
UCRL-JRNL-209688

Overlapping Schwarz for Nonlinear Problems. An
Element Agglomeration Nonlinear Additive
Schwarz Preconditioned Newton Method for
Unstructured Finite Element Problems

X. C. Cai, L. Marcinkowski, P. S. Vassilevski

February 14, 2005

Application of Mathematics



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Overlapping Schwarz for Nonlinear Problems. An Element

Agglomeration Nonlinear Additive Schwarz Preconditioned

Newton Method for Unstructured Finite Element Problems

Xiao-Chuan Cai1, Leszek Marcinkowski2, and Panayot S. Vassilevski3 ∗

February 10, 2005

1Department of Computer Science

University of Colorado at Boulder,

Boulder, CO 80309, USA.

e-mail:cai@cs.colorado.edu

2Department of Mathematics, Warsaw University,

Banacha 2, 02-097 Warsaw, Poland.

e-mail:lmarcin@mimuw.edu.pl

3Center for Applied Scientific Computing,

UC Lawrence Livermore National Laboratory,

P.O. Box 808, L-560, Livermore, CA 94551, USA.

e-mail:vassilevski1@llnl.gov

Abstract

This paper extends previous results on nonlinear Schwarz preconditioning ([4]) to unstruc-
tured finite element elliptic problems exploiting now nonlocal (but small) subspaces. The non-
local finite element subspaces are associated with subdomains obtained from a non-overlapping
element partitioning of the original set of elements and are coarse outside the prescribed ele-
ment subdomain. The coarsening is based on a modification of the agglomeration based AMGe
method proposed in [8]. Then, the algebraic construction from [9] of the corresponding non–
linear finite element subproblems is applied to generate the subspace based nonlinear precondi-
tioner. The overall nonlinearly preconditioned problem is solved by an inexact Newton method.
Numerical illustration is also provided.

Keywords: algebraic multigrid, agglomeration, non–linear elliptic problems, nonlinear precondi-
tioning, Newton method, finite elements

AMS Classification 65F10, 65N20, 65N30

1 Introduction

In this paper we introduce a parallel iterative method for solving system of nonlinear algebraic
equations arising in the discretization of nonlinear elliptic partial differential equations using finite
element methods. We follow the general framework of nonlinear additive Schwarz preconditioned in-
exact Newton methods, as outlined in [4]. In the classical Schwarz type algorithms, the subproblems
are “local” problems in the sense that they only cover a small portion of the computational domain.
Such an approach is good for distributed parallel computing since the localized subproblems can be
solved independently on different processors, however, due to the lack of communication among the

∗This work was performed under the auspices of the U.S. Department of Energy by the University of California
Lawrence Livermore National Laboratory: contract/grant number: W-7405-Eng-48. The contribution of the second
author was also partially supported by Polish Scientific Grant 2/P03A/005/24.

1



subproblems, the convergence degenerates as the number of processors grows without using a coarse
problem that connects all the subproblems. A new approach to the linear Schwarz algorithm was
introduced in [1], in which all “local” subproblems are made “global”, in the sense that the mesh for
the subproblem is dense (or fine) in only a small subdomain and coarse outside the small subdomain,
and the subproblem mesh effectively covers the whole domain. In this paper, we study a parallel and
optimal method for nonlinear problems by combining the ideas of agglomeration, nonlinear Schwarz,
and preconditioned Newton methods. Under certain assumption, we prove the optimal convergence
of the proposed algorithms, and some numerical experiments are presented to support the theory.

To be specific, we consider a model second order elliptic problem,

−∇ · (a(u)∇u) + g(u)u = f, (1)

defined on a polygonal domain Ω with Dirichlet boundary conditions, u = 0 on ∂Ω. The coefficient
functions a = a(ξ) > 0, g = g(ξ) ≥ 0, for any ξ ∈ R, and the right–hand side f = f(x) are
given. In what follows, we assume that they can be analytically evaluated for any value of their
argument. Otherwise, in practice, one has to utilize interpolation. Let Th be a given triangulation
of Ω of triangular elements and let V = Vh be a conforming finite element space of piecewise linear
continuous functions associated with Th and vanishing on ∂Ω. Also, for any element T ∈ Th, we
define the averaged coefficient

aT (u) = a

(

1

3

∑

xi∈verticesofT

u(xi)

)

.

Similarly, let

gT (u) = g

(

1

3

∑

xi∈verticesofT

u(xi)

)

.

A general element–based procedure for averaging functions and their derivatives was outlined in [9],
see also Section 3 of the present paper.

The finite element discretization of (1) under consideration reads: Find v = uh ∈ V such that,

a(v, w) ≡
∑

T∈Th



aT (v)

∫

T

∇v · ∇w dx+ gT (v)

∫

T

vwdx



 = (f, w), ∀ w ∈ V.

It is clear that the discrete nonlinear problem takes the form,

F (u∗)u∗ = f , (2)

where u∗ denotes the exact solution of the nonlinear system, and F (v) is a linear operator (matrix)
assembled from the local element matrices

aT (v)AT + gT (v)MT .

Here AT corresponds to the element matrices coming from the Laplace operator, and MT stands for
the element mass matrix; i.e.,

AT =







∫

T

∇ϕj · ∇ϕi dx







and MT =







∫

T

ϕjϕi dx







, (3)

where {ϕi} span the fine grid finite element space. Hence the element matrices corresponding to
F (v), for any given v ∈ V , are the linear combinations aT (v)AT + gT (v)MT .

The objective of the present paper is based on an algebraic construction of a coarser version of
the original fine–grid nonlinear problem discretized on generally unstructured grids (as described in

2



[9]) to study the behavior of the nonlinearly preconditioned inexact Newton method proposed in [4].
In addition we provide some model analysis of the method that applies to a simplified version of the
coarsened away meshes (similarly to the case of linear problems studied in [2]).

For a given subdomain G, which is a union of elements T from Th, we define a set of agglomerated
elements E, where E = T for all T outside G and E = {T}T⊂G. Then we run the agglomeration
based algorithm from [8] labeling all faces in G as unacceptable for agglomeration. We run the
agglomeration algorithm until the number of final agglomerated elements is acceptably small. Thus,
we end up with a sequence of coarser triangulations, and at every coarsening level the original fine–
grid elements in G are still present (see Fig. 2, p. 18, for an illustration). Then one is able to define
the non–local coarse nonlinear problems.

2 Generating agglomerated meshes that are coarsened away

from a given mesh domain

Given a finite element mesh (triangulation) {T} and a domain G which is union of finite elements
one can exploit certain topological relations of the mesh to create agglomerated elements {E}, where
each E is a list of fine–grid elements and each fine–grid element belongs to exactly one agglomerate
E. More specifically, we assume that one has access to the relations “element face”, the adjoint one
“face element” and the “face face” connectivity (on the fine mesh). These relations “obj1 obj2”
can be viewed as boolean sparse matrices, where the rows correspond to the “obj1” and the columns
to “obj2” and non–zero entries at position (i, j) of the respective table indicate that ith “obj1” is
“related” to the jth entry of “obj2”. For example, if “obj1” stands for “element” and “obj2”
stands for “face’, “related” means that element i has (geometrical) face j, whereas if obj1” stands for
“face” and “obj2” stands for “face’, “related” now means that face i intersects face j. Based on the
three relations (“element face”, “face element” and “face face”) in [8] an element agglomeration
algorithm was proposed. We can easily modify it here in order to have the elements in G stay at all
recursive applications of the agglomeration algorithm.

