
UCRL-JRNL-210250

Parallel Adaptive Mesh
Refinement

L. Diachin, R. Hornung, P. Plassmann, A. WIssink

March 7, 2005

Parallel Processing For Scientific Computing, Chapter 8



This document was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor the University of California nor 
any of their employees, makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or the University 
of California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or the University of California, and shall not be 
used for advertising or product endorsement purposes. 
 

Updated October 14, 2003 



Chapter 1

Parallel Adaptive Mesh
Refinement

1.1 Introduction

As large-scale, parallel computers have become more widely available and numer-
ical models and algorithms have advanced, the range of physical phenomena that
can be simulated has expanded dramatically. Many important science and engi-
neering problems exhibit solutions with localized behavior where highly-detailed
salient features or large gradients appear in certain regions which are separated by
much larger regions where the solution is smooth. Examples include chemically-
reacting flows with radiative heat transfer, high Reynolds number flows interacting
with solid objects, and combustion problems where the flame front is essentially a
two-dimensional sheet occupying a small part of a three-dimensional domain.

Modeling such problems numerically requires approximating the governing
partial differential equations on a discrete domain, or grid. Grid spacing is an
important factor in determining the accuracy and cost of a computation. A fine
grid may be needed to resolve key local features while a much coarser grid may
suffice elsewhere. Employing a fine grid everywhere may be inefficient at best and,
at worst, may make an adequately resolved simulation impractical. Moreover, the
location and resolution of fine grid required for an accurate solution is a dynamic
property of a problem’s transient features and may not be known a priori. Adaptive
mesh refinement (AMR) is a technique that can be used with both structured and
unstructured meshes to adjust local grid spacing dynamically to capture solution
features with an appropriate degree of resolution. Thus, computational resources
can be focused where and when they are needed most to efficiently achieve an
accurate solution without incurring the cost of a globally-fine grid. Figure 1.1 shows
two example computations using AMR; on the left is a structured mesh calculation
of a impulsively-sheared contact surface and on the right is the fuselage and volume
discretization of an RAH-66 Comanche helicopter [35]. Note the ability of both
meshing methods to resolve simulation details by varying the local grid spacing.

Figure 1.2 illustrates a typical increase in efficiency that AMR provides. Here,
the maximum element error is shown as a function of the number of grid points used

1



2 Chapter 1. Parallel Adaptive Mesh Refinement

Figure 1.1. Examples of AMR using structured and unstructured grids.
The left figure shows fine detail in an impulsively-sheared contact surface computed
using patch-based structured AMR. The right figure shows the accurate suface and
volume representation of the fuselage and engine cowl of an RAH-66 Comanche
helicopter with an unstructured AMR grid.

in a finite element simulation of a three-dimensional pressure vessel with a crack.
In the AMR case, grid refinement follows the propagation of a two-dimensional
localized feature through the material volume as it transitions from elastic to plastic
[8]. The plot compares calculations using a static, uniform grid and an adaptively
refined mesh. Note that AMR requires significantly fewer elements to achieve a
certain accuracy and that the slopes of lines through each set of points indicates that
the uniform mesh solution is converging less rapidly as elements are added. AMR
methods have also enabled simulation of problems that may be intractable with
other computational approaches. For example, work by Bell et al. [11] has shown
that highly-detailed features in laboratory-scale methane flames can be revealed
using AMR that have not been seen in other simulations. Also, Norman et al. [17]
use AMR in cosmology simulations that span twelve orders of magnitude of spatial
resolution.

The basic parallel AMR algorithm is given in Figure 1.3 (adapted from [44]).
Most implementations start with a uniform grid that must be partitioned across
the processors of a parallel computer. The PDE is solved and the grid locally
refined (and/or de-refined) as needed based on a posteriori estimates of the error
or smoothness of the solution. The refined mesh must then be repartitioned to
achieve a balanced load and the solution computed on the new grid configuration.
Often, the process of re-gridding continues iteratively until a specified error tolerance
is achieved or some specified finest grid spacing is reached. In time-dependent
problems, re-gridding is performed periodically during the discrete time stepping
sequence. The dynamic nature of the grid results in several difficulties for efficient
parallel computation including dynamic load balancing, data (re-)distribution, and
dynamic, complex data communication patterns. Unlike static grid computations,
these overheads cannot be amortized over the duration of the calculation. The



1.1. Introduction 3

Figure 1.2. On the left is a comparison of maximum element error as a
function of the number of grid vertices in an unstructured, tetrahedral mesh calcula-
tion. The AMR computation requires significantly fewer points to achieve a desired
accuracy. On the right is an image of the two-dimensional version of this problem
showing refinement around the transition region and areas of high elastic stress.

algorithms developed to meet these challenges are discussed in the remainder of this
paper for both Structured Adaptive Mesh Refinement (SAMR) and Unstructured
Adaptive Mesh Refinement (UAMR) methods.

