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Abstract

It isshown that, in a finite beta plasma, there may exist sheath driven modes whose
amplitude decreases exponentially with the distance from the divertor plate. The modes are
senditive to theradia tilt of the divertor plate. The short-wavelength branch of the instahility,
with the cross-field wavelength Dof order of afew ion gyroradii, is present in the case of a
“positive’ tilt of the divertor plate, whereas the long-wavel ength branch, with D of order of
10 or so gyroradii is unstable for the opposite sign of the tilt. The paralel e-folding length
becomes less than the distance from the plate to the X point (thereby making the mode
insengitive to the processes near the X-point and the upper scrape-off layer) a the plasma
betas exceeding (2-3)-10. A detailed analysis of the dispersion relations is provided. The
features of the modes that can be used for their experimenta identification are discussed. It
is pointed out that the analog of these modes may also exist in linear plasma devices with
shaped end electrodes.

. INTRODUCTION

A magnetized plasma, whose length along the field lines is limited by conducting
end plates, often experiences very strong instabilities driven by a combination of two
factors: cross-field variation of plasma parameters, and sheath boundary conditions a the
plates.

A first rough assessment of the af orementioned fast instability was madein 1965 by
Kadomtsev [1]. More recently, it was redized that such instabilities may play a role in
fusion devices and analyses accounting for avariety of factors existing in such devices were
made: In Ref. [2], it was emphasized that, among the driving factors, the most significant is
the gradient of the electron temperature; effects of afinite beta were also taken into account.
In Ref. [3], inthe case of a zero-beta plasma, the role of finite Larmor radius effects was
quantitatively accounted for. In Ref. [4] the instability was generdized to include resistive
effects, together with eectron inertia effects. In Ref. [5] the effect of atilt of the end plate
with respect to the magnetic field was included and was found to have a significant effect on
the growth rate. In Ref. [6] effect of collisions with neutrals was considered. In Ref. [7] the
interference between Kevin-Helmholtz modes and the sheath-driven ingtability was
analyzed and the conclusion was drawn that, at short wavelengths, the sheath-driven
instability is dominant, and in Ref. [8] these results were confirmed by numerica
smulations.

In al these papers, the ingtability was analyzed for a ab geometry and a uniform
magnetic field. In Ref. [9], it was noted that there is a difficulty in applying the results of
these studies to a tokamak with divertor, because extremely strong shearing of the flux tube
in the X-point area makes irrelevant the flute model used in these earlier studies. A possible
approach to a solution of this problem was offered in Ref. [10] where it was suggested that,
for long-enough divertor legs, one can account for the X-point effect by imposing a
boundary condition a some “control plane” situated somewhat below the X point. The
boundary condition is of aresigtive nature, relating the tangential current to the tangentia

electric field, with the eectrical conductivity o=wi,e/4n:coCe (here w,, and w, are the
electron plasma and the electron cyclotron frequency, respectively). With this boundary



condition imposed, the sheath driven instability is re-established; it is now present only in
the divertor leg, between the divertor plate and the control surface, with some minor, very
small-scale perturbations reaching the zone dightly above the X point. { We note that the X-
point effects have a strong influence also on modes localized in the main part of the scrape-
off-layer and lead to the appearance of so-called “resistive x-point modes’ [11,12].}

The divertor-leg instability found in Ref. [10] is very strong, with a growth time
t=1/Imw being typicaly much shorter than the plasma transit time through the divertor
leg, L/v,, where L isaconnection length between the divertor plate and the X point. It may
even become shorter than the Alfven trangit time L/v,. In such a case, one can expect the
formation of modes which would be localized near the divertor plate, exponentialy
decreasing along the field line as exp(-s/v,t), wheresisadistance along afield line. If the
growth time is short enough,

t<Ll/v,, D
the mode becomes localized near the divertor plate and becomes completely detached from
the X point region.

Clearly, as the presence of this mode is related to the perturbation of the magnetic
field, thisisafinite-betamode. An attempt to find such modes was made in an early paper
[3], but the conclusion was drawn that they do not exist. In Ref. [13], an evanescent mode
was found in the case of a strong-enough pardle velocity shear, i.e. the ExB vdocity
varying along the field line. [The origin of this shear is related to the possible variation of
the eectron temperature along the field lines and the resulting variation of the electrostatic
potential ]

Inthis article, we revisit the problem of the evanescent modes in a setting similar to
that of Ref. [2], i.e, without a paralel velocity shear, but with an important new eement
added: the non-normal intersection of the magnetic field with the divertor plate (in Ref. [2],
only the case of normal intersection was considered). Aswe show, in the presence of the tilt,
evanescent modes become possible at afinite plasma beta, and their growth rate can become
quite high for astrong tilt. Interestingly, the direction of theradia tilt of the plate affects the
sign of Im w, making the modesthat are stable for one direction of the tilt, unstable for the
opposite sign of thetilt. This effect could be used as an identifier of the modes.

