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Abstract

It is shown that, in a finite beta plasma, there may exist sheath driven modes whose
amplitude decreases exponentially with the distance from the divertor  plate. The modes are
sensitive to the radial tilt of the divertor plate. The short-wavelength branch of the instability,
with the cross-field wavelength   Dof order of a few ion gyroradii, is present in the case of a
“positive” tilt of the divertor plate, whereas the long-wavelength branch, with   D of order of
10 or so gyroradii is unstable for the opposite sign of the tilt. The parallel e-folding length
becomes less than the distance from the plate to the X point (thereby making the mode
insensitive to the processes near the X-point and the upper scrape-off layer) at the plasma
betas exceeding  (2-3)⋅10-4. A detailed analysis of the dispersion relations is provided. The
features of the modes that can be used for their experimental identification are discussed. It
is pointed out that the analog of these modes may also exist in linear plasma devices with
shaped end electrodes.

I. INTRODUCTION

A magnetized plasma,  whose length along the field lines is limited by conducting
end plates, often experiences very strong instabilities driven by a combination of two
factors: cross-field variation of plasma parameters, and sheath boundary conditions at the
plates.

A first rough assessment of the aforementioned fast instability was made in 1965 by
Kadomtsev  [1].  More recently,  it was realized that such instabilities may play a role in
fusion devices and analyses accounting for a variety of factors existing in such devices were
made: In Ref. [2],  it was emphasized that, among the driving factors, the most significant is
the gradient of the electron temperature; effects of a finite beta were also taken into account.
In Ref. [3],  in the case of a zero-beta plasma, the role of finite Larmor radius effects was
quantitatively accounted for. In Ref. [4] the instability was generalized to include resistive
effects, together with electron inertia effects. In Ref. [5] the effect of a tilt of the end plate
with respect to the magnetic field was included and was found to have a significant effect on
the growth rate. In Ref. [6]  effect of collisions with neutrals was considered. In Ref. [7] the
interference between  Kelvin-Helmholtz modes and the sheath-driven instability was
analyzed and the conclusion was drawn that, at short wavelengths, the sheath-driven
instability is dominant, and in Ref. [8] these results were confirmed by numerical
simulations.

In all these papers, the instability was analyzed for a slab geometry and a uniform
magnetic field. In Ref. [9],  it was noted that there is a difficulty in applying the results of
these studies to a tokamak with divertor, because extremely strong shearing of the flux tube
in the X-point area makes irrelevant the flute model used in these earlier studies. A possible
approach to a solution of this problem was offered in Ref. [10] where it was suggested that,
for long-enough divertor legs, one can account for the X-point effect by imposing a
boundary condition at some “control plane” situated somewhat below the X point. The
boundary condition is of a resistive nature, relating the tangential current to the tangential
electric field, with the electrical conductivity σ ω πω= pe ce

2 4/  (here ωpe and ωce are the
electron plasma and the electron cyclotron frequency, respectively). With this boundary
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condition imposed, the sheath driven instability is re-established; it is now present only in
the divertor leg, between the divertor plate and the control surface, with some minor, very
small-scale perturbations reaching the zone slightly above the X point. {We note that the X-
point effects have a strong influence also on modes localized in the main part of the scrape-
off-layer and  lead to the appearance of so-called “resistive x-point modes” [11,12].}

The divertor-leg instability found in Ref. [10] is very strong, with a growth  time
τ ω≡1/Im  being typically much shorter than the plasma transit time through the divertor
leg, L/vti, where L is a connection length between the divertor plate and the X point.  It may
even become shorter than the Alfven transit time L/vA. In such a case, one can expect the
formation of modes which would be localized near the divertor plate, exponentially
decreasing along the field line as exp( / )−s Av τ , where s is a distance along a field line. If the
growth time is short enough,

τ < L A/v , (1)
the mode becomes localized near the divertor plate and becomes completely detached from
the X point region.

Clearly, as the presence of this mode is related to the perturbation of the magnetic
field, this is a finite-beta mode. An attempt to find such modes was made in an early paper
[3], but the conclusion was drawn that they do not exist. In Ref. [13], an evanescent mode
was found in the case of a strong-enough parallel velocity shear, i.e. the E×B velocity
varying along the field line. [The origin of this shear is related to the possible variation of
the electron temperature along the field lines and the resulting variation of the electrostatic
potential.]

In this article, we revisit the problem of the evanescent modes in a setting similar to
that of Ref. [2], i.e., without a parallel velocity shear, but with an important new element
added: the non-normal intersection of the magnetic field with the divertor plate (in Ref. [2],
only the case of normal intersection was considered). As we show, in the presence of the tilt,
evanescent modes become possible at a finite plasma beta, and their growth rate can become
quite high for a strong tilt. Interestingly, the direction of the radial tilt of the plate affects the
sign of Im ω, making the modes that are stable for one direction of the tilt, unstable for the
opposite sign of the tilt. This effect could be used as an identifier of the modes.

Instabilities considered in Ref. [1-10, 13] exist even at zero magnetic-field-line
curvature and are in this respect very different from the curvature-driven flute and
ballooning modes. As was demonstrated in 1965 by Kunkel and Guillory [14], sheath
boundary conditions can have strong influence on these modes, too, by removing the line-
tying constraint on the conducting end surface. The analyses of the corresponding
instabilities were presented by Nedospasov [15] and Garbet et al [16]. We do not include
the curvature effects in this paper; the growth rate that we find is very large even for straight
field lines.