Partition the initial mesh M0 on the processors of a parallel computer
Solve the PDE on M0 and estimate the error on each element
while the maximum element error is larger than a given tolerance do

Based on error estimates, determine a element or subgrid set, S, to
refine or de-refine/merge. Act on these elements or subgrids
and other elements/subgrids necessary to form the new mesh M

Repartition the mesh M to achieve a balanced load
Solve the PDE on M and estimate the error on each element

endwhile

Figure 1.3. An outline of a parallel adaptive solution method for PDEs

The remainder of the paper is organized as follows. We give an overview of
the SAMR and UAMR methods in §1.2 and §1.3. We describe the basic features
of each approach, along with issues associated with application development and
parallel implementation. We also discuss some of the more widely available software
packages for each. In §1.4 we compare and contrast the two methods to highlight the
differences between them. In §1.5, we describe some current investigations by the
research community and point out issues for future work including new algorithm
development, software interoperability, and scalability to thousands of processors.



4 Chapter 1. Parallel Adaptive Mesh Refinement

1.2 Structured Adaptive Mesh Refinement Methods
(SAMR)

Structured AMR (SAMR) methods are rooted in the work of Berger, Oliger, and
Colella [12, 13]. The term structured refers to the use of logically-rectangular grid
concepts in the implementation of the adaptive grid. SAMR utilizes a hierarchy
of levels of spatial, and often temporal, grid spacing with each level composed of
a union of logically-rectangular grid regions. SAMR codes generally adopt one of
two implementation strategies that differ with respect to management of the grid
hierarchy. We refer to them as the patch-based and tree-based approaches. While
numerical methods for uniform structured grids are generally used in SAMR appli-
cations, SAMR algorithms are much more complex because they must treat internal
mesh boundaries between coarse and fine levels properly to produce a consistent and
accurate solution.

Originally, SAMR was developed for shock hydrodynamics problems [12, 13].
Since then, SAMR methods have been developed for many other problems including:
compressible and incompressible fluid dynamics [2, 38, 57] porous media flow [50,
58], solid mechanics [27, 59], radiation diffusion and transport [34], laser-plasma
interaction [23], combustion [10, 22], cosmology [17], and astrophysics [26].

Overview of the Approach

In both patch-based and tree-based SAMR approaches, the adaptive computational
grid is organized as a hierarchy of grid levels, each representing a different grid
spacing. The coarsest level covers the entire domain and the levels are nested
so that each finer level covers a portion of the interior of the next coarser level.
The formation of each finer level begins by identifying coarser cells that require
refinement based on estimating the solution error or local smoothness. Then, these
cells are clustered into logically-rectangular grid regions, often called patches, to
form the finer level. Generally, boundaries of fine patches coincide with boundaries
of grid cells on the next coarser level to simplify inter-level data communication and
the construction of numerical approximations on the grid hierarchy.

In the patch-based scheme [12, 59], an integer index space for the computa-
tional domain emerges from the cells on the coarsest global grid level. Each finer
level in the hierarchy is a refinement of some subregion of this global index space.
Then, patch relationships can be described solely in terms of the level index spaces
and grid refinement relations between them. Grid patches may be described com-
pactly using only upper and lower cell indices. Thus, management of the patch
hierarchy involves simple bookkeeping and requires very little overhead. The low
storage requirements generally make it possible for each processor to own a com-
plete description of the hierarchy and processor assignments. Thus, parallel data
communication patterns can be computed efficiently in parallel without extra inter-
processor communication.

In the tree-based scheme [24, 48], the grid is also organized into a hierarchy
of refinement levels. However, in this case, the grid is usually decomposed into
relatively small blocks of grid cells. Each grid block is refined into a set of blocks of



1.2. Structured Adaptive Mesh Refinement Methods (SAMR) 5

fine cells and the grid configuration is managed using a tree-based data structure
that maintains explicit child-parent relationships between coarse and fine blocks.
While conceptually simple and easy to implement, the tree structure involves greater
storage overhead and potentially larger costs to adapt the grid than the patch-based
approach. In parallel, it is generally not possible to store the entire tree structure
on each processor so determining how best to split parent and child blocks across
processors is important and requires additional inter-processor communication.

Typically, patch-based SAMR employs contiguous, logically-rectangular grid
regions of various sizes and aspect ratios depending on the problem. Each of these
patches usually contains thousands of grid cells. In contrast, tree-based SAMR
usually employs relatively small, uniformly-sized blocks, each of which may contain
up to a few hundred cells. While small blocks make it more difficult to exploit
data locality on a large scale, they allow for more flexible grid configurations (e.g.,
fewer refined cells around local features) and easier computational load balancing.
However, the use of smaller blocks and patches increases data communication over-
head and storage overhead associated with ghost cells. In the end, both patch and
tree approaches present challenges for achieving optimal parallel load balancing and
scaling of SAMR applications.

Parallel SAMR

Parallel SAMR codes share aspects with non-adaptive, parallel, structured grid
codes. Both employ numerical operations on contiguous, logically-rectangular re-
gions of data and communication operations that pass information between the re-
gions to fill ghost cells. However, data communication patterns in SAMR codes are
dynamic and more complex because the grid configuration is irregular and changes
during the computation. Load balancing numerical and communication operations
are also critical for good parallel performance. While non-adaptive codes typically
incur the cost of grid generation, load balancing, and constructing data communi-
cation dependencies once, these operations are performed frequently by adaptive
codes. Thus, efficiency of these operations is paramount so that adaptive gridding
overheads are acceptable on large numbers of processors.