Instabilities considered in Ref. [1-10, 13] exist even a zero magnetic-fied-line
curvature and are in this respect very different from the curvature-driven flute and
ballooning modes. As was demonstrated in 1965 by Kunkel and Guillory [14], sheath
boundary conditions can have strong influence on these modes, too, by removing the line-
tying constraint on the conducting end surface. The analyses of the corresponding
instabilities were presented by Nedospasov [15] and Garbet et d [16]. We do not include
the curvature effects in this paper; the growth rate that we find is very large even for straight
field lines.

This paper deals only with a linear analysis of the modes. Potentialy, these modes
may serve as a seed for various nonlinear structures, e.g., blobs[17], which would be in this
case localized in the divertor legs, but we do not go into this issue, leaving nonlinear effects
for further studies. [Note that the blobs considered in [17] were driven by curvature effects.]
Here we concentrate on alinear problem in the simplest setting (as even this case turns out
to be rather complex). On the other hand, we analyze in some detail how our modes behave
not only in tokamaks but aso in linear plasma devices such as LAPD [18]. It turns out that
the finite-beta modes exist in such devices as well, and conditions for their experimental
study may be more easily achieved than in divertors of large tokamaks.

The structure of this paper isasfollows: In Sec. |1 we describe the geometry of the
problem and characterize the main assumptions. In Sec. 111 we consider perturbations in the
bulk plasmawhere they are shear Alfven waves. We derive an expression for the perturbed
current normal to the sheath (and the divertor plate). In Sec. IV, we derive an expression for
the same current based on the sheath boundary condition. In Sec. V, by equating the two
expressions, we obtain the genera dispersion relation and then analyze it for various



particular cases. In Sec. VI we modify our analysisin order to cover the same instability in
linear devices with shaped end electrodes. In Sec. V11 we discuss experimental signatures of
the ingtability, in particular, its characteristic frequencies, as well as relations between
perturbations of various quantities. Finaly, Sec. VIII contains a brief discussion of our
results.

1. MAIN ASSUMPTIONS

We consider the slab geometry shown in Fig. 1. The axes x, y, and z are the analogs of the
radial, poloidal, and toroidal directions. As was shown in Refs. [2,3], the main drive for the
instability is related to the electron temperature gradient. Accordingly, to visudize the
instability in the most clear way, we assume that the unperturbed electron temperature is a
function only of radius, T=T,x), while the unperturbed density and ion temperature are
assumed to be uniform both in the radia and poloida directions. We denote the (radia)
length-scale of the unperturbed el ectron temperature variation as A:

-1

= (2)

where the prime means the derivative with respect to x.
The magnetic field in Fig. 1 pointsinto the divertor plate and is such that B>0, B <0.
Instead of B, and B,, we will often use the notation

B, =B,>0, B,=-B, >0, 3
with the subscripts “T” and “P” referring to the toroidal and poloidal fields, respectively.

A very important feature of the problem is the presence of the “radial tilt” of the
divertor plate, which is characterized by the angle a. As we will see shortly, the instability
depends on the mutual orientation of the temperature gradient and the normal to the divertor
plate which can be characterized by the quantity sign(-n-VT,) =sign(-T,)tana.. For the
orientation of the coordinate axes considered in this paper (Fig. 1), this quantity is postive
if T, decreases along x, and a is positive. We call this case “ positive tilt”.

We consider a low recycling case, where al the plasma approaching the divertor
plate is absorbed by it, and the incoming plasma is not perturbed by the neutrals formed at
the plate. The plasma streams towards the divertor plate with a paralldl velocity u; we assume
that it exceeds the sound speed. We assume that the unperturbed current to the plate is zero,
and that the plate potential is zero.

Under such circumstances, the unperturbed plasma potential just outside the sheath
is
T.(x
00 =12 A @
where A=2-4 is a logarithmic factor Weakly depending on the plasma parameters. This
sheath potentia drop, in the case of a tilted magnetic field, occurs in two steps: part of the
potential drop occurs in the ion sub-sheath, on a scale of order of the ion gyroradius, and
the rest occursin the Debye sheath near the wdl [19]. Aside from this variation across the
sheath, the unperturbed potential does not vary along afield line.

The unperturbed electric field E,, = —-dp,/dx =-(A/€)dT,/dx creates a cross-field
plasma flow perpendicular to the magnetic field

Esz EXB)’
VDV:_C?’ Vg, =C 57 (5)
which also does not vary aong field lines. We assume that the poloida projection of the
drift velocity islessthan the poloidal projection of the parallel flow velocity u, i.e.,
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Vg uBP (6)

In the opposite case, there may (formally) occur a reversal of the poloidal flow; even the
equilibrium state for this Situation is not fully understood and we do not attempt to cover it
in this paper. The condition (6) can also be formulated as:

o B
<o ™

where p, istheion gyro-radius evaluated for the el ectron temperature:

m 2T,
P = eB\/i (8)

If the distance between the divertor plate and the X point along the field linesisL,
then the distance projected along they direction is, obvioudly,

1= LB ©)

B
The parameter | represents the length of the divertor leg. We assume that | is much greater
than the thickness A of the scrape-off layer. This is a “long-leg” approximation, which
justifies the assumption that the magnetic field can be considered as uniform, a least not
very far from the divertor plate.

