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Abstract. We discuss the motivation, theory, and formulation of the ab initio No-Core Shell Model (NCSM). In this method
the effective Hamiltonians are derived microscopically from realistic nucleon-nucleon (NN) and theoretical three-nucleon
(NNN)potentials, as a function of the finite harmonic-oscillator (HO) basis space. We present converged results for the A � 3
and 4 nucleon systems, which are in agreement with results obtained by other exact methods, followed by results for p-shell
nuclei. Binding energies, rms radii, excitation spectra, and electromagnetic properties are discussed.The favorable comparison
with available data is a consequence of the underlying NN and NNN interactions rather than a phenomenological fit.

INTRODUCTION

The major outstanding problem in nuclear-structure
physics is to calculate the properties of finite nuclei
starting from the basic interactions among the nucleons.
While various methods have been developed to solve the
three- and four-nucleon systems with realistic interac-
tions [1, 2, 3, 4], few approaches are suitable for heav-
ier nuclei at this time. Apart from the coupled cluster
method [5] applied typically to closed-shell and near-
closed-shell nuclei, the Green’s function Monte Carlo
method is the only approach for which exact solutions
of systems with A � 10 have been obtained [4].

For both few-nucleon systems and p-shell nuclei,
treated as systems of nucleons interacting by realistic NN
interactions, we apply the no-core shell-model (NCSM)
approach [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

NO-CORE SHELL-MODEL APPROACH

The NCSM is based on an effective Hamiltonian de-
rived from realistic “bare” interactions and acting within
a finite Hilbert space. All A-nucleons are treated on an
equal footing. In the standard formulation of this ap-
proach, utilizing a single-particle (s.p.) coordinate HO
basis, the effective interaction is determined for a system
of two (or three) nucleons bound in a HO well and in-
teracting by the NN potential (and possibly also a NNN
potential). We note that the use of a HO basis is crucial
for insuring that the center-of-mass (CM) motion of the

nucleus does not mix with the internal motion of the nu-
cleons. This approach is limited by the model-space size
as well as by the fact that only a two-body (or three-
body) effective interaction is used, despite the fact that
higher-body effective interactions might not be negligi-
ble. Although the practical applications depend on the
HO frequency and the model-space size, the approach is
computationally tractable and our results are guaranteed
to converge to an exact solution once a sufficiently large
model space is reached [8, 9].

In the NCSM approach we start with the one- plus
two-body (and possibly three-body) Hamiltonian for the
A-nucleon system, i.e.,
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where m is the nucleon mass and V NN
i j is the NN in-

teraction. In the next step we modify the Hamiltonian
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This added and later subtracted potential permits the use
of the convenient HO basis and provides a mean field that
facilitates the calculation of the effective interactions.

Since we solve the many-body problem in a finite
HO model space, the realistic nuclear interaction in
Eq. (2) will yield unreasonable results unless we employ
a model-space-dependent effective Hamiltonian. In gen-
eral, for an A-nucleon system, an A-body effective inter-
action is needed. As we will discuss later, the effective in-
teraction is, in the present calculations, approximated by
a two-body or a three-body effective interaction. Large
model spaces are desirable to minimize the role of ne-
glected effective many-body terms. In fact, large model
spaces are desirable for the evaluation of any observable,
i.e., the larger the model space, the smaller the renormal-
ization contributions to any effective operator.

As the Hamiltonian HΩ
A (2) differs from the Hamilto-

nian HA (1) only by a CM term, no dependence on Ω
should exist for the intrinsic properties of the nucleus.
However, because of the neglect of many-body terms in
the effective-interaction derivation, a dependence on Ω
appears in our calculations. This dependence decreases
as the size of the model-space is increased.

For the derivation of the effective interaction, we adopt
approaches presented by Lee and Suzuki [16], Da Prov-
idencia and Shakin [17], and Suzuki and Okamoto [18],
which yield an Hermitian effective Hamiltonian.