Parallel SAMR applications are sufficiently complex and costly to develop
that a number of libraries have been built to provide the underlying infrastruc-
ture for SAMR applications. While an exhaustive, detailed comparison of such
software is beyond the scope of this paper, a few of the more well-known libraries
include Chombo [21] and BoxLib [9] from Lawrence Berkeley National Laboratory,
GrACE [47] from Rutgers University, PARAMESH [42] from NASA Goddard, and
SAMRAI [33] from Lawrence Livermore National Laboratory.

These libraries support a wide variety of parallel SAMR applications, and all
provide programming abstractions for managing parallel data decomposition and
distribution on adaptive grid hierarchies. However, they differ in design and fea-
tures, especially with respect to parallel implementation. GrACE and PARAMESH
use the tree-based approach while BoxLib, Chombo, and SAMRAI are patch-based.
GrACE developers have extensively researched partitioning strategies for SAMR
using space-filling curves [46]. BoxLib is a pioneering SAMR software library and



6 Chapter 1. Parallel Adaptive Mesh Refinement

many basic concepts found in other SAMR libraries, including Chombo and SAM-
RAI, are due to BoxLib. Also, BoxLib has been the foundation of an impressive
history of SAMR algorithm and CFD application development [9].

SAMRAI and Chombo differ primarily in their design of data management
and parallel communication capabilities. Chombo provides data containers tem-
plated on the grid data type. Parallel data transfers are performed individually
by each data container object for the template parameter [21]. SAMRAI uses an
object-oriented composition design pattern for its data management and parallel
data communication infrastructure. The parallel data abstractions in SAMRAI are
extensions of communication schedule ideas found in the KeLP library [5]. SAMRAI
supports an arbitrary number of grid data objects within a single communication
operation so that schedule construction costs can be amortized over all data trans-
ferred at a communication phase of a calculation. Thus, all data moves in one
send-receive message pair per processor pair independent of the number and types
of data objects involved. Also, parallel data communication functionality supports
new data types, such as irregular user-defined particle data structures, without
modifying or recompiling the library [33].

Figure 1.4. Scaling properties of a three-level scaled SAMR simulation of
a moving advecting sinusoidal front. Re-meshing occurs every two time-steps. Al-
though the problem scales reasonably, adaptive gridding costs are clearly less scalable
than numerical operations. Work to improve scaling of adaptive gridding operations
is ongoing.

A particularly critical issue in achieving good parallel performance of SAMR
calculations is dynamic load balancing. Several researchers have proposed schemes
that have shown to be effective. Steensland [56] developed partitioning strategies
to optimize load balance and/or minimize data migration costs using space-filling
curves in the GrACE library. Space-filling curves are also used in PARAMESH.
Lan et al. [39] implemented a scheme based on sensitivity analysis of loads for
the Enzo [17] code. Rendleman [18] proposed a knapsack algorithm to efficiently
distribute different-sized patches, which is used in the BoxLib and Chombo li-
braries. SAMRAI provides greedy algorithms for spatially-uniform and spatially



1.3. Unstructured Adaptive Mesh Refinement Methods (UAMR) 7

non-uniform workloads and a space-filling curve algorithm to help reduce interpro-
cessor communication.

In addition to load balancing, data redistribution and regeneration of data
dependencies as the adaptive grid changes is very important for parallel scaling.
Scaling studies of SAMR calculations with SAMRAI revealed that these overhead
costs can be negligible on a few hundred processors, but become unacceptably large
on 1000 or more processors [64]. This observation lead to the investigation of com-
binatorial techniques for reducing the operational complexity of adaptive gridding
operations and improved scaling of large-scale parallel applications. Figure 1.4
shows the scaling properties for a linear advection problem run using SAMRAI.
While this problem is particularly simple numerically—a typical physical problem
would require much more computationally-intensive routines—it exposes the costs
associated with adaptive gridding operations. Although numerical operations are
minimal and regridding occurs every two time-steps on each grid level, nearly opti-
mal scaling is achieved using more than 1000 processors. The University of Chicago
ASCI Center FLASH code [26] which uses the PARAMESH library has also demon-
strated scaling to several thousand processors [19].

1.3 Unstructured Adaptive Mesh Refinement
Methods (UAMR)

As with SAMR methods, the goal of AMR strategies for unstructured meshes is
place more grid points where the solution error is large. Unlike SAMR methods,
the meshes used are called unstructured because the local connectivity of elements
can vary. Another difference with SAMR methods is that typically the mesh must be
conforming—the face of an element cannot be adjacent to a subdivided element face.
Given the restriction to conforming meshes, the majority of unstructured AMR al-
gorithms have concentrated on simplicial elements (tetrahedra in three dimensions),
and we make this assumption in this section. Unstructured mesh algorithms [14]
and adaptive strategies [36] have been extensively studied. In the following sec-
tion we present an overview of UAMR methods from the perspective of developing
scalable parallel implementations of these algorithms. In particular, we focus on
aspects of these algorithms that exhibit commonality with SAMR methods.

Overview of the Approach

Given the constraint that unstructured meshes must remain conforming, mesh re-
finement algorithms broadly consist of two steps. First, elements are marked by an
error estimation method for refinement (or de-refinement) and then these marked
elements are subdivided (or merged). Second, the resulting non-conforming mesh is
subsequently modified to be remain conforming. The most popular approaches for
refinement for simplicial meshes include regular refinement [6] and element bisection
[52, 53]. The difference between these two approaches is how they treat an element
marked for refinement. With regular refinement, all element edges are simultane-
ously bisected, producing four triangles from one in two dimensions. With bisection,



8 Chapter 1. Parallel Adaptive Mesh Refinement

only one edge is bisected at a time, producing two triangles in two dimensions, or
two tetrahedra in three dimensions.