At step l ≥ 0 of the algorithm we set G0 = G and for l > 0, we define Gl = Gl−1 ∪ {T ∈
Tl−1 is a neighbor of Gl−1}. Label all faces of T ∈ Gl as unacceptable in the following agglomeration
step. That is, every face of the elements T ∈ Tl come with an integer weight w = w(f) which is
initially 0 or −1 if f is unacceptable.

Algorithm 2.1 (Building coarsened away agglomerated elements)

1. global search: find a face f with a maximal weight and put the elements T+ and T− which share
that face on the list of the current agglomerate E; then update the weights of the neighboring
non-eliminated faces g (i.e. for which w(g) > −1) w(g) := w(g) + 1. Here we use the
relation “face face”. Also, if g and f belong to a common element (here we use the relations
“face element” and “element face”) we increase the weight of g once more, that is, we set
w(g) := w(g) + 1 and finally we label f as eliminated (or unacceptable) by setting w(f) = −1.
If all faces have been eliminated (or unacceptable) go to step (3).

2. local search: loop over the faces of all elements already agglomerated in E and find a face f with
maximal weight (> −1); if the weight of that face is less than the weight of the last eliminated
face, or all local faces have weight less than zero, the agglomerate E is completed and we go
to step (1) for a global search. Otherwise, we eliminate f and add the elements which share f
on the list E. Then we perform the weight increase of the neighboring (non-eliminated) faces
g of f as described before. Then we repeat the loop (2) again.

3. final step: label all hanging elements which have not been agglomerated as new agglomerates
(each such agglomerate consists of one fine element).

3



The above agglomeration step can be efficiently implemented using double linked lists. We also note,
that the original elements in G will stay on all levels as (hanging) agglomerated elements since their
faces are labeled as unacceptable to begin with and they are isolated from the rest.

In order to be able to recursively apply the above algorithm one needs to define faces (AEfaces)
of the agglomerated elements (AEs) and build the respective (coarse) relations “AE AEface”,
“AEface AE” and “AEface AEface”. Algorithms for this are found in [8] and [13].

3 The Schwarz method

3.1 The construction of Schwarz subspaces

Let {G} be a partitioning of the original set of elements Th = T0. Each G is a union of elements and
each element T is contained in exactly one G. The partitioning can be carried out for example, by
the graph partitioning software METIS, available at [10]. Then for each G we perform the algorithm
from the preceding section thus ending up with a sequence of nested triangulations Tl (which depend
on G). We assume that we have access to the element matrices AT and MT corresponding to the
Laplacian and identity operator at the fine level (for T ∈ T0), as defined in (3). Based on the
agglomeration AMGe method from [8] one can compute corresponding element matrices AT and
MT for agglomerated elements T ∈ Tl for every coarse level l > 0. The same algorithm selects coarse
degrees of freedom Nl as vertices of the agglomerated elements at every coarsening level and builds
interpolation matrices Pl : V (Nl+1) 7→ V (Nl) which maps the space of coarse vectors to fine grid
vectors. Let ` be the coarsest level produced by the agglomeration Algorithm 2.1 (starting with
the subdomain G). Then we define

PG = P0P1 . . . P`−1

as the resulting interpolation from the coarsest level grid TG ≡ T` to the finest one. We denote the
coarse grid (the set of degrees of freedom– vertices) at level ` by NG and the respective vector space
by VG = V (NG).

Assume now that we are dealing with the model nonlinear operator (1) for a given positive
function a(u) and a non–negative function g(u). A coarse discretization on the subspace VG can be
defined as: Find u := uG ∈ VG such that

∑

T∈TG

(

aT (u)wT
TAT uT + gT (u)wT

TMT uT

)

= wT (P T
G f), for any w ∈ VG. (4)

Here, on each agglomerated element T , we use the following averages:

aT (u) = a





1

number of vertices of T

∑

xi∈{vertices of T}

u(xi)



 ,

and similarly

gT (u) = g





1

number of vertices of T

∑

xi∈{vertices of T}

u(xi)



 .

Throughout the present paper, we use the dual notation u (a vector) and u = u(xi) (a discrete
function). That is, ith entry of u corresponds to the ith coarse degree of freedom – the vertex xi.
Also, vT stands for the restriction of a vector v on T (T as a set of coarse degrees of freedom). In
matrix–vector notation (4) reads:

FG(u)u = P T
G f . (5)

Here, the matrix FG(u) is assembled from the element matrices:

{aT (uT )AT + gT (uT )MT }.

4



3.2 Setting up the nonlinearly preconditioned problem

Having the small dimensional nonlinear problems (4) defined, we are ready to introduce a nonlinearly
preconditioning method, in a similar way to the one in [5], cf. also [4]. In the present context it is
formulated as follows:

0 = F(u) ≡
∑

G

PGgG. (6)

Here, gG solves the nonlinear problem (for any given u)

FG(u∗
G + gG)(u∗

G + gG) = P T
GF (u)u, (7)

where u∗
G is a solution of (5), which, in practice must be precomputed. It is clear that if u is the

exact solution of F (u)u = f then gG = 0 and hence F(u) = 0.
We will further show that under certain assumptions the converse statement is also true.

Lemma 3.1 The Jacobian J at v0 (v0) of the fine grid nonlinear operator F (v)v is given by the
expression:

wTJ(v0)v =
∑

T∈Th

(

aT (v0)w
T
TAT vT + gT (v0)w

T
TMT vT

+(va′(v0))T wT
TAT v0, T + (vg′(v0))T wT

TMT v0, T

)

.

Here v0, T is the restriction of v0 (or equivalently of v0) on T and

(va′(v0))T ≡ a′

(

1
3

∑

xi−vertices of T

v0(xi)

)(

1
3

∑

xi−vertices of T

v(xi)

)

= vTa
′
T (v0).

The expression for (vg′(v0))T is the same (a′ replaced with g′). It is clear that

J(v0) = F (v0) + a convective term,

which is assembled from the low–rank element matrices bT eT
T , where

bT = bT (v0) ≡
1

3
a′T (v0)aT +

1

3
g′T (v0)mT ,

aT = AT v0, T , mT = MT v0, T and eT = (1) is the constant vector of 1s restricted to T .
The Jacobian actions of the nonlocal coarse nonlinear operators FG(uG)uG in (5) are computed

similarly
wTJG(v0)v =

∑

T∈TG

(

aT (v0)w
T
TAT vT + gT (v0)w

T
TMT vT

+(va′(v0))T wT
TAT v0, T + (vg′(v0))T wT

TMT v0, T

)

.

Here v0, T is the restriction of v0 (or equivalently of v0) on T and

(va′(v0))T ≡ a′

(

1
number of vertices of T

∑

xi−vertices of T

v0(xi)

)

×

(

1
number of vertices of T

∑

xi−vertices of T

v(xi)

)

= vT a
′
T (v0).

Similarly, (vg′(v0))T = vT g
′
T (v0).

The Jacobian J of the nonlinearly preconditioned problem (6) is simply equal to

J (v0) =
∑

G

PG

(

JG(v0
G)
)−1

(PG)
T
J(v0), (8)

5



where v0
G solves the equation

FG(v0
G)v0

G = P T
GF (v0)v0.

