korean 
Paraplatform and higher in oceanic and other continental regions.  Compared to the prior 
distribution, the velocities are slower in Chinese portions of the paraplatform, and faster 
in the Mongolia-Manchuria border area.   There is a large difference in the uncertainties 
between oceanic and continental crust, with values being significantly higher in the 
former.  This is likely due to the insensitivity of the surface wave data to changes in the 
thin oceanic crust. 
 
Posterior Analysis 
 
One significant advantage of stochastic models is their ability to properly estimate the 
uncertainties on observables.  This is often hard to derive from single models because the 
uncertainties on any given model parameter (i.e. the thickness of the crust under point A 
or the upper mantle velocity at point B) is correlated with other model uncertainty and, 
often, these covariances are not taken into account.  For example, while there might be a 
significant trade-off between certain parameters such as crustal thickness and crustal 
velocities, making the uncertainty on the individual parameters high, the overall 
uncertainty on the travel time through the uncertain media might actually be significantly 
less than that.  
 
Stochastic models can handle this simply by estimating the observable through models in 
the posterior distribution, and noting the distribution of the observable.  Here we show 
one example for predicting travel times.  For every individual model in the posterior 
distribution, we have calculated the travel times of phases Pn, Pg, Sn, and Lg (Figure 
3.10).  The result is a distribution of predicted travel times for each phase, generally 
Gaussian in this case, that are the proper model uncertainties.  For phase Pn, for example, 
we would estimate the velocity along this path as 7.68 ± 0.05 km/s.   
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Figure 3.10.  Predicted travel times of phases Pn, Pg, Sn, and Lg for a path.  The travel 
times are distributions determined by calculating the travel time through all models in the 
posterior distribution.  
 
We can take this one step further and use the predicted travel times to locate an event.  
Although the arrival times are the same for each model, there is a distribution of locations 
caused by variations in travel times.  The resulting distribution of locations represents the 
location uncertainties caused by model errors.  Picking errors, not shown here, would be 
considered separately. 
 
We have taken 12 random models from the posterior distribution and used them to 
calculate a map of 30 second Rayleigh wave group velocity.  The resulting group velocity 
map is shown in Figure 3.11 and is compared to a tomographic inversion map at the 
same period.  When comparing the two figures, keep in mind that while the group 
velocities predicted from models in the posterior distribution are fitting surface waves at 
all periods (as well as body waves), the tomographic inversion is only fitting data at this 
one particular period.  Particularly given this fact, the fit is quite good. 
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Figure 3.11.  A comparison of the group velocities predicted by a posterior model to 
group velocities determined from the tomographic inversion of surface wave 
measurements at this period only. 
 
Here, we provide an example of hypothesis testing that can be readily performed using 
our stochastic model.  In nuclear explosion monitoring, the presence of a large P-wave 
and the absence of an S-wave are indicative of the event being an explosion.  Propagation 
through oceanic crust, however, can block the Lg phase (the crustal guided S-wave) and 
make earthquakes look explosion-like.   In other words, we wish to ask whether the lack 
of an Lg wave is due to source or structural effects. 
 
In this case (Figure 3.12), we have a bimodal distribution with peaks at 20 km and 35 
km, each mode having about 5 km standard deviation uncertainties.  The 35 km peak 
encompasses about 70% of the models, while the 20 km peak (which would block the Lg 
phase) encompasses the rest.  In other words, if no Lg is observed along this path, there is 
a 30% chance that structural effects are the cause of the blockage, and that we have no 
information on the source. 
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Figure 3.12.  Histogram showing a bi-modal distribution of crustal thickness, with peaks 
at 20 km and 35 km. 

 
Conclusions 
 
Stochastic methods are an innovative technique for producing next-generation data-
driven models.  They have a number of advantages compared to traditional models, such 
as the ability to reconcile different types of geophysical data.  An important component is 
the ability to predict new observables with proper uncertainties.  We have started to apply 
this technique with success to the YSKP region.  In the future, we aim to improve the 
model by incorporating more data sets (i.e. receiver functions, waveforms, etc.) and 
increasing the horizontal resolution.   
 