The problem with both of these schemes, is that following the refinement,
neighboring elements become non-conforming as they contain a subdivided edge.
To modify the mesh so that all elements are valid, the refinement must propagate
through the mesh by additional refinement until all elements are valid. Although
this propagation appears problematic, in practice it is typically limited and serves
an additional property of maintaining mesh quality. In Figure 1.5 we give pseu-
docode for the bisection algorithm proposed by Rivara [52]. The propagation of
the refinement of the mesh resulting from invalid elements is illustrated for a two-
dimensional mesh in Figure 1.6. This process can be extended to three-dimensional,
tetrahedral meshes.

i = 0
Qi = a set of elements marked for refinement
Ri = ∅
while (Qi ∪ Ri) 6= ∅ do

bisect each element in Qi across its longest edge
bisect each element in Ri across a nonconforming edge
all incompatible elements embedded in Qi are placed in Ri+1

all other incompatible elements are placed in Qi+1

i = i + 1
endwhile

Figure 1.5. The bisection algorithm

Figure 1.6. From left to right the process of the bisection algorithm. In
the initial mesh the shaded elements are refined; subsequently the shaded elements
are refined because they are invalid.

Like SAMR methods the error estimation procedures for UAMR methods is
done via a posteriori error estimates [4]. The advantage of this type of error es-
timation scheme is that for elliptic problems these estimates bound the true error
asymptotically, and their computation involves only local element information [7].
However, unlike SAMR methods, many of the technical aspects of unstructured
AMR algorithms are based on mesh generation methods. For example, point in-
sertion schemes, where new mesh vertices are placed at edge bisectors or element
circumcenters are a fundamental tool for both unstructured mesh generation and



1.3. Unstructured Adaptive Mesh Refinement Methods (UAMR) 9

adaptive refinement.
A central concern for both mesh generation and mesh refinement methods is

their ability to preserve mesh quality—typically this means maintaining well shaped
elements. This problem is especially acute when it comes to the accurate represen-
tation of non-trivial (e.g., curved) boundaries [36]. Incorporating a combination
of mesh improvement tools such as iterative vertex insertion, flip exchanges, and
vertex smoothing into a single mesh refinement loop can be effective [14, 16, 25].
Implementation of these algorithms can be a complex task in three dimensions. For
example, the process of flip exchanges for tetrahedra to improve mesh quality has a
number of significant technical issues that have been extensively studied [40]. Point
insertion schemes for adaptive refinement have also been studied [41].

Parallel UAMR

The basic approach for parallel UAMR methods is given in Figure 1.3. There are two
broad areas to consider for these methods. First, the parallelization of the adaptive
mesh refinement algorithm in a manner that ensures a high-quality, conforming
mesh. And second, the issue of re-partitioning this mesh as it changes to ensure
good load balancing without incurring too much communication overhead.

In early work on parallel UAMR methods, Williams [62, 63] gave an approach
for parallel mesh refinement and implemented it in the parallel software package
DIME. To ensure a consistent distributed mesh data structure, a parallel voxel
database was maintained, using vertex coordinate information to help resolve point
identity and element neighborhood information. However, a running time analysis
of the algorithm was not given, and there are significant issues in maintaining a
consistent distributed data structure for the mesh.

An alternative approach [37], uses the refinement of independent sets of ele-
ments to ensure that the distributed mesh data structure remains consistent during
parallel refinement. A set of mesh elements are said to be independent if they do
not share an edge. The independent sets can be efficiently chosen in parallel by a
randomization strategy. Random numbers are assigned to every element marked for
refinement; a element is in the independent set if its random number is larger than
any neighboring marked elements. An analysis and computational experiments for
this approach exhibit good parallel scaling to O(500) processors [37].

The implementation of parallel software implementations of UAMR algorithms
is a complex task, and several systems have been developed to support these algo-
rithms. For example, the Parallel Algorithm Oriented Mesh Database (AOMD)
developed at RPI is a mesh management database that provides a variety of ser-
vices to mesh applications. Advanced features of AOMD include a flexible mesh
representation, conforming/non-conforming mesh adaptation both in serial and par-
allel, and global and local mesh migration. AOMD supports mesh load balance with
Zoltan [15], serial and parallel mesh I/O, and dynamic mesh usage monitoring. The
software is written is in C++ and supports a wide variety of element types [51].

Another current system is NWGrid, a library of user-callable tools that pro-
vides mesh generation, mesh optimization, and dynamic mesh maintenance in three
dimensions. A aspect of NWGrid is that geometric regions within arbitrarily com-



10 Chapter 1. Parallel Adaptive Mesh Refinement

plicated geometries can be defined as combinations of bounding surfaces, where the
surfaces are described analytically or as collections of points in space. A variety
of techniques for distributing points within these geometric regions are provided.
NWGrid provides grid partitioning functions, reconnection, mesh quality improve-
ment, and remapping [60].