That is, computing the Jacobian requires solution of the above linear subdomain problems.

Proof. To verify the above formula for the Jacobian of (6) we need to expand

F(v0 + g) ' F(v0) + J (v0)g.

For g = 0 we obtain that

F(v0) =
∑

G

PG(v0
G − u0

G),

where v0
G solves the nonlinear problem

FG(v0
G)v0

G = P T
GF (v0)v0

and u
(0)
G is a solution of (5). Then,

F(v0 + g) '
∑

G

PG(v0
G + gG)

for a vector gG which depends linearly on g. Using the definition of the Jacobian JG(v0
G) we have

that
FG(v0

G + gG)(v0
G + gG) ' FG(v0

G)v0
G + JG(v0

G)gG, (9)

and, on the other hand, v0
G + gG solves (up to higher order terms) the nonlinear problem

FG(v0
G + gG)(v0

G + gG) ' P T
GF (v0 + g)(v0 + g)

' P T
GF (v0)v0 + P T

GJ(v0)g
= FG(v0

G)v0
G + P T

GJ(v0)g.
(10)

Comparing the linear parts of both expressions for FG(v0
G +gG)(v0

G +gG), (9) and (10), we end up
with the equality,

FG(v0
G)v0

G + JG(v0
G)gG = FG(v0

G)v0
G + P T

GJ(v0)g.

That is,
JG(v0

G)gG = P T
GJ(v0)g.

As a result we arrive at the desired formula (8) for J ,

J (v0)g =
∑

G

PGgG =
∑

G

PG

(

JG(v0
G)
)−1

(PG)TJ(v0)g.

2

3.3 An ASPIN algorithm

Then the additive Schwarz preconditioned inexact Newton (sometimes referred to as ASPIN) algo-
rithm, for computing the next iterate u(k+1) from a given iterate u(k), in the present context takes
the form:

Algorithm 3.1 (ASPIN) Given a current iterate u(k), and let u
(k)
G be coarse approximations to

the respective solutions of (5). Then for k = 0, 1, . . ., one computes:

1. Compute the nonlinear residual g(k) = F(u(k)) through the following steps:

6



a) Find g
(k)
G for every subdomain G by solving the coarse nonlinear problems

FG(u
(0)
G + g

(k)
G )(u

(0)
G + g

(k)
G ) = P T

GF (u(k))u(k)

with a starting iterate g
(k)
G = 0.

b) Form the global residual

g(k) = F(u(k)) =
∑

G

PGg
(k)
G .

c) Check for convergence based on a norm ‖.‖ of g(k).

2. Find an inexact Newton direction p(k) by solving the Jacobian system approximately,

(

∑

G

PG

(

JG(u
(0)
G + g

(k)
G )
)−1

(PG)T J(u(k))

)

p(k) = g(k)

in the sense that
∥

∥

∥

∥

∥

g(k) −
∑

G

PG

(

JG(u
(0)
G + g

(k)
G )
)−1

(PG)T J(u(k))p(k)

∥

∥

∥

∥

∥

≤ ηk‖g
(k)‖

for some given forcing sequence ηk ∈ [0, 1).

3. Compute the new iterate
u(k+1) = u(k) − λ(k)p(k).

where λ(k) is a damping parameter.

3.4 The general coefficient case

In practice, one may be interested in the general case of non–linear coefficients, a and g, that is,

a = a(x, u,∇u) andg = g(x, u,∇u).

The first thing is to notice that in order to be able to perform various averages one needs to be able
to compute (approximate) derivatives of the finite element functions on coarse discretization levels.
In order to do this (as already utilized in [9]), we assume that one has access to the coordinates of
the vertices of the elements on all grids. It is more convenient to state this, that one has access to
the coordinate vectors X = (xi) and Y = (yi) where (xi, yi) are the geometric coordinates of the
ith vertex at a given discretization level. Then, since

∂u

∂x
= ∇u · ∇x '

∫

T
∇u · ∇x
∫

T 1
=

XT
TAT uT

1T
TMT 1T

,

where ' is actually equality if u is linear over the element T . Here, 1T is the vector of ones restricted
to T . Note, that here we again need access to both AT and MT , the element matrices corresponding
to the Laplacian and the identity (mass) operators.

According to the above formula, one is able to compute derivatives of functions on every level,
assuming access to the element matrices AT and MT as well as access to the coordinate vectors X
and Y. Then, first the formula for the non–linear operator at a given grid reads as before, F (u)u,
where F (u) is assembled from the following weighted combination of the element matrices AT and
MT ,

a

(

(u)T ,

(

∂u

∂x

)

T

,

(

∂u

∂y

)

T

)

AT + g

(

(u)T ,

(

∂u

∂x

)

T

,

(

∂u

∂y

)

T

)

MT .

7



The derivative averages read as above; for example,
(

∂u

∂y

)

T

=
YT

TAT uT

1T
TMT 1T

.

In order to compute the Jacobian of F (v)v at v0 (v0), J(v0), one can use the following formulas.
Let, a = a(v, vx, vy) and g = g(v, vx, vy) and assume that one can analytically compute the partial
derivatives

a′ =
∂a

∂v
, a′x =

∂a

∂vx
, a′y =

∂a

∂vy
, andg′ =

∂g

∂v
, g′x =

∂g

∂vx
, g′y =

∂g

∂vy
.

The corresponding formula for J(v0), for any w and v, then reads,

wTJ(v0)v = wTF (v0)v

+

{

∑

T∈Th

[

(v)T a′
(

(v0)T ,
(

∂v0

∂x

)

T
,
(

∂v0

∂y

)

T

)

+
(

∂v
∂x

)

T
a′x

(

(v0)T ,
(

∂v0

∂x

)

T
,
(

∂v0

∂y

)

T

)

+
(

∂v
∂y

)

T
a′y

(

(v0)T ,
(

∂v0

∂x

)

T
,
(

∂v0

∂y

)

T

)]

wT
TAT v0, T

+
∑

T∈Th

[

(v)T g′
(

(v0)T ,
(

∂v0

∂x

)

T
,
(

∂v0

∂y

)

T

)

+
(

∂v
∂x

)

T
g′x

(

(v0)T ,
(

∂v0

∂x

)

T
,
(

∂v0

∂y

)

T

)

+
(

∂v
∂y

)

T
g′y

(

(v0)T ,
(

∂v0

∂x

)

T
,
(

∂v0

∂y

)

T

)]

wT
TMT v0, T

}

.

4 An abstract convergence theory for ASPIN

In this section we develop a simple general convergence theory for the nonlinear additive Schwarz
preconditioned Newton method outlined in the previous section. The abstract theory will be based
on several assumptions that will be verified in the next section for a class of specific nonlinear
problems.

Assume that we are given a finite dimensional space V and a set of spaces VG where G runs over
a finite set. The spaces V and VG are related through a set of extension and restriction operators
EG : VG → V and RG : V → VG.

Both V and VG are equipped with different pairs of norms. The norms defined over V are denoted
by ‖·‖X and ‖·‖Z , whereas the respective norms defined over VG are denoted by ‖·‖X,G and ‖·‖Z,G.
We will drop the subscript G whenever it will not cause any confusion.