This paper deals only with a linear analysis of the modes. Potentially, these modes
may serve as a seed for various nonlinear structures, e.g., blobs [17], which would be in this
case localized in the divertor legs, but we do not go into this issue, leaving nonlinear effects
for further studies. [Note that the blobs considered in [17] were driven by curvature effects.]
Here we concentrate on a linear problem in the simplest setting (as even this case turns out
to be rather complex). On the other hand, we analyze in some detail how our modes behave
not only in tokamaks but also in linear plasma devices such as LAPD [18]. It turns out that
the finite-beta modes exist in such devices as well, and conditions for their experimental
study may be more easily achieved than in divertors of large tokamaks.

The structure of this paper is as follows: In Sec. II we describe the geometry of the
problem and characterize the main assumptions. In Sec. III we consider perturbations in the
bulk plasma where they are shear Alfven waves. We derive an expression for the perturbed
current normal to the sheath (and the divertor plate). In Sec. IV, we derive an expression for
the same current based on the sheath boundary condition. In Sec. V, by equating the two
expressions, we  obtain the general dispersion relation and then analyze it for various
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particular cases.  In Sec. VI we modify our analysis in order to cover the same instability in
linear devices with shaped end electrodes. In Sec. VII we discuss experimental signatures of
the instability, in particular, its characteristic frequencies, as well as relations between
perturbations of various quantities. Finally, Sec. VIII contains a brief discussion of our
results.

II.  MAIN ASSUMPTIONS

We consider the slab geometry shown in Fig. 1. The axes x, y, and z are the analogs of the
radial, poloidal, and toroidal directions. As was shown in Refs. [2,3], the main drive for the
instability is related to the electron temperature gradient. Accordingly, to visualize the
instability in the most clear way, we assume that the unperturbed electron temperature is a
function only of radius, Te=Te(x), while the unperturbed density and ion temperature are
assumed to be uniform both in the radial and poloidal directions. We denote the (radial)
length-scale of the unperturbed electron temperature variation as ∆:

∆ ≡
′
−

T

T
e

e

1

(2)

where the prime means the derivative with respect to x.
The magnetic field in Fig. 1 points into the divertor plate and is such that Bz>0, By<0.

Instead of By and Bz, we will often use the notation

B B B BT z P y≡ > ≡ − >0 0; ,       (3)
with the subscripts “T” and “P” referring to the toroidal and poloidal fields, respectively.

A very important feature of the problem is the presence of the “radial tilt” of the
divertor plate, which is characterized by the angle α. As we will see shortly, the instability
depends on the mutual orientation of the temperature gradient and the normal to the divertor
plate which can be characterized by the quantity sign T sign Te e( ) ( )tan− ⋅ ∇ = − ′n α . For the
orientation of the coordinate axes considered in this paper (Fig. 1), this quantity is positive
if Te decreases along x, and α is positive. We call this case “positive tilt”.

We consider a low recycling case, where all the plasma approaching the divertor
plate is absorbed by it, and the incoming plasma is not perturbed by the neutrals formed at
the plate. The plasma streams towards the divertor plate with a parallel velocity u; we assume
that it exceeds the sound speed. We assume that the unperturbed current to the plate is zero,
and that the plate potential is zero.

Under such circumstances, the unperturbed plasma potential just outside the sheath
is

ϕ0( )
( )

x
T x

e
e= Λ , (4)

where Λ=2-4 is a logarithmic factor weakly depending on the plasma parameters. This
sheath potential drop, in the case of a tilted magnetic field, occurs in two steps: part of the
potential drop occurs in the ion sub-sheath, on a scale of order of the ion gyroradius, and
the rest occurs in the Debye sheath near the wall [19]. Aside from this variation across the
sheath, the unperturbed potential does not vary along a field line.

The unperturbed electric field E d dx e dT dxx e0 0= − ≈ −ϕ / ( / ) /Λ  creates a cross-field
plasma flow perpendicular to the magnetic field

v vDy
x z

Dz
x yc

E B

B
c

E B

B
= − =2 2, , (5)

which  also does not vary along field lines. We assume that the poloidal projection of the
drift velocity is less than the poloidal projection of the parallel flow velocity u, i.e.,
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vD
T

P

u
B

B
< (6)

In the opposite case, there may (formally) occur a reversal of the poloidal flow; even the
equilibrium state for this situation is not fully understood and we do not attempt to cover it
in this paper. The condition (6) can also be formulated as:

ρi P

T

B

B∆
< , (7)

where  ρi is the ion gyro-radius evaluated for the electron temperature:

ρi
i e

i

m

eB

T

m
≡

2
(8)

If the distance between  the divertor plate and the X point along the field lines is L,
then the distance projected along the y direction is, obviously,  

l
LB

B
P= (9)

The parameter l represents the length of the divertor leg. We assume that l is much greater
than the thickness ∆ of the scrape-off layer. This is a “long-leg” approximation, which
justifies the assumption that the magnetic field can be considered as uniform, at least not
very far from the divertor plate.

III. PERTURBATIONS IN THE BULK PLASMA

The physical mechanism of the instability at a negligible plasma beta can be
addressed in the model of moving flux tubes. If a flux tube, with the plasma occupying it, is
displaced in the radial direction, its potential with respect to the conducting plate remains the
same as before displacement (because this potential is determined by Te, which is convected
together with the flux tube). On the other hand, the ambient plasma, which has a different
temperature, has a different potential. Therefore, a cross-B electric field emerges. A more
detailed analysis shows that the E×B drift is phased in such a way that it leads to the
instability.