SUMAA3d is a library of scalable algorithms for parallel, adaptive simplicial
mesh refinement for two- and three-dimensional unstructured meshes. The AMR
scheme is based on edge bisection to refine and de-refine elements in conjunction
with Rivara’s technique for removing nonconforming points from the mesh. A ge-
ometric mesh partitioning heuristic used to generate a partition tree that strives
to minimize both latency and transmission communication costs on distributed-
memory computers. The code also includes parallel mesh quality improvement
capabilities and has been used in a number of finite element simulations [36, 37].

A common aspect of all of these parallel UAMR implementations is that their
efficient parallel performance depends critically on good mesh partitioning. Ini-
tially, the mesh must be partitioned to equalize the load on each processor and
to minimize the number of elements that share edges but are assigned to different
processors (often referred to as ghost elements). As the computation proceeds, the
element refinement will not be balanced—some processors are more likely to have
refinement. Thus, the mesh must be dynamically rebalanced to maintain the same
load distribution as the initial partitioning, while minimizing the interprocessor
communication required to move elements between processors.

A number of effective partitioning heuristics have been developed; overall these
heuristics can be characterized as being geometric based (using the geometric posi-
tions of mesh points) or graph based (using the connectivity structure of the mesh).
Mesh migration methods have also been proposed; however, it is generally more ef-
ficient in practice to completely repartition the mesh when the element assignments
to processors becomes unbalanced. Several software systems have been developed
that implement these algorithms including two widely used packages: Zoltan [15]
and ParMetis [55].

1.4 A Comparison of SAMR and UAMR

Historically, SAMR and UAMR methods have been championed based on their rel-
ative strengths when used in particular application areas; a comparison of some of
the relevant properties is summarized in Table 1.1. As discussed in §1.2, SAMR
meshes are composed of a hierarchy of regular grids. There are several advantages
to this approach compared to the UAMR approach including efficient storage of the
mesh connectivity, fast and efficient computational kernels based on finite difference
and finite volume methods, and the ability to easily reuse legacy code developed
for Cartesian grids. One of the historical disadvantages of the SAMR approach is
that complex geometries are difficult to accurately model, although this is being
addressed with current research highlighted in §1.5. In constrast, complex geome-
tries are typically easier to model using UAMR methods because of the increased
flexibility in mesh generation. In addition, because all elements are at the same



1.4. A Comparison of SAMR and UAMR 11

Table 1.1. A comparison of SAMR and UAMR methods

Property SAMR UAMR

Mesh Hierarchy of grids Single level
Configuration of elements

Mesh Regular: Implicit ijk Irregular: explicit connectivity
Connectivity connectivity information must be stored
Discretization Typically finite difference/ Typically finite element/

Method finite volume finite volume
Kernel Typically highly efficient Typically less efficient

Efficiency use of contiguous arrays because of indirect addressing
Refinement Internal boundary Maintaining mesh quality

Issues discretization
Over-Refinement Clustering to form Propagation to maintain

Potential patches conforming meshes
Decomposition Blocks of many elements Individual elements

Granularity
Partitioning Space filling curves and Graph- or geometry-based
Heuristics bin packing schemes

Repartitioning Create a new level Repartition entire mesh or
Strategy and move the data migration strategies

level, legacy physics modules that incorporate finite-element and finite-volume dis-
cretization schemes can often be used with no modification when placed into an
UAMR framework. However, because the mesh is unstructured, it often requires
more resources for storage of the connectivity and geometry information and the
computational kernels are typically not as efficient because indirect addressing is
often used.

In both SAMR and UAMR methods the grid can be over-refined, and more
elements subdivided than necessary according to the error estimation process. In
the case of SAMR meshes, this is due to the need to create rectangular patches; for
UAMR meshes this is due to the need to propagate the refinement to create con-
forming meshes. Each technique also has discretization issues that must be consid-
ered in the refinement process. For example, for UAMR meshes, certain techniques
for dividing elements can lead to elements with arbitrarily small angles which can
adversely affect discretization accuracy. For SAMR meshes, special discretization
techniques must be used at the internal coarse/fine interfaces to maintain stability
and accuracy.

Parallelization of the two methods offer different challenges. Parallel SAMR
methods work with grid blocks which can contain hundreds or thousands of ele-
ments. Typically space-filling or bin-packing algorithms are used to partition the
data and when a new level is created, the blocks are distributed to the processors of
the parallel computer. Because the level of granularity is large, there can be chal-



12 Chapter 1. Parallel Adaptive Mesh Refinement

lenges associated with achieving good load balance on a parallel computer when the
number of blocks does not greatly exceed the number of processors. This is much
less of a problem for UAMR methods because partitioning is done on the level of
individual elements. However, when a UAMR mesh is refined, it is not a matter
of distributing the newly created data; typically the entire mesh is repartitioned or
mesh migration strategies are used to maintain data locality and good load balance.

1.5 Recent Advances and Future Research Directions

To address new simulation problems, researchers are developing new algorithms
that combine AMR with other solution methods. In §1.5.1, we discuss some of
these approaches and the issues they present for parallel computing. To make the
development of new methods easier in the future, researchers are developing tools
to enable software to interoperate in new ways. In §1.5.2, we describe an effort to
define a common abstract data model and interfaces for meshing and discretization
tools. In §1.5.3, we discuss issues associated with scaling of AMR applications on
new parallel architectures.