Assume that we originally want to solve the problem:

F (u∗) = 0, (11)

where F : D(F ) ⊂ V → V is in C1, and u∗ is the exact solution to be computed. To define a
nonlinearly preconditioned problem we introduce a mapping u → uG ∈ VG as a solution of the
following nonlinear system of equations defined on G.

FG(uG) = RGF (u), (12)

where
uG = gG + u∗G

as defined in (7) and FG : D(FG) ⊂ VG → VG is a C1 function.
The abstract ASPIN algorithm then reads:
Find the solution u∗ of (11) by solving the following nonlinearly preconditioned system of equa-

tions using an inexact Newton method

F(u∗) ≡
∑

G

EG (uG − u∗G) = 0, (13)

8



where u∗G ∈ VG is a pre-computed solution of a sub nonlinear system of equations

FG (u∗G) = 0. (14)

It is straightforward to show that a solution of (11) is also a solution of (13). As it will be shown,
the converse is also true under certain assumptions. We next state the assumptions for F ,FG, EG,
and RG.

Basic Assumptions on F , FG, EG, and RG.

(A1) The problem (11) has a solution; i.e., there exists u∗ ∈ V such that F (u∗) = 0.

(A2) In the neighborhood of u∗ there exists a nonsingular derivative of F , denoted by DF , with

‖DF (u∗)‖X→Z ≤ C∗.

(A3) The derivative DF is Lipschitz in the neighborhood of u∗, i.e. for any u, v in this neighborhood
we have

‖DF (u) −DF (v)||X→Z ≤ L‖u− v‖X

(A4) There is a ball about the origin (in the sense of ‖ ·‖Z,G) such that for any fG in this ball, there
exists a unique uG ∈ VG such that FG(uG) = fG and uG is in a fixed neighborhood of u∗G (the
solution of (14)).

(A5) For any v in a neighborhood of u∗G there exists a derivative DFG(v) of FG.

(A6) The derivative DFG(v) is invertible and (DFG(v))−1 is a uniformly bounded linear operator
for any v in a neighborhood of u∗G , that is, with a constant µG (independent of v) one has,

‖DFG(v)−1‖Z→X ≤ µG,

(A7) The inverse of the derivative DF−1
G is Lipschitz in the neighborhood of u∗G, i.e., for all w, v in

this neighborhood we have

∥

∥(DFG(w))−1 − (DFG(v))−1
∥

∥

Z→X
≤ LG‖w − v‖X

(A8) boundedness of the extension and restriction mapping, i.e.,

‖EG‖X→X ≤ C and ‖RG‖Z→Z ≤ C.

As mentioned before, we drop the subscript G whenever it does not introduce confusion.
The following result follows directly from the above assumptions.

Theorem 4.1 Under our assumptions the function F is well defined in a neighborhood of u∗ and
has properly defined continuous derivative:

DF(u) = J (u) =
∑

G

EG(DFG(uG))−1RGDF (u).

Finally, we also assume that

(A9) the inverse of the derivative of F is locally bounded, i.e. there is a positive constant βASM,
such that for any u in a neighborhood of u∗, one has,

∥

∥

∥

∥

∥

∑

G

EG(DFG(uG))−1RGDF (u)

∥

∥

∥

∥

∥

X→X

≥ βASM .

9



By using the inverse theorem in Calculus and assumption (A9) one easily proves,

Corollary 4.1 The solution u∗ of the original nonlinear system of equations (11) is also a locally
unique solution of the nonlinearly preconditioned system of equations (13).

The next lemma represents a Lipschitz continuity property of J that ensures quadratic conver-
gence of Newton method.

Lemma 4.1 Under our assumptions, there is a positive constant LASM such that

‖DF(u) −DF(v)‖X→X ≤ LASM‖u− v‖X .

for any u and v in a neighborhood of u∗.

Proof. Since the function F is defined as a sum over all G, and we have assumed that their number
is finite, it is sufficient to show, that for eachG, the function u 7→ EG(DFG(uG))−1RGDF (u) satisfies
the statement of the lemma; i.e. the function is Lipschitz. By (A8) and the triangle inequality, we
have

‖EG(DFG(uG))−1RGDF (u) − EG(DFG(vG))−1RGDF (v)‖X→X ≤

≤ ‖EG‖X→X‖(DFG(uG))−1RGDF (u) − (DFG(vG))−1RGDF (v)‖X→X

≤ C‖(DFG(uG))−1RGDF (u) − (DFG(vG))−1RGDF (v)‖X→X

≤ ‖(DFG(uG))−1RG [DF (u) −DF (v)]‖X→X +

‖[(DFG(uG))−1RG − (DFG(vG))−1RG]DF (v)‖X→X

We estimate the first term by (A3), (A6) and (A8) and obtain:

‖(DFG(uG))−1RG [DF (u) −DF (v)]‖X→X

≤ ‖(DFG(uG))−1‖Z→X‖RG‖Z→Z‖DF (u) −DF (v)‖X→Z

≤ βG L ‖u− v‖X .

For the second term by (A7) and (A8) we obtain

‖[(DFG(uG))−1 − (DFG(vG))−1)]RG DF (v)‖X→X

≤ ‖(DFG(uG))−1 − (DFG(vG))−1‖Z→X‖RG‖Z→Z‖DF (v)‖X→Z

≤ C‖ uG − vG‖X,G‖DF (v)‖X→Z

≤ C‖uG − vG‖X,G {‖DF (v) −DF (u∗)‖X→Z + ‖DF (u∗)‖X→Z}

In the last inequality, the second term is bounded by ‖DF (u∗)‖X→Z + Lδ, due to (A2). Here δ
is the diameter of the neighborhood of u∗. The Lipschitz continuity of the mapping u 7→ uG (which
follows from (A3),(A6) and (A8)) completes the proof. 2

The main results of this section are summarized in the following theorem.

Theorem 4.2 For a properly chosen initial guess u0, the Newton iteration defined by

un+1 = un − [DF(un)]−1F(un)

converges, and the convergence rate is quadratic; i.e.:

‖un+1 − u∗‖X ≤ C‖un − u∗‖2
X .

where C = LASM/βASM is a positive constant.

Proof. The proof is standard and it follows directly from the previous lemma and assumption
(A9), e.g. cf. Theorem 5.2.1, p. 90 in [6]. 2

10



5 Application to second order semi–linear elliptic problems

In this section we apply the abstract convergence theory developed in the previous section to a class
of semi-linear elliptic problems, and we show that this class of equations satisfy the assumptions
proposed in the previous section, and therefore our ASPIN algorithm converges locally and the
convergence rate is quadratic.