As we have mentioned in the Introduction, the typical growth rate is quite high, much
higher than the inverse transit time of the plasma from the X-point to the divertor  plate. One
may therefore expect that at a finite (albeit small) beta, the growth rate would exceed the
inverse Alfven transit time. In such a case, the perturbation loses its flute nature and
becomes a shear-Alfven mode instead. A localized unstable mode can be formed near the
divertor  plate if the condition (1) holds.

We seek perturbations with temporal dependence ~ exp (-iωt). We assume that the
radial length-scale of perturbations is small compared to the thickness ∆. This allows use of
an eikonal approximation in the x direction and seeking x-dependence in the form of
exp(ikxx). The “toroidal” direction (z) is an ignorable coordinate; hence the dependence on
it can be taken as exp(ikzz). There is no dependence of the plasma parameters on the
coordinate y, either, so, the y-dependence can be seeked in the form exp(iKyy), where Ky is
some constant, which is complex for the localized modes. It is convenient to present Ky  in
the form: Ky=q+ky ,with  ky  satisfying the equation k k B By z z y= − /  (which means that  vector
k is perpendicular to the magnetic field). With Eq. (3) taken into account, the condition
k k B By z z y= − /  can be written as

B k B kp y T z= (10)

In other words, we are seeking a solution of the form:
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exp( ) exp( )exp( )i iqy iK r k r⋅ ≡ ⋅ (11)
with

K k K q k K kx x y y z z= = + =, , (12)

and the vector k satisfying condition (10). The convenience of this representation is in that
the second multiplier in the r.h.s. of Eq. (11) does not vary along the field line and describes
a pure flute perturbation, whereas the first multiplier describes a slow variation of
perturbations along the field line.  One obviously has:

B K r K r⋅ ∇ ⋅ = − ⋅[exp( )] exp( )i iqB ip (13)
For the further analysis, it is convenient to introduce the displacement vector  ξξξξ    

which is defined by the equation:

d

dt

d

dt
i

ξξ
= ≡ − + ⋅ ∇δ ωv v0,  , (14)

where δv is the velocity perturbation and v0 is the unperturbed velocity, which has
components perpendicular to the magnetic field (Eq. (5))  and  parallel to the magnetic field
(the parallel flow velocity u).  For perturbations of the form (11), one has:

d

dt
i i iq

B uB

BD
D T P= − + ⋅ +

+
ω k v

v
(15)

According to Eq. (6),  one can neglect the term vDBT  compared to uBP in Eq. (15).
The qualitative picture presented in the introduction and at the beginning of this

section shows that the perturbation varies along the field line on the scale vA/ω. In other
words, q in Eq. (15) can be estimated  as (ω/vA)(B/BP) . Therefore,  the term proportional to
u in Eq. (15) contains a small parameter (u/vA)~(β)1/2 <<1 compared to the first term in the
right hand side of Eq. (15). Therefore, we conclude that, to a high accuracy (the parameter β
for the tokamak divertors lies usually between 3⋅10-5 and 10-3),

δv = −iΩξξ  (16)
with

Ω≡ − ⋅ω k vD (17)
The linearized momentum equation, the line-tying equation, and the Biot-Savars’ law

can then be written as:

− = −∇ +
×

Ω2m n p
ci ξξ δ

δj B
 (18)

δB B= ∇ × ×[ ]ξξ (19)

∇ × =δ
π
δB j

4
c

(20)

By noting that the displacement ξξξξ    in the Alfven wave is perpendicular to both the
wave  vector and the unperturbed magnetic field, one obtains from Eq. (19) that

δB = iB qP ξξ (19’)

Plugging this result into Eq. (20) and taking the scalar product of Eq. (18) with the vector
K B× , one finds:
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q
B

BA P

= ±
Ω
v

(21)

In Eq. (21), in order to avoid the divergence of the solution at large y, one has to choose the
positive sign for the unstable mode (Imω=ImΩ>0) and the negative sign for the stable mode
(Imω=ImΩ<0). In the following derivation we will be concerned with the unstable mode.

One sees that the e-folding length (in y) of the perturbation is (vA/ImΩ)(ΒP/Β) and,
in order to have the perturbation damped before it reaches the X point, the following
condition has to be satisfied: (vA/ImΩ)(ΒP/Β)<l, where l is defined by Eq. (9). Using Eq.
(9), one can also rewrite this condition as:

ImΩL

Av
>1 (22)

This condition coincides with Eq. (1) introduced on the basis of qualitative considerations.
The pressure perturbation for incompressible modes (which includes the Alfven

mode) is determined solely by the plasma convection:
δ ξp n Tx e= − ′ (23)

Using this expression and Eq. (10), it is straightforward to obtain from the set (17)-(19)
that, for perturbations of the form exp( )iK r⋅ ,

δ
π

ξ
π

ξj
B B

|| = − +








 = −

c B

k
k k

B

B B

c B k

k B
T

A y
x y

T
x

T

A y
x

Ω Ω
4 4

2 2
2

2

2

v v
(24)

δ ξj k k B⊥ = − +
′

×










c B

B k
m n

inT k

B
T

y
i

e y

T
x

Ω
Ω

Ω2 (25)

Wherever possible, we have used the smallness of the parameter q/ky.
We can now find the normal component of the current in terms

of the plasma displacement on the plasma side of the sheath,

n j n j n j⋅ = ⋅ + ⋅ = +
′

−




















⊥δ δ δ ξ

π
α α α|| cos sin cosx

A y

P T T
y

T
x

ck

k

B B

B
i
cnB T

B
k

B

B
k

2

2

2

24
Ω

v
(26)

We have neglected the contribution of the first term in the brackets in Eq. (25) because it
contains a small parameter  ~Ω /k Av  compared to the contribution from n⋅⋅⋅⋅δδδδj||.