1. PERTURBATIONSIN THE BULK PLASMA

The physical mechanism of the instability a a negligible plasma beta can be
addressed in the model of moving flux tubes. If aflux tube, with the plasma occupying it, is
displaced in theradial direction, its potential with respect to the conducting plate remains the
same as before displacement (because this potential is determined by T,, which is convected
together with the flux tube). On the other hand, the ambient plasma, which has a different
temperature, has a different potential. Therefore, a cross-B dectric field emerges. A more
detailed analysis shows that the ExB drift is phased in such a way that it leads to the
instability.

Aswe have mentioned in the Introduction, the typical growth rateis quite high, much
higher than the inverse transit time of the plasma from the X-point to the divertor plate. One
may therefore expect that at afinite (abeit small) beta, the growth rate would exceed the
inverse Alfven trangit time. In such a case, the perturbation loses its flute nature and
becomes a shear-Alfven mode instead. A localized unstable mode can be formed near the
divertor plateif the condition (1) holds.

We seek perturbations with temporal dependence ~ exp (-iwt). We assume that the
radial length-scale of perturbationsis small compared to the thickness A. This alows use of
an ekonal approximation in the x direction and seeking Xx-dependence in the form of
exp(ik,x). The “toroidal” direction () is an ignorable coordinate; hence the dependence on
it can be taken as exp(ik,z). There is no dependence of the plasma parameters on the
coordinate y, ether, so, the y-dependence can be seeked in the form exp(iKy), where K is
some constant, which is complex for the localized modes. It is convenient {0 present K, "in
theform: K =qg+k, ,with k, satisfying the equation k, = -k,B, /B, (which meansthat vector

kis perpendicular to the magnetic field). With Eq. (3) taken into account, the condition
k, = -k,B, /B, can bewritten as

B,k = Brk, (10)

In other words, we are seeking a solution of the form:



exp(iK - r) = exp(iqy) exp(ik - r) (11)
with

Ki=koK, =q+Kk,K, =k, (12)

and the vector k satisfying condition (10). The convenience of this representation is in that
the second multiplier in ther.h.s. of Eq. (11) does not vary along thefield line and describes
a pure flute perturbation, whereas the first multiplier describes a dow variation of
perturbations along the field line. One obviously has:
B- V[exp(iK -r)] =-igB, exp(iK -r) (13)
For the further analysis, it is convenient to introduce the displacement vector §
which is defined by the equation:

§=Bv,%s—im+vo-v, (14)

dt
where dv is the velocity perturbation and v, is the unperturbed velocity, which has
components perpendicular to the magnetic field (Eg. (5)) and pardld to the magnetic field
(the parallel flow velocity u). For perturbations of the form (11), one has:

V,B; + UB; (15)

d . . :
a=—|oo+|k-vD +1iq
According to Eq. (6), one can neglect theterm v, B, compared to uB, in Eqg. (15).

The quditative picture presented in the introduction and at the beginning of this
section shows that the perturbation varies along the field line on the scale v,/w. In other
words, q in Eq. (15) can be estimated as (w/v,)(B/B,) . Therefore, the term proportiona to
uin Eq. (15) containsasmall parameter (u/v,)~(B)"* <<1 compared to the first term in the
right hand side of Eq. (15). Therefore, we conclude that, to a high accuracy (the parameter 3
for the tokamak divertors lies usually between 3-10° and 10°),

v =-iQE (16)
with

Q=w-k-v, a7)
The linearized momentum equation, the line-tying equation, and the Biot-Savars law
can then be written as:

-Q°’mng = -Vop+ 9) Z B (18)
0B =V x[E x B] (29
V x 8B = 4—:aj (20)

By noting that the displacement E in the Alfven wave is perpendicular to both the
wave vector and the unperturbed magnetic field, one obtains from Eq. (19) that

8B = iB.qE (19')

Plugging thisresult into Eq. (20) and taking the scalar product of Eq. (18) with the vector
K x B, onefinds:



(21)

In EQ. (21), in order to avoid the divergence of the solution at large y, one has to choose the
positive sign for the unstable mode (Imw=Img>0) and the negative sign for the stable mode
(Imw=1MmQ<0). In the following derivation we will be concerned with the unstable mode.

One seesthat the e-folding length (in y) of the perturbation is (v,/ImQ)(By/B) and,
in order to have the perturbation damped before it reaches the X point, the following
condition has to be satisfied: (v,/ImQ)(B./B)<l, where | is defined by Eqg. (9). Using Eq.
(9), one can aso rewrite this condition as:

ImeL 22
VvV

A
This condition coincides with Eqg. (1) introduced on the basis of qualitative considerations.
The pressure perturbation for incompressible modes (which includes the Alfven
mode) is determined solely by the plasma convection:
dp=-ng T, (23)
Using this expression and Eq. (10), it is straightforward to obtain from the set (17)-(19)
that, for perturbations of the form exp(iK - r),

. _ OB (., .B*|B. _ CcQBK’B

Oy = 4nvAK/(kx K Bﬁ) B 4mv K, B > (24

5j, = 26 (—Qmink RLLETN B)EX (25)
Bk, QB

Wherever possible, we have used the smallness of the parameter g/k .
We can now find the norma component of the current in terms
of the plasma displacement on the plasma side of the sheath,

ck’Q B.B. . CnBTT’(kygsina -k cosoc)] (26)