5.1 A model problem and its discretization.

We consider the following boundary value problem: Find u∗ ∈ H1
0 (Ω) such that

Lu = Au− b(x, u) = f in Ω, u = 0 on ∂Ω, (15)

where Ω is a convex polygonal domain in R2 and f ∈ L2(Ω) and A is an H1
0 elliptic operator. We

define L : V ≡ H1
0 (Ω) 7→ V

′

= H−1(Ω). Let Vh ⊂ V be a sequence of finite element spaces of
continuous piecewise linear polynomials such that ∪{Vh, h ≤ h0} = V . In the present setting, for
a given mesh h, Vh corresponds to the finest level mesh from Section 2 and VG ⊂ Vh is one of the
subspaces based on a coarsened away from G mesh (i.e., VG = PGV (NG) ⊂ Vh, cf. Section 2). We
also assume that the original fine mesh is quasi-uniform, which implies certain inverse inequalities
for the finite element functions. The coarsened away from G mesh will be specified in the next
subsection (in a model situation). The Galerkin operators induced by L on Vh, and similarly on VG,
denoted by Av − b(v), are defined as follows

(Av − b(v), ϕ) = (A∇v, ∇ϕ) − (b(x, v), ϕ), ∀v, ϕ ∈ Vh (orVG),

where A(x) is uniformly positive definite in Ω.
In the same way, the Jacobian of Av− b(v) at v, which is a linear operator denoted by A− bu(v)

(bu(v) ≡ ∂b(., v)
∂u ), is defined by

(Aξ − bu(v)ξ, ϕ) = (A∇ξ,∇ϕ) −

(

∂b(x, v)

∂u
ξ, ϕ

)

, ∀ξ, ϕ ∈ Vh (orVG).

The discrete counterpart of (15) reads: Find uh ∈ Vh such that

(Lhuh, ϕ) ≡ (Auh − b(uh), ϕ) (16)

≡ (A∇uh,∇ϕ) − (b(x, uh), ϕ) = (f, ϕ), ∀ϕ ∈ Vh.

Similarly, one defines LG by replacing in (16) Vh with VG. In the notation of the previous section,
the discrete nonlinear problem (16) and its subdomain counter-part are formulated as

Fh(uh) ≡ Lh(uh) −Qhf = 0 (17)

FG(uh) ≡ LG(uh) −QGf = 0, (18)

where Qh(orQG) : L2(Ω) 7→ Vh (orVG) is the corresponding L2–projection onto Vh (orVG). In what
follows we denote the solution of (17) by u∗h and similarly, the solution of (18) by u∗G. The derivative

F
′

h(v), v ∈ Vh, is defined variationally as

(DFh(v)ψ, ϕ) ≡ (Aψ − bu(v) ψ, ϕ), ∀ψ, ϕ ∈ Vh.

The derivative DFG is defined analogously by replacing the subscript h by G in the previous line.

Definition 5.1 (Discrete Banach spaces)

• X = Vh with a norm ‖ · ‖, such that ‖ψ‖ ≤ C‖F
′

h(u∗h)ψ‖0 for any ψ ∈ Vh.

• Z = Vh equipped with ‖ · ‖ = ‖ · ‖0.

11



Above, ‖ · ‖s stands for the Sobolev space Hs–norms, and L∞ on Vh is actually the maximum norm
(since the functions in Vh are continuous).

It is known that under certain regularity assumptions, one has with a mesh–independent constant
C,

‖ψ‖1 ≤ max{‖ψ‖1, ‖ψ‖L∞
} ≤ C‖F

′

h(u∗h)ψ‖0.

In what follows, we will consider the two (mesh–independent) norms in X

‖ψ‖X ≡ max{‖ψ‖1, ‖ψ‖∞}, and ‖ψ‖X,1 ≡ ‖ψ‖1.

The estimates to be obtained in the first norm will be a bit weaker, i.e., they will exhibit a very
weak (logarithmic) dependence on the mesh size.

5.2 Subdomain spaces and norms.

Recall that to build VG in Section 2 we first obtain a sequence of subdomains {Gk} with G0 = G
and Gk−1 ⊂ Gk for k = 0, . . . , l with a preset (fixed) value of `. We then introduce a finite sequence
of disjoint subdomains defined by S1 = G1 and Sk+1 = G2k+1 \ G2k−1, k = 1, 2, . . ., cf. Fig. 1,
and consider for each Sk a triangulation Th(Sk) inherited from Th(G2k−1), i.e., formed from the
(agglomerated) elements of Th(G2k−1) restricted to Sk.

G 2

G 3

S1 =G 1 S2

G

Figure 1: Subdomains Gk and Sk.

We assume that the number of Sk is bounded by some constant (`/2). Because of the graduate
coarsening Th(Sk) contains elements only of T2k−1 and T2k−2; i.e., of the size between h2k−1 and
h2k−2, thus it is reasonable to assume:

Assumption 5.1 (Inverse Assumption) The mesh restricted to a subdomain Sk, i.e. Th(Sk) is
quasi-uniform. That is, the maximal diameter of an element in Sk is of the same order as the
minimal one.

12



Remark 5.1 We note that inverse assumption will be needed only for convergence results in ‖ · ‖X .

We also want to consider different norms associated with subdomains Sk:

‖u‖∞, G =
∑

k

‖u‖∞, Sk
and ‖u‖s, G =

∑

k

‖u‖s, Sk
,

where ‖u‖∞, Sk
= maxx∈Sk

|u(x)| and ‖u‖s, Sk
stands for a standard Sobolev norm ‖u‖Hs(Sk). Then

from the classical inverse inequality (cf. [12]), and a standard argument the following inverse in-
equality follows:

‖u‖∞, G ≤ C
∑

k

(1 + | log(h(Sk))|1/2)‖u‖1, Sk
≤ C(1 + max

k
{| log(h(Sk))|1/2})‖u‖1,G. (19)

We stress upon the fact that the constants in the analysis to follow in generally depend on the
subdomains G and their number.

Definition 5.2 (Subdomain spaces and norms)
For any subdomain G we introduce the following spaces equipped with norms:

• XG = VG with a norm ‖ψ‖X,G = max{‖ψ‖∞,G, ‖ψ‖1,G} in the case of the first norm, i.e. for
(X, ‖ · ‖X), and ‖ψ‖X,1,G ≡ ‖ψ‖1,G, in the other case, for any ψ ∈ VG,

• ZG = VG equipped in a norm ‖ψ‖Z,G = ‖ψ‖0,G, in both cases for any ψ ∈ VG.

The subscript G is dropped in what follows, whenever this does not cause any ambiguity.

5.3 Problem specific assumptions and their verifications

Assumption 5.2 (cf. [3]) We assume that the nonlinear boundary value problem has a solution
u∗ ∈ H1

0 (Ω) ∩H2(Ω). The latter implies that u∗ ∈ L∞(Ω) as well.
In addition, we assume:

(i) Ω is a bounded convex polygon and the principal linear elliptic part A of L is H 2–regular; that
is, for any g ∈ L2(Ω) the solution of the linear boundary value problem

(Aw, v) = (g, v) ∀v ∈ H1
0 (Ω),

satisfies the a priori estimate for a constant CR > 0 (independent of the r.h.s. g),

‖w‖2 ≤ CR‖g‖0.

Of course this is a well-known result for A = −4, i.e., for identity diffusion coefficient matrix
A = I |

R2 .

(ii) The function b(x, u) is continuously differentiable; that is, ∂b(x, u)
∂u exists in a ball with a center

at u∗ - the solution of (15) and is Lipschitz as a function of u ∈ R, uniformly in x ∈ Ω

(iii) The function | ∂b(x, u)
∂u | is bounded in Ω for u close to u∗.

(iv) Finally, we assume that ∂b(x, u)
∂u ≤ 0.