IV. THE SHEATH BOUNDARY CONDITION

IV. A Perturbations near the divertor plate: curl-free electric field

The divertor  plate is a perfect conductor, so that the tangential component of the
electric field at that surface is zero.  At a distance of a few ion gyro-radii, where we impose
the boundary conditions, the electric field can be considered as curl-free. Indeed, the vortex
component of the electric field that can be evaluated from equation ∇ × = −δ ωδE Bvortex c/ , is
of order of δ ω δ ω ξE ck B B ckvortex x A~ ( / ) ~ /Ω v  (see Eqs. (19’) and (21)) whereas the
potential component is δ ξ δE B c Epot x vortex~ /Ω >>  (see Eq. (29) below). The presence of
the potential electric field at the plasma side of the sheath allows the flux tube to slide over
the surface, despite the fact that the magnetic field perturbation is almost zero. This is how
the line-tying condition breaks down in the presence of sheaths – an observation made by
Kunkel and Guillory in 1965.

What we basically say, is that the magnetic field perturbation near the wall is
negligible; therefore, there is no paradox associated with the condition that the normal
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component of the magnetic field cannot be perturbed. In our case even the total perturbation
is negligibly small. The magnetic field perturbations play a role only at the scale ~vA/Ω.

Based on these considerations,  we can present δE in the vicinity of the plate as
E = −∇δϕ (27)

This means that,  near the divertor  plate,

ξξ = ×
c

B

δϕ
Ω 2 K B (28)

and, in particular,

ξ
δϕ

x
y

T

ck

B
=

Ω
(29)

Here we have taken into account Eq. (10).

IV. B Relating the current perturbation and the plasma displacement

In this section we will find the normal projection of the current perturbation on the
divertor plate, based on the current-voltage characteristic derived in the earlier papers [20,
21].  To be more precise, we have to find the current on the plasma side of the sheath, as the
currents on the plate and on the plasma side of the sheath, generally speaking, are different
[20].

The required current-voltage characteristic, prior to the linearization, has the form
[20]:

n j⋅ = − − −








+ +en

B

B
u

e

T
en enp

Te
e

Dx Dycos exp( ) sin cosα
ϕ

α αv v v (30)

where vD is the velocity of the E×B drift (5).  The plate is assumed to be conducting and at
the zero potential.  In the unperturbed state, the current to the wall is assumed to be zero:

n j0⋅ = 0. (31)

The quantities that experience perturbation are the electron temperature, the drift velocity
and, generally speaking, the parallel flow velocity and the tangential component of the
magnetic field. We will, however, ignore the latter two because their contribution is small.
Perturbing Eq. (30) and taking into account these comments, one readily finds:

n j⋅ = − −








 +( ) −










+ +

δ α
δ δϕ

δ α δ α

en
B

B
u

B

B

T

T

e

T

en en

p

p
Dy

e

e e

Dx Dy

cos .

sin cos

v

v v

0 0 5Λ
(32)

The second term in the round brackets can be ignored because of inequality (6).
Using also Eq. (29) and equation δ ξT Te x e= − ′,  one can express the r.h.s. of Eq. (32) in
terms of the x-component of the plasma displacement near the surface of the divertor  plate: 

n j⋅ = − +( ) ′
+












+ −






















δ ξ α α αen u

B

B

T

T

e B

cT k
i
k

k k
B

Bx
p e

e

T

e y y
y x

Tcos . sin cosΛ
Ω Ω

0 5
2

2 (33)

Eq. (33) coincides, up to notation, with the boundary condition of Ref. [21].
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V. DISPERSION RELATION AND ITS ANALYSIS

V.A General dispersion relation

Equating two expressions for the normal component of the current – the one
obtained from the solution for the mode in the bulk plasma (Eq. (26)), and the other
obtained from the sheath boundary condition (Eq. (33)), one arrives at the following
dispersion relation:

Ω

Λ

v v

v

A

e

i i

e

P T i

y x T

e e

e P T

y y x T y

i i T

k

u
i

B

B B k

k

k

k

k

B

B

T

T
i

B

B B

k

k

k

k

k

k

B

B

k

k

u B

B

1
2

2
0

2 2

2 2

2

3

2

2

2 2

+ − − +






















=

′
− +








 − +

β

ρ

β

ρ
α

β
α

ρ

tan

tan ( .55)












(34)

where

v
v

i
e

i
i

i

Ci
Ci

i
e

eT

m

eB

m c

nT

B
= = = =

2 8
2; ; ;ρ

ω
ω β

π
, (35)

and mi  is the ion mass. We see that the instability can be present only for the non-zero
temperature gradient and disappears if ′ =Te 0 (when Ω becomes zero).