In the spirit of the above-mentioned papers, we in-
troduce a unitary transformation of the Hamiltonian, by
choosing an anti-Hermitian operator S, such that

� � e�SHΩ
A eS � (3)

In our approach, S is determined by the requirements that
� and HΩ

A have the same symmetries and eigenspectra
over the subspace � of the full Hilbert space. In gen-
eral, both S and the transformed Hamiltonian are A-body
operators. Our simplest, non-trivial approximation to�
is to develop a two-body effective Hamiltonian. This ap-
proach consists then of an approximation to a particular
level of clustering:

� �� �1��� �a� � (4)

where the one-body and a-body (a� A) pieces are given
as
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with

Ṽ12���a � e�S�a�HΩ
a eS�a� �

a
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where S�a� is an a-body operator;

HΩ
a � h1�h2�h3� � � ��ha�Va ; (8)

and

Va �
a

∑
i� j

Vi j � (9)

Note that there is no sum over a in Eq. (4), because
�

�a� is not a series expansion. In the above equations, it
has been assumed that the basis states are eigenstates of
the one-body, in our case HO, Hamiltonian ∑A

i�1 hi. We
now introduce our present application, in which we take
a� 2, so that the interaction, Ṽ12, is given by Eq. (7):

Ṽ12 � e�S�2��h1�h2�V12�e
S�2� � �h1�h2� � (10)

The full space is divided into a model or P-space, and a
Q-space, using the projectors P and Q with P�Q � 1. It
is then possible to determine the transformation operator
S�2� from the decoupling condition

Q2e�S�2� �h1�h2�V12�e
S�2�P2 � 0 � (11)

The two-nucleon-state projectors (P2�Q2) follow from
the definitions of the A-nucleon projectors P, Q. The
solution for this approach [18] is given by

S�2� � arctanh�ω �ω†� � (12)

with the operator ω satisfying ω � Q2ωP2. This is the
same operator, which we previously employed [7, 8, 9].
It can be directly obtained from the eigensolutions �k�
of h1 � h2 �V12 as �αQ�ω�αP� � ∑k�� �αQ�k��k̃�αP�,
where we denote by tilde the inverted matrix of �αP�k�.
In the above relation, �αP� and �αQ� are the two-particle
model-space and Q-space basis states, respectively, and
� denotes a set of dP eigenstates, whose properties are
reproduced in the model space, with dP equal to the
model-space dimension.

With the help of the solution for ω we obtain a sim-
ple expression for the matrix elements of the Hermitian
effective Hamiltonian
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The two-body effective interaction P2Ṽ12P2 can be ob-
tained from Eq. (13) by subtracting the one-body piece
and depends on A, on the HO frequency Ω and on Nmax,
the maximum many-body HO excitation energy (above
the lowest configuration) defining the P-space. It follows
that� �1��� �2��HCM is translationally invariant and
that Ṽ12 �V12 for Nmax � ∞.



The most significant approximation used in the present
application is the neglect of higher than two-body clus-
ters in the unitary transformed Hamiltonian expansion.
Because our method is not a variational approach, the ne-
glected clusters can contribute either positively or nega-
tively to the binding energy. Our approach can be readily
generalized in order to include, e.g., three-body clusters,
and to demand the model-space decoupling on the three-
body cluster level. A method for deriving the three-body
effective interaction was presented in our papers [8, 9],
which can be obtained by setting a � 3 in Eqs. (4)–(9).

In the limit a � A, we obtain the exact solutions for
dP states of the full problem for any finite basis space.
On account of our cluster approximation, a dependence
of our results on the model-space size Nmax and on the
HO frequency Ω arises. The residual Nmax and Ω depen-
dences can be used to infer the uncertainty in our results.

In order to construct the operator ω we need to select
the set of eigenvectors � . Because of the added CM
Hamiltonian, the a-body clusters are confined, which
ensures that all eigenvectors are bound states. We keep
the lowest states obtained in each two-body channel. It
turns out that these states also have the largest overlap
with the model space for the range of h̄Ω and the P-
spaces we have investigated.