For the analysis in the norm ‖ ·‖X,1 we will need somewhat stronger assumptions on the function
b(., .):

13



Assumption 5.3 (The case of ‖ · ‖X,1 norm.) Let (i) and (iv) of Assumption 5.2 hold and we

assume that ∂b(x, u)
∂u (and b(x, u)) exists on Ω ×R and

|bu(x, ξ1) − bu(x, ξ2)| ≤ L(1 + |ξ1|
r + |ξ2|

r)|ξ1 − ξ2| ∀ξ1, ξ2 ∈ R, ∀x ∈ Ω, (20)

|bu(x, ξ)| ≤ C(1 + |ξ|s) ∀ξ ∈ R, ∀x ∈ Ω,

where L,C are positive constants and r, s are non–negative constants.

It is clear that (20) implies (ii) and (iii) of Assumption 5.2.

Remark 5.2 We note that (20) is a type of growth assumption, and such are commonly used in the
theory of nonlinear PDEs, e.g. cf. [14].

Remark 5.3 A simple example which satisfies Assumption 5.3 is b(x, u) = −u3 which leads to the
model problem: Au+ u3 = f .

The main result of the present section is the following convergence theorem:

Theorem 5.1 For an initial guess u0 in a neighborhood of u∗h the ASPIN algorithm is quadratically
convergent with

‖un+1 − u∗h‖X ≤ C(1 + | log(h)|)1/2‖un − u∗h‖
2
X

‖un+1 − u∗h‖1 ≤ C‖un − u∗h‖
2
1.

Proof. We apply Theorem 4.2, for which we have to verify the assumptions (A1)-(A9) of Section 4
in both norms. The next section provides the necessary lemmas where these assumptions are verified.
More specifically, assumptions (A2) and (A5) follow from Lemmas 3.3 and 4.1 in [3] and because
RG ≡ QG is an L2 projection onto VG then (A8) holds. It follows from Lemma 6.2, see below, that
assumptions (A1) and (A4) are satisfied in the norms ‖ · ‖X and ‖ · ‖X,1. Lemma 6.4 verifies (A3)
and Lemma 6.3 implies (A6) and (A7). Finally (A9) is validated (in both norms) by Lemma 6.5.
Thus the proof is complete. 2

6 Technical lemmas

This section contains proofs of a few technical lemmas, which show that the assumptions from
Section 4 are fulfilled in both norms for our problem (already used in the proof of Theorem 5.1).
Some of the proofs here closely follow Sections 3 and 4 of [3].

Lemma 6.1 Let w ∈ VG solve the linear problem

DFG(u)w = g

for a given u ∈ VG in a neighborhood of u∗ and g ∈ VG. Then under Assumption. 5.2, we have

‖w‖X, G ≤ CF ‖g‖0,G.

with a uniform constant CF .

Proof. We follow Lemma 3.3 in [3]. First we rewrite the problem into a variational form:

(DFG(u)w,ψ) = (A− bu(u)w,ψ) = (g, ψ) ∀ψ ∈ VG.

The stability in H1 norm (and thus in ‖·‖X, G) is obtained in the standard way by taking ψ = w:

(Aw,w) ≤ (Aw,w) − (bu(u)w,w)

≤ ‖g‖0‖w‖0 ≤ ‖g‖0‖w‖1

≤ ‖g‖0‖w‖X,G.

14



Note that due to Assumption 5.2 (iv), the following coercivity estimate holds ‖w‖2
1 ≤ C(Aw,w) ≤

C‖w‖2
1, which shows ‖w‖1,G ≤ C ‖g‖0. It remains to show that ‖w‖∞ ≤ C‖g‖0. For this purpose,

we consider the differential problem:

((A− bu(u))Ψ, φ) = (g, φ) ∀φ ∈ H1
0 (Ω).

From Lemma 3.2 in [3] it follows that ‖Ψ‖2 ≤ C‖g‖0. Based on the approximation property of the
nodal interpolation in VG there exists ΨG ∈ VG such that

‖Ψ− ΨG‖H1(Sk) ≤ Ch(Sk)|Ψ|H2(Sk), ‖ΨG‖∞,G ≤ ‖Ψ‖∞,G

and by the standard argument:

‖w − Ψ‖1,G ≤ C
∑

k

‖Ψ− ΨG‖H1(Sk) ≤ C
∑

k

h(Sk)|Ψ|H2(Sk).

Now by (19) we get

‖w − ΨG‖∞, G ≤
∑

k

(1 + | log(h(Sk))|1/2)‖w − ΨG‖H1(Sk).

Then we conclude that

‖w‖∞,G ≤ ‖w − ΨG‖∞, G + ‖ΨG‖∞, G

≤ C(
∑

k

(1 + | log(h(Sk))|1/2)‖w − ΨG‖H1(Sk) + ‖Ψ‖∞, G)

≤ C(
∑

k

(1 + | log(h(Sk))|1/2)h(Sk)|Ψ|H2(Sk) + ‖Ψ‖2, G)

≤ C‖Ψ‖2, G ≤ C‖g‖0, G.

Thus the proof is complete. 2

Lemma 6.2

1. Under Assumptions 5.2 the discrete problem (17) has a unique solution u∗
h. Moreover the

following error estimates hold:

‖u∗ − u∗h‖1 ≤ Ch‖u∗‖2, ‖u∗ − u∗h‖∞ ≤ Chα‖u∗‖2,

for some positive α (< 1).

2. The problem (16) has a unique solution u∗G and the following error estimates hold:

‖u∗ − u∗G‖1,G ≤ CH‖u‖2.G, ‖u∗ − u∗G‖∞,G ≤ CHα‖u∗‖2,G,

for a positive α (< 1) and H = maxk h(Sk). If we take QGf + δf in (18) with δf : ‖δf‖Z,G

is sufficiently small then these estimates still hold.

Proof. The first statement of the present lemma is Lemma 3.1 in [3], and the second one can be
proved along the same lines there, the only difference is that we have to use our Inverse Assumption
and Lemma 6.1 for the second statement of the lemma. 2

The next results deal with the inverse of DFG for a local problem associated with a subdomain
G.

Lemma 6.3 For any u1, u2 ∈ VG in a neighborhood of u∗ it holds that

‖(DFG(u1))
−1‖Z→X ≤ C,

‖(DFG(u1))
−1 − (DFG(u2))

−1‖Z→X ≤ C‖u1 − u2‖X,G.

Under Assumptions 5.3 the same results hold in the H1 type norms ‖ · ‖X,1,G.

15



Proof. For any w ∈ L2(Ω) with ‖w‖0 = 1 we have the following identities

(DFG(ui)pi, ϕ) = (Api − bu(ui)pi, ϕ) = (w,ϕ) ∀ϕ ∈ VG, i = 1, 2.

and
(DFG(u1)p2, ϕ) = (Ap2 − bu(u1)p2, ϕ) ∀ϕ ∈ VG.

The first statement of the lemma now follows from Lemma 6.1, cf. Lemma 3.3 in [3], but we give
here a proof of the stability in the H1 norm. Taking ϕ = p2 we have

(Ap2, p2) − (bu(u2)p2, p2) = (w, p2).