—Y T cosa + i 5
4J'|:VAky B B

We have neglected the contribution of the first term in the brackets in Eq. (25) because it

contains asmall parameter ~Q/kv, compared to the contribution from n-4j,.

n-8j=n-gj,+n-9j, =§,

IV.THE SHEATH BOUNDARY CONDITION
V. A Perturbations near thedivertor plate: curl-free electric field

The divertor plate is a perfect conductor, so that the tangential component of the
electricfield at that surfaceis zero. At a distance of a few ion gyro-radii, where we impose
the boundary conditions, the electric field can be considered as curl-free. Indeed, the vortex
component of the electric field that can be evaluated from equation V x 8E ., = —wdB/c, is
of order of OE,. ~ (w/ck)oB ~wBQE, /v,ck (see Egs. (19') and (21)) whereas the
potential component is 8E ,, ~ §,QB/c>>dE,,,, (see Eq. (29) below). The presence of

the potential eectric field at the plasma side of the sheath alows the flux tube to dide over
the surface, despite the fact that the magnetic field perturbation is almost zero. This is how
the line-tying condition breaks down in the presence of sheaths — an observation made by
Kunkel and Guillory in 1965.

What we basicaly say, is that the magnetic field perturbation near the wal is
negligible; therefore, there is no paradox associated with the condition that the normal



component of the magnetic field cannot be perturbed. In our case even the total perturbation
isnegligibly small. The magnetic field perturbations play arole only at the scale ~v,/Q.
Based on these considerations, we can present 6E in the vicinity of the plate as

E =-Vop (27)
Thismeansthat, near thedivertor plate,
O
E= oR? KxB (28)
and, in particular,
ck o0
5 - 29)
QB;

Here we have taken into account Eq. (10).
V. B Relating the current perturbation and the plasma displacement

In this section we will find the norma projection of the current perturbation on the
divertor plate, based on the current-voltage characteristic derived in the earlier papers [20,
21]. To be more precise, we have to find the current on the plasmaside of the sheath, as the
currents on the plate and on the plasma side of the sheath, generally speaking, are different
[20].

The required current-voltage characteristic, prior to the linearization, has the form
[20]:

(—%

: B :
n-j= —enE"cosoc U-— Vo, exp +envp, sino. + env, coso.  (30)

where v, isthe velocity of the ExB drift (5). The plate is assumed to be conducting and at
the zero potentl a. Inthe unperturbed state, the current to the wall is assumed to be zero:

n-j,=0. (31)

The quantities that experience perturbation are the electron temperature, the drift velocity
and, generally speaking, the parald flow velocity and the tangentid component of the
magnetic field. We will, however, ignore the latter two because their contribution is small.
Perturbing Eq. (30) and taking into account these comments, one readily finds:

B
n- 6] = —en—pCOS(X u- EV()Dy (A 0. 5) 6T eécp
B Bp Te Te (32)

+endvy,, sina + endvy, cosa,

The second term in the round brackets can be ignored because of inequdity (6).
Using aso Eq. (29) and eguation 8T, =-E,T,, one can express the r.h.s. of Eq. (32) in
terms of the x-component of the plasma displacement near the surface of the divertor plate:

Te EQBF ky(kysmoc kXBTCOSa)} (33

(A +0. 5)
T CTK,
Eqg. (33) coincides, up to notation, with the boundary condition of Ref. [21].

B
n-9j = -eng, uE"COSa

e



V. DISPERSION RELATION AND ITSANALYSIS
V.A General dispersion relation

Equating two expressions for the norma component of the current — the one
obtained from the solution for the mode in the bulk plasma (Eg. (26)), and the other
obtained from the sheath boundary condition (Eg. (33)), one arives a the following
dispersion relation:

E1+ \Z[iTU i Bz\ﬁ:( kytanoc+kXBT§)
Va ko B-Brkp; \ K k B (34)
T [ B” ﬁ( kytanowkx BT) ky u B(A 05)}
T, | 2B.B? k| k k B® v, B,
where
2T, v, =£. =8;rnTe
Vv, = \/:1 Pi = (DCi1 W mc’ Be B2 ' (35)

and m istheion mass. We see that the instability can be present only for the non-zero
temperature gradient and disappearsif T, = 0 (when Q becomes zero).

Asthe mode is assumed to be localized near the divertor plate, the distance L to the
X point does not enter Eq. (34). However, as the very possibility of the existence of the
localized mode requires fulfillment of the condition (22), we sometimes present Q in the
units of v,/L. The mode exists as a localized mode if Im QL/v,>1 An expression for the
growth rate that can be easily obtained from Eq. (34) is:

3 kypi(_kypi tana + Kp, :;)[kzpiz - BT:\E(ZA —1)]

Q_L — TeLBe B - (36)

. T, 2B.B? , 2 2 \2 2
Y Br(kzpiz+2V@") +|3e( B )(—kypitanow kxpizrz)

i B.B;
V.B An instability at a significant tilt

At asubgtantial tilt of the divertor plate, [tanof>1, theterms of the form k p,B?/B%n
Eq. (36) can be neglected. Then, as the denominator in (36) contains a higher (the fourth)
power of k compared to the numerator, the instability has the highest growth rate if we
make k, much less than Kk, so that k* = k7B*/B} (see Eq. (10)). This is the ordering used
alsointhe earlier papers [5, 10]. (Later on, in Sec. V.E, we return to this issue again, for a
more detailed analysis: thek, terms are important in the zero-tilt case.)