We input the effective Hamiltonian, now consisting of
a relative 2-body operator and the pure HCM term in-
troduced earlier, into an m-scheme Lanczos diagonaliza-
tion process to obtain the P-space eigenvalues and eigen-
vectors, e.g., the Many-Fermion Dynamics (MFD) shell-
model code [19]. At this stage we also add the term
HCM again with a large positive coefficient to separate
the physically interesting states with 0s CM motion from
those with excited CM motion. We retain only the states
with pure 0s CM motion when evaluating observables.
All observables that are expressible as functions of rela-
tive coordinates, such as the rms radius and radial densi-
ties, are then evaluated free of CM motion effects.

We also have a second diagonalization code in Jacobi
coordinates and a HO basis [8, 9], for which three- and
even higher-body interactions can be more easily em-
ployed. It should be stressed, however, that these two al-
ternative approaches are completely equivalent and lead
to the same results.

We close our presentation on the theoretical frame-
work by noting that all observables require the same
transformation as implemented on the Hamiltonian. We
have found rather small effects on the rms radius operator
when we transformed it to a P-space effective rms oper-
ator at the a � 2 cluster level [10]. On the other hand,
substantial renormalization was obtained for the kinetic
energy operator when using the a � 2 transformation to
evaluate its expectation value [20]. Recent results [21] in-
dicate that at the a � 2 cluster level the amount of renor-
malization is sensitive to the range of the operator.

TABLE 1. Results for the ground-state (g.s.) en-
ergies (in MeV) obtained for 3H, 3He and 4He using
the CD-Bonn, AV18 and AV8’ NN potentials. The
AV8’ results are without the Coulomb interaction.
Shown values are based on the results calculated in
the model spaces up to Nmax � 50 for 3H, 3He, and
Nmax � 18 for 4He, respectively. The errors were es-
timated from the dependences on the HO frequency
Ω and on the model-space size Nmax.

NN potential
CD-Bonn AV18 AV8’

3H -8.002(4) -7.61(1) -7.75(2)
3He -7.249(4) -6.90(1) -7.75(2)
4He -26.30(15) ———- -25.80(20)

RESULTS

We performed calculations for the A� 3 systems inter-
acting by several realistic NN potentials in model spaces
up to 50h̄Ω (Nmax � 50). We employed the modern, real-
istic CD-Bonn [22], AV18 and AV8’ [4] NN potentials.
Our 3H and 3He results are summarized in Table 1. The
non-local CD-Bonn NN potential has a weaker tensor
force than the local AV18 and AV8’. In general, we ob-
serve that the stronger the tensor force is, the stronger
the HO frequency dependence and the slower the con-
vergence with Nmax. In particular, even for the AV18 NN
potential, the Nmax � 50 models space is sufficient for ob-
taining a converged result with an error less than 10 keV,
as shown in Fig. 1(a). It is seen that the utilization of the
effective NN interaction speeds up the convergence sig-
nificantly compared with the bare interaction. The AV8’
NN potential is more difficult and some HO frequency
dependence remains even at 50h̄Ω. Our overall A � 3
results, however, are in excellent agreement with other
exact methods, as can be judged by comparing numbers
from Table 1 with results presented in [23, 24] and refer-
ences therein.

Also shown in Table 1 are our 4He results obtained in
model spaces up to 18h̄Ω. This model-space size allowed
us to bring our CD-Bonn 4He results into even better
agreement with the Faddeev-Yakubovsky calculations by
Nogga et al. [24]. For the CD-Bonn potential our results
are essentially converged, while for the AV8’ or AV18
potentials, convergence is slower. For AV8’ we used
the three-body effective interaction, which improved the
convergence [8, 9].