1.5.1 New AMR algorithms and parallel computing issues

AMR technology is being combined with other numerical techniques to expand
the range of applicability of adaptive grid methods. Examples include combining
AMR with ALE hydrodynamics methods [3] and coupling continuum and atomistic
models via AMR to increase the range of applicability of those models. Other efforts
combine structured AMR with embedded boundary methods or overlapping grids
to treat problems with complex geometries. We highlight a few recent developments
and discuss new research issues they raise.

Figure 1.7. Examples of new AMR applications. The left figure shows a
continuum-atomistic hybrid coupling using AMR. The right figure shows an embed-
ded boundary SAMR mesh around buildings in Manhattan used for flows in urban
environments.



1.5. Recent Advances and Future Research Directions 13

Traditionally, AMR has been used to increase grid resolution for numerical
methods based on continuum equations. However, many continuum models lack
key physical processes that occur at fine scales and which are most accurately mod-
eled using atomistic methods. However, atomistic schemes are often too expensive
to apply globally in a computation. AMR techniques can be used to focus the ap-
plication of atomistic methods in regions where they are needed [28, 54, 61]. The
picture on the left in Figure 1.7 illustrates an approach where a continuum fluid
model is coupled to a Direct Simulation Monte Carlo (DSMC) model using AMR
to resolve molecular diffusion along a multi-fluid interface.

Another avenue of development that is being applied to problems in aerospace,
geophysics, biology, and others combines AMR with embedded boundaries [1, 43,
45, 49]. These methods provide a viable alternative to unstructured and mapped
grid methods for applications involving complex geometries. The picture on the
right in Figure 1.7 shows an adaptive embedded boundary grid around a complex
cityscape used for atmospheric calculations. Another technique for treating complex
geometries with structured grids is to combine AMR with overlapping curvilinear
grids [31]. This approach yields an accurate boundary representation similar to
unstructured grids, yet allows structured grid numerical methods to accurately re-
solve features near the boundaries. Recently, this approach has been used to solve
reactive flows in engineering geometries [32].

Apart from numerical challenges, these and other new applications of AMR
technology add new considerations for parallel computing. For example, continuum-
particle hybrids combine irregular particle data data structures and standard array-
based data, and embedded boundary methods employ additional data in grid regions
near the boundary. These approaches introduce additional complexity for dynamic
load balancing, due to spatially non-uniform workloads, and parallel data communi-
cation. Traditionally, many load balancing schemes have assumed that the amount
of work required to update the solution in each grid cell is uniform over the entire
grid. However, the number of particles associated with a grid cell in an atomistic
method typically varies based on local physics. Also, embedded boundary methods
require extra numerical operations near boundaries to update the solution. New
strategies for balancing non-uniform workloads are being developed to treat these
issues. The unstructured grid research community has developed a number of use-
ful schemes for partitioning non-uniform workloads and these techniques may prove
useful for structured grid partitioning strategies.

1.5.2 Software Interoperability

As applications and algorithms become increasingly complex, there is a growing
need to combine tools developed by different groups into a single application code.
Most of the tools for parallel adaptive mesh refinement highlighted in §1.2 fall into
the software framework category as they provide an overarching infrastructure for
AMR computations. Application scientists must buy into the entire framework to
take advantage of the meshing services provided. A drawback of this approach is
that it can be difficult to incorporate new or complementary tools developed outside
the framework or to experiment with different approaches to determine which is best



14 Chapter 1. Parallel Adaptive Mesh Refinement

suited for a given application. In general, interchanging meshing technologies, or
combining different technologies together, is often a labor intensive and error prone
process that results in a lengthy diversion from the central scientific investigation.

The recognition of this fundamental problem has led several groups to de-
velop the technologies needed to create inter-operable and interchangeable software
components for scientific computing. Components interact with each other only
through well defined interfaces and are a logical means of facilitating the devel-
opment of complex applications using software developed by independent groups.
Three of the most notable examples of scientific component development are the
Cactus Code group [30], the Common Component Architecture Forum [20], and
the Terascale Simulation Tools and Technologies (TSTT) DOE SciDAC center [29].
The former two develop general environments for software components for scien-
tific computing; the latter effort is focused on the development of meshing and
discretization components, and we highlight that effort here.

The TSTT data model covers a broad spectrum of mesh types and function-
alities, ranging from a non-overlapping, connected set of entities to a collection of
meshes that may or may not overlap to cover the computational domain. A key
aspect of the TSTT approach is that it does not enforce any particular data struc-
ture or implementation within the components, only that certain questions about
the mesh data can be answered through calls to the component interface. The
challenges inherent in this type of effort include balancing performance of the in-
terface with the flexibility needed to support a wide variety of mesh types. Using
these mesh component interfaces, TSTT researchers have developed new hybrid
AMR technologies such as SAMR/front-tracking algorithms used in diesel jet spray
break-up simulations and astrophysics calculations and insertable, parallel UAMR
libraries used in accelerator design.

1.5.3 Scalability

AMR codes have shown that they scale effectively to O(1000) processors, as pre-
viously discussed. In particular, AMR is generally considered to be effective on
cluster-based parallel systems in common use today. However, considerable chal-
lenges exist for AMR application development to utilize new large-scale parallel
architectures such as the IBM BlueGene/L at Lawrence Livermore National Lab-
oratory and the Cray Red Storm at Sandia National Laboratory. These platforms
have at least an order of magnitude more processors (30 to 120 thousand), with less
memory per processor, than systems in routine use today. Algorithms used to dy-
namically load balance adaptive applications will have to be extended to efficiently
operate on these larger processor systems. At the same time, current data decom-
positions used to maintain adaptive grid structures will no longer be acceptable
within the small amount of memory available.