As the mode is assumed to be localized near the divertor plate, the distance L to the
X point does not enter Eq. (34).  However, as the very possibility of the existence of the
localized mode requires fulfillment of the condition (22), we sometimes present Ω in the
units of vA/L. The mode exists as a localized mode if Im ΩL/vA>1  An expression for the
growth rate that can be easily obtained from Eq. (34) is:

       Im

tan ( )
Ω

Λ
L T L

T

B

B B

k k k
B

B
k

B

B

u

k
u B

B B
k

A

e e

e P T

y i y i x i
T

i
T

i
e

i
e

i
e

P T
y

v

v

v

=
′

− +








 − −










+








 +









 −

β
ρ ρ α ρ ρ β

ρ
β

β

3

2

2

2
2 2

2

2

2 2

2
2 22

2 1

2
ρρ α ρi x i

Tk
B

B
tan +











2

2

2
     (36)

V.B An instability at a significant tilt

At a substantial tilt of the divertor plate, |tanα|>1, the terms of the form k B Bx i Tρ 2 2/ in
Eq. (36) can be neglected. Then, as the denominator in (36) contains a higher (the fourth)
power of k compared to the numerator,  the instability has the highest growth rate if we
make kx much less than ky, so that k k B By T

2 2 2 2= /  (see Eq. (10)). This is the ordering used
also in the earlier papers [5, 10]. (Later on, in Sec. V.E, we return to this issue again, for a
more detailed analysis: the kx  terms are important in the zero-tilt case.)

In the approximation ky>kx, one obtains from (34) the following simplified
dispersion relation:
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In order to establish connection of this result with the earlier studies of the effect of
the tilt [5,10], we rewrite this equation using the same notation as in these earlier papers:

Ω ΩΩ ΩΩ Γ ΓvA
T TB

B
L i

B

B
L L i L+ + + + =

2

2 1 2 1
2

2
2 0,      (38)

where

Ω1

2

2=
ωCi

y e

Mu

Lk T
;  Ω2 =

ω
αCi

yk l
tan ;  Γ Λ1

2 1
2

= +










′ωCi

y

e

e

u

k L

T

T
; Γ2

2 =
′T

Ml
e tanα     (39)

and l is introduced by Eq. (9).
By tracing the origin of various terms in Eq. (39) to the basic equations of Sections

III and V, one can identify the meaning of these terms: The first term in the l.h.s. represents
the inertia of the plasma occupying the wiggling flux tube; the second term describes the
sheath resistance as discussed by Kunkel and Guillory [14]; the third term describes an
effect of the tilt on the sheath CVC as first described in Ref. [5]; the fourth term first
introduced by Kadomtsev [1] describes reaction of the sheath potential on the change of the
temperature caused by the motion of the foot point of the flux tube over the surface; the fifth
term describes the role of the pdV work performed by the advancing (recessing) boundary
in the frame attached to the flux tube foot-point [21].  Note that the connection length L
actually drops from Eq. (38), as the characteristic frequencies introduced by Eq. (39) also
depend on L. [There is a typo in the expression for Γ2 in Ref. 10, where L instead of l is
written in the denominator; this typo does not, however, propagate to the further equations;
note also that in Ref. [10] the definition of α differs from the definition of our present paper
by π/2.]

The main difference from the dispersion relation of Ref. [5] is in the form of the
very first (inertial) term, which was equal to Ω2L in the case of a zero-beta plasma limited
from both sides, with L being the distance between two plates limiting the plasma. The other
difference is that we now do not make an assumption that BP is small compared to BT,
thereby including the parameter domain characteristic of spherical tokamaks. This is
reflected by the presence of the factor (BT/B) in Eq. (38).

An expression for the instability growth rate can be easily obtained from Eq. (37):

Im
tan
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Λ
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e e
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2 , (40)

Before switching to its general analysis, we present some results for the case of
some “generic” divertor  of a mid-size tokamak, where

B

B

B

B

L T

T

u

P T

e

e
e

i

= ≈
′

= = =−5 1 300 10 1 53, ,
| |

, , .β
v

(41)

Fig. 2 shows the dependence of the growth rate vs. the wave number, for several values of
the tilt, for Λ=2. As we see, two modes of oscillations can be distinguished: the short-
wavelength  mode, and a long-wavelength mode. The transition between the two modes
occurs at the point where the growth rate is zero, i.e., at
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 (42)

For a given sign of the temperature gradient, the stability or instability of each branch
depends on the sign of the tilt. In a common flux region, where ′Te <0, the short-wavelength
mode is unstable at a positive tilt of the plate, α>0, whereas the long-wavelength  mode is
unstable at a negative tilt, α<0. In the private flux region, the situation is opposite.

V.C The short-wavelength  mode

When considering the short-wavelength  mode,  one should remember that, because
of the approximations made in our general equations, we cannot increase k⊥ beyond the
inverse ion gyro-radius. The maximum growth rate is reached at the boundary of the
applicability domain. For not very strong tilts, this growth rate can be approximated as

max Im tan
( )Ω s

A

e e

e P

L T L

T

B

Bv









 = −

′ β
α

2
(43)

where “s” stands for “short”. This mode will be localized below the X point if the
condition (22) holds, i.e., if

 β
αe

e

e

PT

T L

B

B
>

′
2

tan
(44)

For the set of parameters as in Eq. (41), and tanα=5, the localized mode can exist at
βe>2.5⋅10-4.