In the approximation k>k, one obtains from (34) the following smplified
dispersion relation:

1, 2B \B. u BB

VA szf | B K/pl

_TLB.
n

e

B u
ZBP —tana + Bk p, v (A+0.5) (37)
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In order to establish connection of this result with the earlier studies of the effect of
thetilt [5,10], we rewrite this equation using the same notation as in these earlier papers:

B B 2l L2
QVA+§991L+|3992L+I’1L+|F2L=0, (38)

where

2 ' '
= 2aMU. o _ ey 2. (A 1)‘”0“ 2= e tana (39)
LKCT, K| LT MI

and | isintroduced by Eqg. (9).

By tracing the origin of varioustermsin Eq. (39) to the basic equations of Sections
Il and V, one can identify the meaning of these terms. Thefirst term in the |.h.s. represents
the inertia of the plasma occupying the wiggling flux tube; the second term describes the
sheath resistance as discussed by Kunkel and Guillory [14]; the third term describes an
effect of the tilt on the sheath CVC as first described in Ref. [5]; the fourth term first
introduced by Kadomtsev [1] describes reaction of the sheath potential on the change of the
temperature caused by the motion of the foot point of the flux tube over the surface; the fifth
term describesthe role of the pdV work performed by the advancing (recessing) boundary
in the frame attached to the flux tube foot-point [21]. Note that the connection length L
actudly drops from Eq. (38), as the characteristic frequencies introduced by Eq. (39) aso
depend on L. [There is atypo in the expression for I, in Ref. 10, where L instead of | is
written in the denominator; this typo does not, however, propagate to the further equations,
note also that in Ref. [10] the definition of o differs from the definition of our present paper
by /2.]

The main difference from the dlsperson relation of Ref. [5] is in the form of the
very firgt (inertial) term, which was equa to QL in the case of a zero-beta plasma limited
from both sides, with L being the distance between two plates limiting the plasma. The other
difference is that we now do not make an assumption that B, is small compared to B,
thereby including the parameter domain characteristic of spherical tokamaks. This is
reflected by the presence of the factor (B/B) in Eq. (38).

An expression for the instability growth rate can be easily obtained from Eq. (37):

2

k?0?|k?p? -5— 2A -1

ImQL  T.Lp, B p'[ bi B?v ﬁ( )]
= - —tana

v 2T, B 2’
: i (kzp? 28 u \fi) ﬁekzp?(:tana)

(40)

B® v b
Before switching to its genera analyss we present some results for the case of
some “generic” divertor of amid-size tokamak, where

B . B_, LTl

B. B T |
Fig. 2 shows the dependence of the growth rate vs. the wave number, for several vaues of
the tilt, for A=2. As we see, two modes of oscillations can be distinguished: the short-
wavelength mode, and a long-wavelength mode. The transition between the two modes
occurs a the point where the growth rate is zero, i.e., at

300, B, =107, Vﬂ _15 (41)



2 (42)
V:

K(/crit)pl — &

w(2A-178, ]
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For a given sign of the temperature gradient, the stability or instability of each branch
depends on the sign of thetilt. In a common flux region, where T <0, the short-wavelength
mode is unstable at a positive tilt of the plate, >0, whereas the long-wavelength mode is
unstable at anegativetilt, a<0. In the private flux region, the situation is opposite.

V.C The short-wavelength mode

When considering the short-wavelength mode, one should remember that, because
of the approximations made in our general equations, we cannot increase k, beyond the
inverse ion gyro-radius. The maximum growth rate is reached a the boundary of the
applicability domain. For not very strong tilts, this growth rate can be approximated as

Q(S)L /
max| Im =- TeLBe Etanoc (43)
V, 2T, B,

where “s” stands for “short”. This mode will be locaized below the X point if the
condition (22) holds, i.e,, if
B> 2T, B,
T.L Btana
For the set of parameters as in Eq. (41), and tano=5, the localized mode can exist a
p>2.510"

For the short wavelength modes it may be necessary to use a more genera
dispersion relation for Alfven waves, Q*=vik!/(1+w?.k?/c?) [4], instead of simply
Q* = v ki , as we did in this paper. The applicability condition for our approach is that
w?k{ /c?<1. For the shortest wavelengths considered above, k, ~p;, this condition
reducesto 3, > m,/m. For the critical wave number (42), i.e., a the transition from short to
long wavelength mode, the condition wiekf /c?<1 reducesto

(44)

2 2
B, > (ﬂ) [ﬂ A -1)} (45)
m/ v,
and holds by a substantial margin in al realistic situations.