As AMR researchers begin to address scaling on ever larger parallel computer
systems, it is likely that technologies and algorithms from different AMR method-
ologies will merge. For example, researchers have developed data structures based
on graphs and trees, typically used in tree-based and unstructured AMR, to better
manage spatial locality in patch-based AMR [64]. These schemes have significantly



1.6. Conclusions 15

improved the efficiency and scaling of communication operations on AMR grids.
Other graph-based partitioning algorithms, which have traditionally been used in
unstructured AMR, are being explored for tree-based SAMR [56]. These examples
show that algorithms developed for one AMR approach can be used to improve the
performance of another. The ultimate challenge for both SAMR and UAMR meth-
ods will be to achieve the high degree of scalability necessary to take full advantage
of a new generation of massively parallel computers.

1.6 Conclusions

Adaptive Mesh Refinement (AMR) methods have proven to be a powerful technique
for scientific simulations whose solutions exhibit dynamic, localized features. Two
broadly defined approaches, Structured AMR (SAMR) and Unstructured AMR
(UAMR) have developed their own set of algorithms and computational techniques.
However, with the increasing availability of high-performance parallel computers,
there is significant interest in the development of interoperable parallel algorithms
and software to support these AMR methods.

In this paper we have reviewed the current state-of-the-art for both parallel
SAMR and UAMR algorithms and existing software implementations. One of the
most interesting current areas of research in these algorithms has been the crossover
of partitioning techniques commonly used for UAMR methods to the SAMR com-
munity. With the use of large numbers (1,000s) of processors, the development of
methods that are scalable for such machines is essential. A final important area
of work has been to develop interoperable software as exemplified by the SciDAC
TTST project. As scientists consider more complex multi-scale, multi-physics sim-
ulations, the ability to coordinate software efforts with this sort of interoperability
will become increasingly more important.

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by
University of California Lawrence Livermore National Laboratory under contract
number W-7405-Eng-48. This work was partially supported by NSF grants DGE-
9987589, CTS-0121573, EIA-0202007, and ACI-0305743.



16 Chapter 1. Parallel Adaptive Mesh Refinement



Bibliography

[1] M. Aftosmis, J. Melton, and M. Berger, Adaptation and surface mod-
eling for cartesian mesh methods, in Proceedings of the 12th AIAA Computa-
tional Fluid Dynamics Conference, San Diego, CA, 1995. AIAA Paper 95-1725.

[2] A. Almgren, J. Bell, P. Colella, L. Howell, and M. Welcome, A
conservative adaptive projection method for the variable density incompressible
Navier-Stokes equations, Journal of Computational Physics, 142 (1998), pp. 1–
46.

[3] R. W. Anderson, N. S. Elliott, and R. B. Pember, An arbitrary
Lagrangian-Eulerian method with adaptive mesh refinement for the solution of
the Euler equations, Journal of Computational Physics, 199 (2004), pp. 598–
617.

[4] I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite ele-
ment computations, SIAM Journal of Numerical Analysis, 15 (1978), pp. 736–
754.

[5] S. B. Baden, The KeLP programming system. See
http://www-cse.ucsd.edu/groups/hpcl/scg/kelp.html.

[6] R. E. Bank, PLTMG: A Software Package for Solving Elliptic Partial Dif-
ferential Equations. Users’ Guide 6.0, SIAM Publications, Philadelphia, PA,
1990.

[7] R. E. Bank, A. H. Sherman, and A. Weiser, Refinement algorithms
and data structures for regular local mesh refinement, in Scientific Comput-
ing, R. Stepleman et al., ed., IMACS/North-Holland Publishing Company,
Amsterdam, 1983, pp. 3–17.

[8] W. J. Barry, M. T. Jones, and P. E. Plassmann, Parallel adaptive mesh
refinement techniques for plasticity problems, Advances in Engineering Soft-
ware, 29 (1998), pp. 217–229.

[9] J. Bell and C. Rendleman, CCSE Application Suite. See
http://seesar.lbl.gov/CCSE/Software/index.html.

17



18 Bibliography

[10] J. B. Bell, M. S. Day, C. A. Rendleman, S. E. Woosley, and M. A.

Zingale, Adaptive low mach number simulations of nuclear flame micro-
physics, Journal of Computational Physics, 195 (2004), pp. 677–694.

[11] J. B. Bell, M. S. Day, I. G. Shepherd, M. Johnson, R. K. Cheng, V. E.

Beckner, M. J. Lijewski, and J. F. Grcar, Numerical simulation of a
laboratory-scale turbulent v-flame, Tech. Rep. LBNL-54198, Lawrence Berkeley
National Laboratory, 2003.

[12] M. Berger and P. Colella, Local adaptive mesh refinement for shock hy-
drodynamics, Journal of Computational Physics, 82 (1989), pp. 64–84.

[13] M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic par-
tial differental equations, Journal of Computational Physics, (1984), pp. 484–
512.

[14] M. W. Bern and P. E. Plassmann, Mesh generation, in Handbook of Com-
putational Geometry, J. Sack and J. Urrutia, eds., Elsevier Scientific, 2000,
pp. 291–332.