For the short wavelength modes it may be necessary to use a more general
dispersion relation for Alfven waves,  Ω2 2 2 2 2 21= + ⊥vA pek k c|| /( / )ω  [4], instead of simply

Ω2 2 2= vA k||  , as we did in this paper.  The applicability condition for our approach is that
ω pek c2 2 2

⊥ / <1. For the shortest wavelengths considered above, k i⊥ ~ ρ ,  this condition
reduces to βe e im m> / . For the critical wave number (42), i.e., at the transition from short to
long wavelength  mode,  the condition ω pek c2 2 2

⊥ / <1 reduces to

βe
e

i i

m

m

u
>






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 −
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



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2 2

2 1
v

( )Λ (45)

and holds by a substantial margin in all realistic situations.

V.D The long-wavelength  mode

To study this mode, it is convenient to present the frequency and the wave number in
the normalized form,

Ω ΩΩ= =˜ , ˜
0 0k kk (47)

with the normalization parameters being

Ω0
3 4=

′
v

2vA e
e

e

T

i

T

T

B

B

u
β / (48)
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and

k
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uT e

i i
0

1 4 2
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ρ
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v
 (49)

When expressed in this way, Eq. (40) acquires a universal form, where the result depends of
only one constant, C:

Im ˜ ( ) ( , ˜); ( , ˜)

˜ ˜

˜ ˜
Ω
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(50)

where

C
B

B B uT P

i=
2 1 4

2
β

α
/

tan
v

(51)

The dependence of the growth rate on various external parameters  is encapsulated
in a single dimensionless parameter  C (the Λ does not vary much; still, the scan over Λ is
presented at the end of this section). We assume that the sign of the temperature gradient is
positive, so that an instability is present at positive C (positive tanα).

We evaluate now the maximum growth rate of the long-wavelength  mode. For a
given k and any given set of the system parameters, the r.h.s. of Eq. (49) has a maximum at
some value of tanα, in other words, at some C. With this value of C chosen, the dependence
(49) on k also has a maximum. Finding this maximum would yield a maximum possible
growth rate as a function of tanα and k. This will be just a number, 

  
µ ≡ max ( , ˜)

, ˙̇˙C k

g C k{  .The

corresponding analysis is presented in Appendix 1. The resulting plot of the optimum
values of Copt and k̃opt , as well as µ vs. the parameter Λ is shown on Fig. 3.  For Λ =3, one

has: C kopt opt= = =2 1 0 47 0 47. , ˜ . , .µ . This means that the maximum growth rate for Λ=3 is
(see Eq. (47)):

Im
. /ΩL B

B

T

T
L

A
e

T e

ev
≈

′
0 4 3 4β (51)

(we assumed u=1.5vi). It corresponds to the following wave  number and tan α:

( ) .
/

k
B

Bi opt
T eρ
β

≈ 0 8
1 4

, (tan ) . /α
βopt

T p

e

B B

B
≈ 3 8 2 1 4 . (52)

According to Eq. (22), this mode will exist as a localized mode if the following condition
holds:

 βe
e

e T

T

T L

B

B
>

′









3 4

4 3

.
/

(53)

For ′T L Te e/ =300, and BP/B=0.2, βe  must exceed  0.16%. For this value of beta, one has
( )k i optρ ≈0.16, and (tanα)opt≈3.8 (α≈75o).

V.E An instability at a zero tilt

When considering the case of a zero radial tilt (α=0), one has to retain the terms
containing kx in Eq. (34). For α=0, this equation reads as
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The growth rate is:
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In order to be localized, this mode requires a relatively high beta. What, however, is
interesting with this mode, is that it exists (provided the beta is high enough) at any sign of
the temperature gradient: the unstable perturbation is selected by the proper choice of the
sign of the product kxky.

For any realistic values of beta (~10-3-10-4) and of the B/BP ratio (<20), the last term
in the denominator of Eq. (55) can be neglected, thereby considerably simplifying the
analysis. [Note that in the case of a substantial tilt, tanα>1, the analogous term in Eq. (40)
could not be dropped, because it contained a large additional factor tan2α.] With this term
dropped, the maximum growth rate at a given k corresponds to equal values of kx and ky, i.e.,
to k k kx y= = / 2  and one has for this maximum:
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The plot of the dimensionless function h for various values of beta is shown on Fig.
4. One sees that , as before, there exist a short-wavelength  and a long-wavelength  branches,
with the transition from one to another branch occurring at

k
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(58)

What is, however, different, is that both branches are now unstable simultaneously, at any
sign of ′Te ; the sign of ′Te  determines the mutual sign of kx and ky of the unstable mode.

The maximum growth rate for the short-wavelength mode is reached at the
applicability limit, kρi=1, where h is close to 1. The maximum growth rate of the long-
wavelength mode is reached at

k
uopt

i
e

i

( )ρ
β

=
−
+

2 2 1
2 3v
Λ
Λ

, (59)

where
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h
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≈
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2Λ
Λ

. (60)

For Λ=3, on has |h|max≈0.45. The absence of an additional large factor tanα in the
expression for the growth rate (compare Eqs. (40) and (55)) makes the growth rate in the
case of a zero tilt smaller than in the case of a large tilt. Accordingly, in order for localized
modes to be present at a zero tilt, the beta value must be higher than in the case of a strong
tilt.

VI  RELATION TO LINEAR PLASMAS

The instability that we have discussed in the previous section can be studied in linear
devices, where one would use a shaped end electrode of the type shown on Fig. 5, where
this electrode is simply a cone. In the eikonal approximation, one can consider flux tubes
leaning on various elements of the end electrode and, for small-scale perturbations, consider
the corresponding segment of the electrode as a flat surface whose normal is tilted at some
angle α with respect to the axis. This brings us back to the geometry of Fig.1, with the only
difference that there will be no toroidal magnetic field present in the linear device (we do not
consider a situation where a large axial current is present).  