 

 45

Section 4: Future Applications 
 
We have started applying or plan on applying the results of this LDRD to several other 
projects.  First, several improvements to the model have been made since the conclusion 
of this project.  The Ground-Based Nuclear Explosion Monitoring (GNEM) program has 
funded improvements to the regional model for the Yellow Sea – Korean Peninsula 
region.  We have added more data types (such as gravity and Love waves) and more data 
for existing data types (such as more travel times), allowing us to increase the resolution 
of the model.  Furthermore, there are plans to submit proposals responding to the next 
(Fiscal Year 2005) Solicitation for Proposals for "Nuclear Explosion Monitoring 
Research and Engineering" Broad Agency Announcement (BAA) from the National 
Nuclear Security Administration (NNSA), the Air Force Research Laboratory (AFRL) 
and the Army Space and Missile Defense Command (SMDC).  These proposals would be 
working with other institutions (universities and private companies) to develop models 
for other regions of interest. 
 
The second application is that the regional Korean model is being used as a base model 
for the NAI LDRD  “A New Capability for Regional High-Frequency Seismic Wave 
Simulation In Realistic Three-Dimensional Earth Models To Improve Nuclear Explosion 
Monitoring” [05-ERD-019].  The motivation of this project is to improve current 
methods of seismic nuclear explosion monitoring, by substituting model-based 
calibrations for empirical measurements where such measurements are limited or do not 
exist.  An aggressive approach to extending these strategies to broad regions would 
supplement or replace empirical calibrations with calibrations computed from 
geophysical (Earth) models.  A model-based signal processing paradigm will require 
development of scientific and engineering enablers:  3-dimensional stochastic 
geophysical models, codes for calculating accurate, high-frequency (0.2 – 10 Hz) 
synthetic seismograms at ranges to 2000 kilometers and algorithms for exploiting 
realistic synthetics for event detection, location and identification.  The benefits of 
model-based signal processing are anticipated to be an extension of the current 
parameter-based monitoring practice to broad regions without calibration data (aseismic 
regions), and very-low-magnitude event detection, location and identification capabilities 
in select portions of aseismic regions and in seismically-active areas with gaps in 
coverage.  Long and short scale-length models specify the three-dimensional variation of 
the five elastodynamic parameters required to compute the response of the Earth to 
seismic excitation.  These parameters are the seismic compressional (P-wave) and shear 
(S-wave) velocities (VP & VS), density (ρ) and attenuation quality factors (QP & QS, 
controlling attenuation of P- and S-wave, respectively).  These parameters depend mostly 
on depth, due to chemical layering and central compression of the Earth.  However, 
significant variation (10% or more near the Earth’s surface) of these parameters results 
from thermal and compositional variations related to plate tectonics and geologic 
structure.  We can use observations of seismic waves, such as travel times, surface wave 
dispersion, and other geophysical observations to estimate long scale-length models of 
the Earth using tomography and inversion techniques.  Recently, we have pioneered the 
use of the Stochastic Engine for the estimation of regional-scale (~1000 km) models of 
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seismic velocity structure of the Earth on scale lengths as short as 100-200 km.  This 
method uses Markov Chain Monte Carlo (MCMC) sampling to estimate the 3D structure 
of the Earth from multiple data sets and results in many model realizations that best fit 
the data as well as realistic uncertainties. 
 
We are also interested in applying this technique and methodology to build regional 
models in southern Nevada.  Models developed for this region would have applications 
for test-site readiness, namely how might recently-constructed buildings in Las Vegas 
fare with a resumption of nuclear testing at the nearby Nevada Test Site (NTS).  By more 
accurately determining earth structure, we can better predict ground motions from 
scenario events.  Models in this region could be built fairly easily since many of the same 
datasets and forward codes used in the YSKP region would also be applicable here.  A 
stochastic model could be developed from six data sets (several which already exist): 1) 
geotechnical shear wave profiles, 2) seismic reflection profiles, 3) receiver functions, 4) 
surface wave dispersion, 5) body wave travel times, and 6) gravity. 
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