A bigger challenge for the NCSM is the p-shell, where
model spaces increase rapidly in size with increasing
Nmax. Consequently, model spaces larger than Nmax � 8
are not presently feasible for most p-shell nuclei [14]
However, besides increasing Nmax to improve conver-
gence, one can also increase the cluster size of the effec-
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FIGURE 1. (a) Ground-state energy dependence on the model-space size for 3He interacting by the AV18 NN potential. The
dashed line shows the result based on the bare interaction. The solid lines with down-pointing triangles, up-pointing triangles
and squares are results based on the effective interaction for h̄Ω � 32, 28 and 24 MeV, respectively. (b) Ground-state energy
dependence on the model-space size for 6Li using the AV8’ NN potential with Coulomb. The plotted energies occur at the HO
frequency minima for the given value of Nmax The results using both the two-body and the three-body effective interaction are
compared with the GFMC results from [4]. The figure is from [12].

tive interaction. This has been investigated by Navrátil
and Ormand [12] for several p-shell nuclei. E.g., for 6Li,
it was demonstrated that three-body effective interactions
accelerate convergence. This is shown in Fig. 1(b)

Our ability to calculate the effective Hamiltonian at
the three-body cluster level as well as for the two-body
cluster makes it possible for us to investigate the nature
of different NNN interaction models [25]. The spectra of
the light nuclei are well suited for analyzing NNN forces,
because they are especially sensitive to their spin/isospin
structure. In addition, the NCSM results for the spectra
typically converge faster than the binding energies (see,
e.g., [10]) and are generally more accurately predicted
than the binding energies. To exemplify the sensitivity of
the spectra to the NNN interaction, we show in Fig. 2(a)
our results for the excitation energy of the 3� state in 6Li.
NN forces alone overpredict this observable. Note that
the combinations AV8’ with the 2π exchange Tucson-
Melbourne (TM’(99)) NNN force [26] are already close
to the experimental number. This becomes even more
pronounced for 10B, where TM’(99) corrects the wrong
ordering of ground and excited state predicted by NN
interactions only or in combination with the Urbana-IX
NNN force [4]. We also studied the chiral NN interac-
tion Idaho-N3LO [27] in combination with the consis-
tently defined leading chiral NNN interaction [28]. We
identified two sets of parameters, which describe the 3H
and 4He binding energies equally well. The excitation
energy is different for both sets of parameters, showing
the sensitivity of this quantity to the NNN force structure.
Calculations for other nuclei are in progress.

We next address a vastly more complex system, 12C.
There are several pressing reasons to investigate 12C in a

TABLE 2. Experimental and calculated g.s. and 3�0-state
energies, point-proton rms radii, the 2�1 -state and the 3�0-
state quadrupole moments of 12C. Results obtained in different
model spaces, i.e., Nmax � 6�4�2 for the positive-parity and
Nmax � 5�3�1 for the negative-parity states and using effective
interactions derived from the CD-Bonn NN potential are given.
The calculated excitation energy of the 3�0 state is obtained by
comparing its energy in the Nh̄Ω space with the ground state in
the �N� 1�h̄Ω space. A HO frequency of h̄Ω � 15 MeV was
employed. The experimental values are from [32, 33].

12C CD-Bonn

model space - 6h̄Ω 4h̄Ω 2h̄Ω

�Egs�0�0�� [MeV] 92.162 85.630 88.518 92.353
rp [fm] 2.35(2) 2.195 2.199 2.228
Q2� [e fm2] +6(3) 4.717 4.533 4.430

model space - 5h̄Ω 3h̄Ω 1h̄Ω

�E�3�0�� [MeV] 82.521 72.952 75.331 83.390
rp [fm] 2.309 2.316 2.425
Q3� [e fm2] -7.942 -7.596 -6.936
E�3�0��Egs [MeV] 9.641 15.566 17.022 21.557

way that preserves as much predictive power as possible.
The 12C nucleus plays an important role [29] in neutrino
studies using liquid scintillator detectors. Also, there has
been considerable interest recently in parity-violating
electron scattering from �Jπ �T � � �0��0� targets, like
12C, to measure the strangeness content of the nucleon
[30, 31].