Thus by Assumption (iv) and Poincare inequality we get

‖p2‖
2
1 ≤ ‖w‖0‖p2‖0 ≤ C‖w‖0‖p2‖1,

which for ‖w‖0 = 1 implies ‖p2‖1 ≤ C.
Next, note that for any ϕ ∈ VG we have

(Ap2, ϕ) = (w + bu(u2)p2, ϕ)

thus

(DFG(u1)(p2), ϕ) = (Ap2, ϕ) − (bu(u1)p2, ϕ)

= (w + (bu(u2) − bu(u1))p2, ϕ),

hence p1 − p2 solves,

(DFG(u1)(p1 − p2), ϕ) = ((bu(u1) − bu(u2))p2, ϕ). (21)

In the case of ‖ · ‖X norm, Lemma 6.1 yields (based on the Lipschitz continuity of bu(.)):

max{‖p1 − p2‖1, ‖p1 − p2‖∞} ≤ C‖(bu(u2) − bu(u1))p2‖0

≤ C‖u2 − u1‖∞‖p2‖0

≤ C‖u2 − u1‖X‖p2‖0 ≤ C‖u2 − u1‖X .

Equivalently, we have

‖((DFG(u1))
−1 − (DFG(u2))

−1)w‖X ≤ C‖u2 − u1‖X ,

which completes the proof in the case of ‖ · ‖X norm.
The case of the other norm is a bit different. By (ii) and (iv) in Assumption 5.3, letting φ = p1−p2

in (21), Hölder inequality and Sobolev embeddings (H1(Ω) ⊂ Lq(Ω), q ≥ 1 in 2D), we get

‖p1 − p2‖
2
1 ≤ C((bu(u2) − bu(u1))p2, p1 − p2)

≤ C(1 +
∑

k=1,2

‖uk‖
r
Lq1r(Ω))‖u1 − u2‖Lq2 (Ω)‖p2‖Lq3 (Ω)‖p1 − p2‖Lq4 (Ω)

≤ C(1 +
∑

k=1,2

‖uk‖
r
1)‖u1 − u2‖1‖p2‖1‖p1 − p2‖1

≤ C‖u1 − u2‖1‖p1 − p2‖1,

for appropriate coefficients qi ≥ 1 such that
∑4

i=1
1
qi

= 1, and also q1r ≥ 1 if r from Assumption 5.3

is positive (if r = 0 the latter is not needed). 2

In the next lemma we check if the derivative of F is Lipschitz.

16



Lemma 6.4 For u1, u2 ∈ Vh in a neighborhood of u∗ it holds

‖DF (u1) −DF (u2)‖X→Z ≤ C‖u1 − u2‖X .

Under Assumptions 5.3 the same results holds in the H1 norm ‖ · ‖X,1.

Proof. For any w,ψ ∈ Vh we have

((DF (u1)w −DF (u2))w,ψ) = ((bu(u2) − bu(u1))w,ψ)

≤ ‖bu(u1) − bu(u2)‖∞‖w‖0‖ψ‖0

≤ C‖u1 − u2‖∞‖w‖0‖ψ‖0.

We utilized Assumption 5.2 (ii). Thus we can verify the statement of the lemma by taking the
maximum over all w ∈ Vh with ‖w‖X ≤ 1:

‖(DF (u1)w −DF (u2))w‖0 ≤ C‖u1 − u2‖∞‖w‖0 ≤ C‖u1 − u2‖X‖w‖X .

The case of ‖ · ‖X,1 can be proven with the help of Hölder inequality and Sobolev embedding, in a
similar way to the one utilized in the proof of Lemma 6.3. 2

The next lemma verifies the boundedness of the Jacobian of F and its coercivity in H1 norm, as
well as the boundedness of its inverse in ‖.‖X .

Lemma 6.5 For all u ∈ Vh in the neighborhood of u∗, and all v ∈ Vh we have

c‖v‖1 ≤ ‖DF(u)v‖1 ≤ C‖v‖1

β ≤ ‖DF(u)‖X→X

where β = c(1 + | log(h)|)−1/2 for positive constants c, C which are independent of the mesh size.
Under Assumptions 5.3 the first statement of the lemma holds in the H1 norm ‖ · ‖X,1.

Proof. In this proof the following notation is used:

‖u‖C := (Cu, u)

for any symmetric and positive definite operator C : Vh → Vh. Let

M−1 :=
∑

G

EG(DFG(uG))−1RG,

then
DF(u) = M−1 DF (u) =

∑

G

Eg(DFG(uG))−1RG DF (u)

We first consider the case of ‖ · ‖X norm. Note that for u ∈ Vh in a neighborhood of u∗h we have
that uG = EGF

−1
G (RF (u)) is close to u∗G, cf. Lemma 6.3, and thus ‖bu(uG)‖∞ (and ‖bu(u)‖∞) is

bounded by Assumption 5.2 (iii). It follows that

(DFG(uG)ψ, ψ) ≤ C(Aψ,ψ) ∀ψ ∈ VG, (22)

(DF (u) ϕ, ϕ) ≤ C(Aϕ,ϕ) ∀ϕ ∈ Vh. (23)

Next note that for u and uG in the neighborhood of u∗ we have by Assumption 5.2 (iv) −bu(u) ≥ 0
and −bu(uG) ≥ 0, and since DF (u) = A− bu(u), the following estimates are straightforward

(Aϕ,ϕ) ≤ (DF (u) ϕ, ϕ) ≤ C(Aϕ,ϕ) ∀ϕ ∈ Vh,
(Aψ,ψ) ≤ (DFG(uG) ψ, ψ) ≤ C(Aψ,ψ) ∀ψ ∈ VG.

(24)

17



Introduce AG : VG → VG defined by

(AGφ, ψ) = (A∇φ,∇ψ) ∀φ, ψ ∈ VG.

Then B−1 :=
∑

GEGA
−1
G RG is invertible over Vh and we have

c(Aϕ,ϕ) ≤ (Bϕ,ϕ) ≤ C(Aϕ,ϕ), ∀ϕ ∈ Vh,

see [2]. From the standard additive Schwarz method (ASM) theory (e.g., [11]) and (24) we get that
if we replace AG by DFG(uG), (i.e. B−1 by M−1) then it holds

(Aϕ,ϕ) ≤ C(Mϕ,ϕ) ≤ C(DF (u)ϕ, ϕ) ≤ C(Aϕ,ϕ), ∀ϕ ∈ Vh. (25)

and by a standard argument, cf. e.g. [7], we get

c(A−1ϕ, ϕ) ≤ (M−1ϕ, ϕ) ≤ C(DF (u)−1ϕ, ϕ) ≤ C(A−1ϕ, ϕ), ∀ϕ ∈ Vh. (26)

This is equivalent to say that the norms ‖u‖M , ‖u‖DF (u) are equivalent to ‖u‖A over Vh. The latter
one (based on the Poincare’s inequality) is equivalent to ‖u‖1.

Figure 2: The left figure shows a mesh of 6,400 fine elements partitioned into 16 subdomains. Each
color represents a subdomain of fine mesh elements. The right figure shows an agglomeration based
coarsened away mesh containing 6,400 fine elements, 456 agglomerated elements and 400 subdomain
elements.

Define p = F(u) v = M−1DF (u)v, for any u in the neighborhood of u∗ and any v ∈ Vh, i.e., let
DF (u) v = Mp. Then, (25) and (26) yield

‖v‖1 ≤ C(Av, v) ≤ C(DF (u)v, v) = C‖DF (u)v‖DF (u)−1 (27)

≤ C‖Mp‖DF (u)−1 ≤ C‖Mp‖M−1 = C(Mp, p) ≤ C(Ap, p) ≤ C‖p‖1.