V.D The long-wavelength mode

To study thismode, it is convenient to present the frequency and the wave number in
the normalized form,

Q=00Q,, k=Kkk, (47)

with the normalization parameters being

T
Te

B |u
B\ 2y, (48)

3/4
Q0 = VABe

10



and

_BBY 2u
o Bp, \ Vi 49

When expressed in thisway, Eq. (40) acquires auniversal form, where the result depends of
only one constant, C:

kAR
ImQ = sign(T)g(C.K); 9CK) = "= — (50)
(k +1) +k°C
where
1/4
BBTﬁB 'tanoc (51)

The dependence of the growth rate on various external parameters is encapsulated
inasingle dimensionless parameter C (the A does not vary much; dill, the scan over A is
presented at the end of this section). We assume that the sign of the temperature gradient is
positive, so that an instability is present at positive C (positive tana).

We evauate now the maximum growth rate of the long-wavelength mode. For a
given k and any given set of the system parameters, ther.h.s. of Eq. (49) has a maximum a
some value of tana, in other words, at some C. With thisvalue of C chosen, the dependence
(49) on k also has a maximum. Finding this maximum would yield a maximum possible

growth rate as a function of tana and k. This will be just a number, u= cpaxg(C k) .The

corresponding analysis is presented in Appendix 1. The resulting plot of the optimum
vauesof C,, and kopt, aswell as u vs. the parameter A is shown on Fig. 3. For A =3, one

has: C,, =21 I;Opt =0.47, u=0.47. Thismeansthat the maximum growth rate for A=3 is
(see Eq. (47)):

ML _ g.4p3e BrfTely (51)
VA B e
(we assumed u=1.5v,). It corresponds to the following wave number and tan o«
B'rB:LM Br Bp

(kp;) o =0.8 , (tana) o = B Bl/ T (52)
According to Eq. (22), this mode will exist as a |OCdIZ€ed mode if the following condition
holds:

/3
T. B
> 3.4 53
Be > TL BT] (53)

For T,L/T,=300, and B,/B=0.2, 5, must exceed 0.16%. For this vaue of beta, one has
(ko) o =0.16, and (tana),,~3.8 (a=75").

opt

V.E An instability at a zero tilt

When considering the case of a zero radia tilt (a=0), one has to retain the terms
containing k, in Eq. (34). For a=0, this equation reads as

11



oLl 2B u isﬁﬁ]:
Va| KV Bokp Kk
(54)
Te’L[se[i B kk ky B, 05)]
Te ZB k2 I I BT
The growth rateis:
, kxkyp?[ p.—*f (2A- 1)}
ImQL TP, B (55)

A 2T, ), 2
kap( )

In order to be locdized, this mode requires a relaively high beta What, however, is
interesting with this mode, isthat it exists (provided the beta is high enough) at any sign of
the temperature gradient: the unstable perturbation is selected by the proper choice of the
sign of the product kK.

For any redlistic values of beta (~10°-10) and of the B/B,, ratio (<20), the last term
in the denominator of Eqg. (55) can be neglected, thereby consderably smplifying the
analysis. [Notethat in the case of a substantial tilt, tanc>1, the analogous term in Eq. (40)
could not be dropped, because it contained a large additiona factor tan?c..] With this term
dropped, the maximum growth rate at a given k corresponds to equal values of k, and k;, i.e,

to |k,| = |k |= k/+'2 and one has for this maximum:

=
(kzpI 24

ImQL _ | TLB,
v, -h AT, B xsugn(kXK/) (56)
where
k> Z[kzp,_f (2A - 1)]
h= : (57)
2pi2+2\L/J\/B>e

The plot of the dimensionless function h for various values of beta is shown on Fig.
4. One seesthat , as before, there exist a short-wavelength and along-wavelength  branches,
with the transition from one to another branch occurring at

w(2A -1,

Ve

What is, however, different, is that both branches are now unstable smultaneoudly, a any
signof T.; thesign of T, determines the mutual sign of k and k; of the unstable mode.

The maximum growth rate for the short-wavelength mode is reached a the
applicability limit, ko=1, where h is close to 1. The maximum growth rate of the long-
wavelength mode is reached at
2u\p, 2A-1

k™p, = e : 59
P Vv, 2A+3 (59)

k(cri’()pi — (58)

where

12



2A -1)?
h - 5(3_), (60)
(2A+1D
For A=3, on has |n|,,~0.45. The absence of an additional large factor tana in the
expression for the growth rate (compare Egs. (40) and (55)) makes the growth rate in the
case of azerotilt smaller than in the case of a large tilt. Accordingly, in order for localized
modes to be present at azero tilt, the beta vaue must be higher than in the case of a strong
tilt.

VI RELATION TO LINEAR PLASMAS

The instability that we have discussed in the previous section can be studied in linear
devices, where one would use a shaped end electrode of the type shown on Fig. 5, where
this electrode is smply a cone. In the eikonal approximation, one can consider flux tubes
leaning on various el ements of the end electrode and, for small-scale perturbations, consider
the corresponding segment of the electrode as a flat surface whose normal is tilted a some
angle o with respect to the axis. This brings us back to the geometry of Fig.1, with the only
difference that there will be no toroidal magnetic field present in the linear device (we do not
consider asituation where alarge axial current is present).