To obtain a dispersion relation that describes this modified situation, it is convenient
to replace ky in the dispersion relation (34) by kz, as given by Eq. (10). After that, one should
take a limit BT→0, BP→B which leads to the appropriate dispersion relation:
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The coordinate axes in this case should be identified as follows (Fig. 4): x is directed
radially, y is directed axially, and z is directed azimuthally.  

At α=0 (flat end surface, normal intersection) the Ω is purely real. This is in
agreement with the conclusion made in Ref. [2] regarding the absence of localized modes in
the case of the normal intersection. On the other hand, as Eq. (61) shows, at α≠0 the
localized modes become, in principle, possible.

At a given k, it is beneficial to increase the drive terms (the terms containing tanα) by
increasing kz (and decreasing kx). Accordingly, we make the further analysis for the case
kz>>kx. In this case, the growth rate can be presented as
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For small-enough betas, βe<10-2,  and at realistic values of tanα<10, one can neglect the last
term in the denominator, arriving at the expression

Im
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ΩL T L
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e

e
ev

= −
′

×
2

β α (63)

where the dimensionless function h is determined by Eq. (57). The fastest-growing mode
corresponds to the maximum possible wave-number, kρi~1:
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If the temperature decreases in the outward direction, i.e. ′Te <0, this short wavelength  mode
is unstable for the positive tilt (as on Fig. 4a). At wave-vectors smaller than the critical wave
vector (58) this mode becomes stable, very much like in the case discussed in Sec. VI.B. At
these smaller wave-numbers the instability is present for the negative tilt, for which the cone
apex is oriented away from the plasma (Fig. 4b). The maximum growth rate of the long-
avelength mode is reached at the wave vector (59) and is equal to
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We remind that, for the long-wavelength mode to be unstable, the tilt of the absorbing
surface must be negative,  as shown in Fig. 4b. Taking Λ=3, one sees that  the growth rate
of long-wavelength modes in a linear device is comparable to that of the short-wavelength
modes.

Consider as an example the possibility of observing these modes at a LAPD device
[18].  Assuming that the plasma density is 1012 cm-3, the electron temperature is 10 eV,  and
the axial magnetic field is 600 G, one finds that the electron beta is ~ 10-3. Then, for the
radial length-scale (Eq. (2)) ∆~5 cm, and the plasma length of 18 m, one finds that

Im
~ tan ~ . tan

Ω
∆

L L

A
ev 2

0 18β α α . (66)

We do not distinguish here between the long- and short-wavelength modes, as their
maximum growth rates are close to each other. Equation (66) shows that the localized mode
can be observed if tanα>5, or equivalently, that α> 80o. At higher electron betas, the required
tilt becomes smaller. Therefore, there is a chance that the modes predicted in this study can
be observed at LAPD.

VII  SIGNATURES  OF  THE  INSTABILITY

In this section, we discuss characteristic signatures of the instability which  may help
to identify it in the experiments. The most obvious signature is the decrease of the amplitude
of fluctuations with the distance from the absorbing plate. The higher beta, the faster is the
decrease (provided of course that beta is higher than the critical value determined from the
condition (22)).  

The second prominent feature of the instability is its dependence on the mutual
orientation of the tilt of the divertor plate and the temperature gradient.  Assuming that the
maximum of the electron temperature is situated at the separatrix, we predict that in a
common flux region the short-wavelength  instability is present for a “positive” tilt, and the
long-wavelength instability is present at the “negative” tilt, whereas in the private flux
region the situation is the opposite.  This prediction can also be tested at the linear device by
switching from the configuration of Fig. 4a to that of Fig. 4b.

The third feature is related to the direction and the magnitude of the phase velocity
of oscillations. We note that, according to Eq. (17), the real part of the frequency is equal to

Re Reω = + ⋅Ω k vD (67)
We discuss this relationship for the case of a substantial tilt considered in Sec. VI.B. In this
case Eq. (37) yields the following expression for ReΩ:
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Recalling Eqs. (4) and (5) defining the drift velocity, one can see that the term ReΩ
universally corresponds to a contribution to phase velocity opposite to vD. One can check,
however, that for the short-wavelength mode with kρi=1, this contribution is small. In other
words, the short-wavelength modes are advected with the E×B drift velocity. For the long-
wavelength modes of a maximum growth rate (i.e., for the mode defined by conditions
(52)), the contribution to the phase velocity coming from the term ReΩ in (67) is
comparable to vD. Depending on the specific parameters of the system, the resulting phase
velocity may become considerably smaller than vD or can even reverse sign.