To solve for the properties of 12C, we employ the m-
scheme MFD code [19]. Here we give an extension of
our 12C study published in [10] to a 6h̄Ω space, where the
dimensions reach 32 million. We utilize h̄Ω � 15 MeV,
which lies in the range where the largest model-space
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FIGURE 2. (a) Excitation energy of the 3� state of 6Li for NN and NNN interactions. The dashed line marks experiment. All
results are for Nmax � 6. (b) The linear relation between E0 and ∆E2, for 3H with the AV18 NN potential. Symbols from right to
left correspond to Ñmax � 10�12� � ����20 for each model. The lines fit the results from Ñmax � 10 to 18�

results are least sensitive to h̄Ω [10].
In Table 2 we present the g.s. and 3�0 energies as

well as several other observable results calculated with
the CD-Bonn NN potential. While the energy of the g.s.
eigenstate increases with increasing model space, we find
that the relative level spacings are less dependent on
model-space size. In particular, the excitation spectrum is
remarkably stable when the model space is changed from
4h̄Ω to 6h̄Ω. In general, we obtain reasonable agreement
of the states dominated by 0h̄Ω configurations with ex-
perimental levels. Our obtained binding energy of about
85.6 MeV in the 6h̄Ω space is expected to decrease with
a further model-space enlargement. We estimate, how-
ever, that our result should be within better than 10% of
the exact solution for the two-body CD-Bonn NN poten-
tial. In order to reach the experimental binding energy, a
NNN interaction is likely necessary [4].

The two- or higher-h̄Ω dominated states, such as the
7.65 MeV 0�0 state, are not seen in the low-lying part of
our calculated spectra. Overall, the convergence rate of
the 2h̄Ω dominated states is quite different than that of
the ground state. We find a decreasing excitation energy
of the second 0�0 state. We expect this state eventually
to change its structure and become the cluster state.

To conclude this section, we note that it is desirable
to further increase the model-space sizes of these cal-
culations, so as to improve the accuracy of our predic-
tions and to enable us to investigate the properties of
heavier mass nuclei. We recently developed an extrap-
olation method for estimating the binding energies of
NCSM calculations without diagonalizing the complete
Hamiltonian in extremely large basis spaces [34]. It is
motivated by the observation that the binding energy
E0 � �H� evaluated in an approximate ground state must

approach the exact binding energy as the energy variance
∆E2 � �H2� � �H�2 vanishes [35]. From second-order
perturbation theory, we expect that there exists an ap-
proximate linear correlation between E0 and ∆E2, if ap-
proximate ground states are calculated from a Hamilto-
nian truncated from the large-space Hamiltonian by HO
quantum numbers Ñmax. This linear scaling is used to ex-
trapolate large-space results from smaller-space calcula-
tions in the context of the NCSM. We obtained the result
that the converged binding energy scales with the energy
variance ∆E2, as shown in Fig. 2(b) for 3H. Compared
to direct diagonalization, the extrapolation has an error
of a few tens of keV for 3H. A large value of Nmax will
further reduce the extrapolation error. We are presently
extending this procedure to heavier mass nuclei.

CONCLUSIONS

In this contribution, we described the ab initio NCSM
approach and discussed its application to the lightest
nuclei, 3H, 3He and 4He, for which we obtain well-
converged results. Due to the utility of Jacobi coordi-
nates in these few-nucleon calculations, we are able to
reach very large model spaces, i.e., 50h̄Ω for A � 3 and
18h̄Ω for A � 4. We also showed results for 6Li and 12C.
For the accurate description of p-shell nuclei not only
NN , but also NNN interactions are important. In order
to include the latter, we need three-body effective inter-
actions. These also improve the rate of convergence in
smaller model spaces, although more work remains to be
done regarding the role and properties of NNN and per-
haps NNNN effective interactions. We have shown how
the NCSM approach at the NNN cluster level can be



used to analyze the nature of different theoretical mod-
els for the NNN forces. Investigations of the renormal-
ization properties of other physical operators besides the
Hamiltonian indicate that at the two-body cluster level
the amount of renormalization is sensitive to the range
of the operator. We have established an extrapolation
method to extend our calculations to even larger model
spaces. It can serve as a way to estimate the uncertain-
ties of NCSM results arising from h̄Ω dependence and
choices of interactions. It should be noted that our calcu-
lations contain no adjustable parameters. The favorable
comparison with available data that we obtain is a conse-
quence of the underlying NN and NNN interactions.
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