To obtain adispersion relation that describes this modified situation, it is convenient
to replace k in the dispersion relation (34) by k,, as given by Eq. (10). After that, one should
take alimit B,—0, B,—B which leads to the appropriate dispersion relation:

@b 1+ 2\2/'326 Ry *@ﬁtana =
Va Kpi vi ko K

’ 2
T 2k kp, v,

e

(61)

The coordinate axes in this case should be identified as follows (Fig. 4): x is directed
radially, y isdirected axially, and zis directed azimuthally.

At a=0 (flat end surface, norma intersection) the Q is purely rea. This is in
agreement with the conclusion made in Ref. [2] regarding the absence of localized modes in
the case of the norma intersection. On the other hand, as Eg. (61) shows, a a=0 the
localized modes become, in principle, possible.

Atagivenk, it isbeneficial to increase the drive terms (the terms containing tana) by
increasing K, (and decreasing k,). Accordingly, we make the further analysis for the case
k>>K.. In this case, the growth rate can be presented as

kzp?[kzp? —:WZ(ZA—D]

ML __TLg tana (62)
V, 2T,

2
k’p? + 2:«/@) + Kpp, tan’a

For small-enough betas, 8,<10?, and at redlistic values of tana<10, one can neglect the last
term in the denominator, arriving at the expression

ML __Tebg tanexh (63)
V, 2T,

where the dimensionless function h is determined by EqQ. (57). The fastest-growing mode
corresponds to the maximum possible wave-number, kp.~1:
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C) '

ImQEL z—TeLBetanoc (64
V, 2T,
If the temperature decreases in the outward direction, i.e. T, <0, this short wavelength mode
isunstable for the positivetilt (ason Fig. 4a). At wave-vectors smaller than the critica wave
vector (58) this mode becomes stable, very much likein the case discussed in Sec. VI.B. At
these smaller wave-numbers the instability is present for the negative tilt, for which the cone
apex is oriented away from the plasma (Fig. 4b). The maximum growth rate of the long-
avelength modeis reached at the wave vector (59) and is equal to

ImQUL  (2A-1° TL

V, 8(2A+1) T,

We remind that, for the long-wavelength mode to be unstable, the tilt of the absorbing

surface must be negative, as shown in Fig. 4b. Taking A=3, one sees that the growth rate

of long-wavelength modes in a linear device is comparable to that of the short-wavelength

modes.

Consider as an example the possibility of observing these modes a a LAPD device

[18]. Assuming that the plasma density is 10 cm®, the electron temperature is 10 eV, and

the axial magnetic field is 600 G, one finds that the electron beta is ~ 10°. Then, for the
radial length-scale (Eq. (2)) A~5 cm, and the plasmalength of 18 m, one finds that

ImQL L|3etanoc ~ 0.18tana.. (66)
V, 2A
We do not distinguish here between the long- and short-wavelength modes, as their
maximum growth rates are close to each other. Equation (66) shows that the localized mode
can be observed if tana>5, or equivalently, that o> 80°. At higher electron betas, the required
tilt becomes smaller. Therefore, thereisa chance that the modes predicted in this study can
be observed at LAPD.

Betana (65)

VIl SIGNATURES OF THE INSTABILITY

In this section, we discuss characteristic signatures of the instability which may help
to identify it in the experiments. The most obvious signature is the decrease of the amplitude
of fluctuations with the distance from the absorbing plate. The higher beta, the faster is the
decrease (provided of course that beta is higher than the critical vaue determined from the
condition (22)).

The second prominent feature of the instability is its dependence on the mutual
orientation of the tilt of the divertor plate and the temperature gradient. Assuming that the
maximum of the electron temperature is Stuated a the separatrix, we predict that in a
common flux region the short-wavelength instability is present for a*“positive” tilt, and the
long-wavelength instability is present at the “negative” tilt, whereas in the private flux
region the situation is the opposite. This prediction can also be tested at the linear device by
switching from the configuration of Fig. 4ato that of Fig. 4b.

Thethird featureis related to the direction and the magnitude of the phase velocity
of oscillations. We note that, according to Eq. (17), thereal part of the frequency isequa to

Rew =ReQ+k- v, (67)
We discuss this relationship for the case of a substantial tilt considered in Sec. VI.B. In this
case Eq. (37) yields the following expression for ReQ:
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U U ’
g Sl 1)( 2k22 ﬁ) ( Ptanoc) .

2Tk p, 2
A (O ZB; o b, o] B rena
B B.

ReQ = (68)

Recdling Egs. (4) and (5) defining the drift velocity, one can see that the term ReQ
universally corresponds to a contribution to phase velocity opposite to v,. One can check,
however, that for the short-wavelength mode with kp,=1, this contribution is small. In other
words, the short-wavelength modes are advected with the ExB drift velocity. For the long-
wavelength modes of a maximum growth rate (i.e,, for the mode defined by conditions
(52)), the contribution to the phase velocity coming from the term ReQ in (67) is
comparable to v,. Depending on the specific parameters of the system, the resulting phase
velocity may become considerably smaller than v, or can even reverse sign.

The characteristic frequency of the perturbations, f=w/2x, is ~v./2rA for the short-

wavelength modes with kp,~1, and v,BY*/2nA for the long-wavelelngth perturbations near
the maximum of their growth rate. For the hydrogen plasma with T .=30 eV, $,=3-10", and
A=1cm, the frequency f of the short-wavelength mode is ~ 1 MHz, whereas the frequency
of the long-wavelength mode is ~ 100 kHz. The characteristic wave number is
~(0.5-1) p;*for the short-wavelength mode and ~ (0.1-0.15) p;* for the long-wavelength
mode.