The characteristic frequency of the perturbations, f=ω/2π,  is  ~vi/2π∆ for the short-
wavelength modes with kρi~1, and viβe

1 4/ /2π∆ for the long-wavelelngth perturbations near
the maximum of their growth  rate. For the hydrogen plasma with Te=30 eV, βe=3⋅10-4, and
∆=1 cm, the frequency f of the short-wavelength mode is ~ 1 MHz, whereas the frequency
of the long-wavelength  mode is ~ 100 kHz.  The characteristic wave number is              
~(0.5-1)ρi

−1for the short-wavelength mode and ~ (0.1-0.15)ρi
−1 for the long-wavelength

mode.
There is a correlation between the perturbation of the current density at the divertor

plate and the temperature perturbation. Both quantities can be measured by flush-mounted
probes. For the strong-enough tilt, one has, by the order of magnitude (see Eq. (33)):

δ ξ δj

enu u

T

T u
n x e

e

~ ~
Ω Ω∆

(69)

There is a subtlety here: strictly speaking, we cannot use expression (33) for the
perturbation of the normal component of the current, because this expression pertains to the
current at the plasma side of the sheath, whereas the flush-mounted probe measures the
current at the wall side of the sheath; the two expressions are, generally speaking, different
[20].  Using a convenient representations [22] for the two current densities (Eqs. (20) and
(21) of Ref. 22), one sees that, to get the perturbation of the current at the wall side, one has
to replace the factor (Λ+0.5) by the factor (Λ-0.5) in Eq. (33). This will not change an
order-of-magnitude estimate (69).

It is also worthwhile to mention that, because of the tilt, the normal component of the
unperturbed ion current density, jn

i
0

( ), is much smaller than enu, namely
j enu B Bn

i
P0

( ) ( / )cos= α . If one uses jn
i
0

( ) as a normalization factor, one gets, instead of (69):
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(71)

The magnetic field perturbation, although small, may be measurable. It can be
evaluated from Eq. (19’) which yields δ ξB B x A~ /Ω v( ) . One can relate it to the
temperature perturbation:

δ δB
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TA

e

e

~
Ω∆
v

(72)

Vector of the magnetic field perturbation is perpendicular to unperturbed magnetic field.
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VIII  DISCUSSION

We have presented an analysis of an instability localized near the divertor  plate. It is
driven by an interplay between the sheath boundary conditions and bulk long-parallel
wavelength Alfven wave. The existence of the modes that would exponentially decay before
reaching the X point requires finite plasma beta in the scrape-off layer and favors divertors
with long divertor legs. The modes then become completely decoupled from any processes
occurring near the X point and beyond it.  The modes are present even in the absence of the
curvature effects and have high growth-rates  exceeding the inverse Alfven transit time over
the divertor leg. The instability increases in the presence of a significant “radial” tilt of the
divertor plate.

We have identified two modes, the short-wavelength mode and the long-wavelength
modes. One of them is unstable for the positive tilt, whereas the other is unstable at the
negative tilt (the sign of the tilt is defined at the beginning of Sec. II). Therefore, if one of
the modes is dominant in the common flux region, the other is dominant in the private flux
region, and vise versa.

If the modes reach high-enough level, they may lead to a broadening of the scrape-
off layer within the divertor leg, without having any direct effect on the plasma confinement
in the SOL above the X point and, therefore, not causing any degradation in the confinement
of the bulk plasma. This part of the problem needs, however, a nonlinear analysis which we
leave for the future work. Also for the future work is left a more general study of the mode,
where it would be only partly “detached” from the X point, so that one would have to deal
with boundary conditions on both sides of the divertor leg.

The physics of these modes can be studied in linear devices, by using shaped end
plates. It may be possible to detect them at the existing LAPD device.
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Appendix 1.

Evaluating the maximum of the function g C k( , ˜)

To find µ≡max
˜,k C

g C k( , ˜), we solve equations ∂ ∂ ∂ ∂g C g k/ , / ˜= =0 0. These equations can be

presented as:

C
k

k
k k=

+
+ + − − =

1 5
2

1
2

0
2

4 2
˜

˜ ; ˜ ˜ ( ) ( )Λ Λ

Solving these equations for k̃  and C, one finds their values corresponding to the maximum
of the function g:

C kopt opt=
+ + − +

+ + − +
=

+ + − +( . )( . ) ( . )

( . )( . ) ( . )
; ˜ ( . )( . ) ( . )Λ Λ Λ

Λ Λ Λ

Λ Λ Λ0 5 8 5 0 5

2 0 5 8 5 2 5

0 5 8 5 2 5
2

2

The maximum value of the function g is

µ≡max
˜,k C

g k C( ˜, )
. ( . )( . ) ( . )( . ) ( . )

( . )( . ) ( . )
=

+ − + +( ) + + − +

+ + − +( )
3 1 5 0 5 8 5 0 5 8 5 0 5

2 2 0 5 8 5 0 5

Λ Λ Λ Λ Λ Λ

Λ Λ Λ

The plot of all these quantities vs. the parameter Λ is presented on Fig. 3.
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Figure captions

Fig. 1. The geometry of the problem.

Fig. 2. The normalized growth rate. Parameters of the system are specified by Eq. (41). The
numbers by the curves are the corresponding values of tanα. The plot corresponds to a
positive tilt. One sees that short-wavelength modes become localized (in the sense of
condition (22)) at tanα>4. For the negative tilt, the picture turns “upside down,” and the
long-wavelength mode becomes unstable. This mode is marginally localized for the set of
parameters  (41). It would be fully localized for somewhat longer divertor legs.

Fig. 3. Dependence of various parameters of the long-wavelength instability on the
logarithmic factor Λ (see Appendix 1 for the derivation).

Fig. 4. The dependence of the dimensionless function h (Eq. (57)) on kρi for various values
of βe; we assume that Λ=2.5, u/vTe=1.5.

Fig. 5. The possible geometry of a linear experiment: a) the conical end surface corresponds
to a positive tilt if the electron temperature decreases in the outward direction ′Te <0; b) the
conical surface corresponding to the negative tilt for the same sign of ′Te .
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