The converse is also true, i.e., ‖p‖1 ≤ C‖v‖1. By an inverse inequality, e.g. cf. [12], and (27) we get

‖v‖∞ ≤ C(1 + | log(h)|)1/2‖v‖1 ≤ C(1 + | log(h)|)1/2‖p‖X .

18



To handle the case of H1 norm, we have to use Assumption 5.3, then apply Hölder inequality, use
Sobolev embedding and the Poincare’s inequality. Thus, we get

(DF (u)φ, φ) ≤ (Aφ, φ) + (bu(u)φ, φ)

≤ (Aφ, φ) + C(1 + ‖u‖r
Lrp(Ω))‖φ‖

2
L2q(Ω)

≤ (Aφ, φ) + C(1 + ‖u‖r
1)‖φ‖

2
1

≤ (Aφ, φ) + C‖φ‖2
1 ≤ C(Aφ, φ)

for any coefficients p, q > 0 such that 1
p + 1

q = 1, rp ≥ 1 (if r = 0 the latter is not needed) and any

φ ∈ V , i.e., (22) and (23) hold . The rest of the proof follows the lines of the case of ‖ · ‖X . 2

7 Numerical experiments

In this section, we report a series of numerical experiments for the model problem (1) with the
functions a, g : R → R defined by

a(u) =
√

1 + u2 and g(u) = u2.

Table 1: 400 elements, 231 degrees of freedom; Nsub - number of subdomains, Nonlin iter - number
of nonlinear iterations, Lin iter - number of linear iterations, Average lin - average number of linear
iterations per Newton iteration.

Nsub Nonliniter Lineariter Averagelin
4 3 35 11
9 3 30 10
16 3 35 11
64 3 45 15

We are interested in the number of linear and nonlinear iterations, and how they change with
respect to the number of subdomains, as well as the fine–grid mesh size (or number of fine–grid
elements) .

Table 2: 1600 elements, 861 degrees of freedom; Nsub - number of subdomains, Nonlin ite - number
of nonlinear iterations, Lin ite - number of linear iterations, Average lin - average number of linear
iterations per Newton iteration.

Nsub Nonliniter Lineariter Averagelin
4 3 37 12
9 3 42 14
16 3 52 17
64 4 61 15

The stopping criterion is to reduce the L2–norm of the initial nonlinear residual by a factor
of 10−4. In the following three tables we show the global number of nonlinear Newton iterations,
the global number of linear iterations and the average number of linear iterations necessary for one
Newton iteration for three meshes and different number of subdomains. In Table 1 we present the
results for a mesh with 400 elements. Table 2 refers to a mesh with 1600 elements, whereas Table 3
stands for a mesh with 6400 elements, cf. Fig. 2, p. 18. Lastly, Table 4 presents the distribution of

19



Table 3: 6400 elements, 3321 degrees of freedom; Nsub - number of subdomains, Nonlin iter -
number of nonlinear iterations, Lin iter - number of linear iterations, Average lin - average number
of linear iterations per Newton iteration.

Nsub Nonliniter Lineariter Averagelin
4 3 34 11
9 4 71 17
16 4 62 15
64 4 71 17

the degrees of freedom and number of elements corresponding to various partitioning of the original
mesh with 6400 elements which gives an indication about the complexity of the subdomain solvers
(shown in Table 3).

Table 4: Number of degrees of freedom and of elements of a few subdomains for mesh with 6400
elements and 3321 degrees of freedom. NU SUB - number of subdomains, SN - subdomain number,
NE - number of elements, NDoF - number of degrees of freedom

NU SUB SN NE NDoF
4 0 1699 952
4 1 1705 980
4 2 1680 944
4 3 1663 943
9 0 781 469
9 4 764 456
9 5 793 479
9 8 792 504
16 0 456 287
16 4 459 291
16 10 484 320
16 14 438 279
64 3 152 119
64 14 147 122
64 36 142 116
64 59 145 121

The numerical results show that overall the number of nonlinear iterations and the average
number of linear iterations per nonlinear step are stable and nearly independent of the mesh size
and the number of subdomains. Note that our discrete subdomain problems are obtained by the
non–linear element agglomeration AMGe method summarized in Section 2 and Section 3 (originally
described in [9] which is an extension of the linear one from [8]) which should explain the somewhat
increase of the number of the linear iterations with the number of subdomains.

References

[1] R. E. Bank and M. Holst, A new paradigm for parallel adaptive meshing algorithms, SIAM
J. Sci. Comput., 22(2000), 1411-1443.

20



[2] R. E. Bank, P. K. Jimack, S. A. Nadeem, and S. V. Nepomnyaschikh, A weakly over-
lapping domain decomposition preconditioner for the finite element solution of elliptic partial
differential equations, SIAM J. Sci. Comput., 23(2002), 1817-1841.

[3] P. N. Brown, P. S. Vassilevski, and C. S. Woodward, On mesh-independent convergence
of an inexact Newton-multigrid algorithm, SIAM J. Scientific Computing, 25(2003) pp. 570–590.

[4] X.-C. Cai and D. E. Keyes, Nonlinearly preconditioned inexact Newton algorithms, SIAM
J. Sci. Comput., 24 (2002), 183-200.

[5] X.-C. Cai, D. E. Keyes, and L. Marcinkowski, Nonlinear additive Schwarz preconditioners
and applications in computational fluid dynamics, Int. J. Numer. Meth. Fluid Mech., 40 (2002),
1463-1470.

[6] J. E. Dennis Jr. and R. B. Schnabel, Numerical methods for unconstrained optimization
and nonlinear equations, Classics in Applied Mathematics, Vol. 16, SIAM, Philadelphia, 1996.

[7] E. G. D’yakonov, Optimization in Solving Elliptic Problems, CRC Press, Boca Raton, FL,
1996. Translated from the 1989 Russian original, Translation edited and with a preface by Steve
McCormick.

[8] J. E. Jones and P. S. Vassilevski, AMGe based on element agglomeration, SIAM J. Sci.
Comput., 23(2001), 109-133.

[9] J. E. Jones, P. S. Vassilevski, and C. S. Woodward, Nonlinear Schwarz-FAS methods
for unstructured finite element problems, in the Proceedings of the Second M.I.T. Conference
on Computational Fluid and Solid Mechanics, Cambridge, MA, June 17-20, 2003. Elsevier, vol.
2, pp. 2008-2011.

[10] G. Karypis and V. Kumar, METIS: A family of multilevel partitioning algorithms, available
at: http://www-users.cs.umn.edu/̃karypis/metis/.

[11] B. Smith, P. Bjørstad, and W. Gropp, Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations, Cambridge University Press, 1996.

[12] V. Thomée, Galerkin finite element methods for parabolic problems, vol. 1054 of Lecture Notes
in Mathematics, Springer-Verlag, Berlin, 1984.

[13] P. S. Vassilevski, Sparse matrix element topology with application to AMG and precondition-
ing, Numer. Lin. Alg. Applic., 9(2002), 429-444.

[14] A. Žeńı̌sek, Nonlinear elliptic and evolution problems and their finite element approximations.
Computational Mathematics and Applications. Academic Press Inc. [Harcourt Brace Jovanovich
Publishers], London, 1990. With a foreword by P.-A. Raviart.

21