Thereisacorrelation between the perturbation of the current density at the divertor

plate and the temperature perturbation. Both quantities can be measured by flush-mounted
probes. For the strong-enough tilt, one has, by the order of magnitude (see Eq. (33)):

Sn _3%x Dle 24 (69)

There is a subtlety here: dtrictly speaking, we cannot use expression (33) for the
perturbation of the normal component of the current, because this expression pertains to the
current at the plasma side of the sheath, whereas the flush-mounted probe measures the
current at the wall side of the sheath; the two expressions are, generally speaking, different
[20]. Using a convenient representations [22] for the two current densities (Egs. (20) and
(21) of Ref. 22), one sees that, to get the perturbation of the current at the wal side, one has
to replace the factor (A+0.5) by the factor (A-0.5) in Eq. (33). This will not change an
order-of-magnitude estimate (69).

It is aso worthwhile to mention that, because of thetilt, the normal component of the
unperturbed ion current density, j@, is much smaler than enu, namey
j% = enu(B, /B)cosa. If one uses | asanormalization factor, one gets, instead of (69):

% 0T, QA B (71)
Jno Te U Bjcosa

The magnetic field perturbation, although smal, may be measurable. It can be
evauated from Eg. (19') which yields 8B~ B(QE,/v,). One can relate it to the
temperature perturbation:

0B _ QAT
B v, T,
Vector of the magnetic field perturbation is perpendicular to unperturbed magnetic field.

(72)
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VIII DISCUSSION

We have presented an anaysis of an instability localized near the divertor plate. It is
driven by an interplay between the sheath boundary conditions and bulk long-paralel
wavelength Alfven wave. The existence of the modes that would exponentially decay before
reaching the X point requires finite plasma beta in the scrape-off layer and favors divertors
with long divertor legs. The modes then become completely decoupled from any processes
occurring near the X point and beyond it. The modes are present even in the absence of the
curvature effects and have high growth-rates exceeding the inverse Alfven transit time over
the divertor leg. Theinstability increasesin the presence of a significant “radial” tilt of the
divertor plate.

We have identified two modes, the short-wavelength mode and the long-wavelength
modes. One of them is unstable for the pogtive tilt, whereas the other is unstable at the
negativetilt (the sign of the tilt is defined a the beginning of Sec. Il). Therefore, if one of
the modes is dominant in the common flux region, the other is dominant in the private flux
region, and vise versa.

If the modes reach high-enough leve, they may lead to a broadening of the scrape-
off layer within the divertor leg, without having any direct effect on the plasma confinement
in the SOL above the X point and, therefore, not causing any degradation in the confinement
of the bulk plasma. This part of the problem needs, however, a nonlinear analysis which we
leave for the future work. Also for the future work isleft a more general study of the mode,
where it would be only partly “detached” from the X point, so that one would have to dedl
with boundary conditions on both sides of the divertor leg.

The physics of these modes can be studied in linear devices, by using shaped end
plates. It may be possible to detect them at the existing LAPD device.
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Appendix 1.
Evaluating the maximum of the function g(C,IZ)

Tofind u= max 9(C, IZ) , We solve equations dg/dC =0, ag/alz = 0. These equations can be

presented as.

C=1+I22

~ ~ 5 1
kP + K3 (A+D)-(A-)=0
+ (+2)( 2)

Solving these equations for k and C, one finds their values corresponding to the maximum
of the function g:

J(A+05)(A+85) - (A +0.5)

_ ke ~(A+05)(A+85)-(A+25)
V2,J/(A+05)(A+85)—(A+25)

opt 2

opt

The maximum value of the functiongis

(3A +15-/(A+05)(A+ 8.5))@/(/\ +0.5)(A+85) - (A +05)
2:2(/(A+05)(A+85) - (A+05))

u=max g(k,C) =

The plot of all these quantitiesvs. the parameter A is presented on Fig. 3.
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Figure captions
Fig. 1. The geometry of the problem.

Fig. 2. The normalized growth rate. Parameters of the system are specified by Eq. (41). The
numbers by the curves are the corresponding values of tana. The plot corresponds to a
postive tilt. One sees that short-wavelength modes become localized (in the sense of
condition (22)) at tana>4. For the negative tilt, the picture turns “upside down,” and the
long-wavelength mode becomes unstable. This mode is marginaly localized for the set of
parameters (41). It would be fully localized for somewhat longer divertor legs.

Fig. 3. Dependence of various parameters of the long-wavelength ingtability on the
logarithmic factor A (see Appendix 1 for the derivation).

Fig. 4. The dependence of the dimensionless function h (Eq. (57)) on kp, for various vaues
of B, weassumethat A=2.5, u/v;=1.5.

Fig. 5. The possible geometry of alinear experiment: a) the conical end surface corresponds

to a positive tilt if the electron temperature decreases in the outward direction T.<0; b) the
conical surface corresponding to the negative tilt for the ssme sign of T..
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