[15] E. Boman, K. Devine, R. Heaphy, B. Hendrickson, W. Mitchell,

M. St. John, and C. Vaughan, Zoltan home page. See
http://www.cs.sandia.gov/Zoltan, 1999.

[16] F. J. Bossen and P. S. Heckbert, A pliant method for anisotropic mesh
generation, in 5th Intl. Meshing Roundtable, Oct. 1996, pp. 63–74. See
http://www.cs.cmu.edu/~ph.

[17] G. L. Bryan, T. Abel, and M. L. Norman, Achieving extreme resolution
in numerical cosmology using adaptive mesh refinement: resolving primordial
star formation, in Proceedings of the 2001 ACM/IEEE conference on Super-
computing (CDROM), Denver, CO, 2001, ACM.

[18] M. L. C.A. Rendleman, V.E. Beckner, Parallelization of an adaptive mesh
refinement method for incompressible fluid flows, International Parallel and
Distributed Processing Symposium, (2000).

[19] A. C. Calder, B. C. Curtis, L. J. Dursi, B. Fryxell, G. Henry,

P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. X. Timmes, H. M.

Tufo, J. W. Turan, and M. Zingale, High performance reactive fluid flow
simulations using adaptive mesh refinement on thousands of processors, in Pro-
ceedings of Supercomputing ’00, IEEE Computer Society Press, 2000.

[20] CCA Forum homepage, 2004. See http://www.cca-forum.org/.

[21] P. Colella, D. Graves, T. Ligocki, D. Martin, D. Serafini, and

B. V. Straalen, Chombo software package for amr applications design
document, report, Applied Numerical Algorithms Group, NERSC Division,
Lawrence Berkeley National Laboratory, Berkeley, CA, September 2003. See
http://seesar.lbl.gov/ANAG/chombo/index.html.



Bibliography 19

[22] M. S. Day and J. B. Bell, Numerical simulation of laminar reacting flows
with complex chemistry, Combust. Theory Modeling, 4 (2000), pp. 535–556.

[23] M. R. Dorr, F. X. Garaizar, and J. A. F. Hittinger, Simulation of
laser plasma filamentation using adaptive mesh refinement, Journal of Compu-
tational Physics, 177 (2002), pp. 233–263.

[24] J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D.

Teresco, and L. H. Ziantz, Adaptive local refinement with octree load-
balancing for the parallel solution of three-dimensional conservation laws, Jour-
nal of Parallel and Distributed Computing, 47 (1997), pp. 139–152.

[25] L. Freitag and C. Ollivier-Gooch, Tetrahedral mesh improvement using
face swapping and smoothing, International Journal for Numerical Methods in
Engineering, 40 (1997), pp. 3979–4002.

[26] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q.

Lamb, P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo, Flash: An
adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear
flashes, Astrophysical Journal Supplement, 131 (2000), pp. 273–334.

[27] X. Garaizar and J. Trangenstein, Adaptive mesh refinement and front
tracking for shear bands in granular flow, SIAM Journal on Scientific Comput-
ing, 20 (1999), pp. 750–779.

[28] A. L. Garcia, J. B. Bell, W. Y. Crutchfield, and B. J. Alder, Adap-
tive mesh and algorithm refinement, Journal of Computational Physics, 154
(1999), pp. 134–155.

[29] J. Glimm, D. Brown, and L. Freitag, Terascale Simulation Tools and
Technologies (TSTT) Center, 2001. See http://www.tstt-scidac.org.

[30] T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke, E. Sei-

del, and J. Shalf, The cactus framework and toolkit: Design and ap-
plications, in Vector and Parallel Processing - VECPAR’2002, 5th Interna-
tional Conference, Lecture Notes in Computer Science, 2002. also available at
http://www.cactuscode.org/Showcase/Publications.html.

[31] W. D. Henshaw, Overture: An object-oriented framework for overlap-
ping grid applications, in Proceedings of the 32nd American Institute
for Aeronautics Fluid Dynamics, St. Louis, MO, June 24-27 2002. See
http://www.llnl.gov/CASC/Overture.

[32] W. D. Henshaw and D. W. Schwendeman, An adaptive numerical scheme
for high-speed reactive flow on overlapping grids, Journal of Computational
Physics, 191 (2003), pp. 420–447.

[33] R. D. Hornung and S. R. Kohn, Managing application complex-
ity in the samrai object-oriented framework, Concurrency and Compu-
tation: Practice and Experience, 14 (2002), pp. 347–368. See also
http://www.llnl.gov/CASC/SAMRAI.



20 Bibliography

[34] L. H. Howell and J. Greenough, Radiation diffusion for multi-fluid eule-
rian hydrodynamics with adaptive mesh refinement, Journal of Computational
Physics, 184 (2003), pp. 53–78.

[35] S. Jindal, L. Long, and P. Plassmann, Large eddy simulations for complex
geometries using unstructured grids, in Proceedings of the 34th AIAA Fluid
Dynamics Conference, Portland, OR, 2004. AIAA Paper 2004-2228.

[36] M. T. Jones and P. E. Plassmann, Adaptive refinement of unstructured
finite-element meshes, Finite Elements in Analysis and Design, 25 (1997),
pp. 41–60.

[37] , Parallel algorithms for adaptive mesh refinement, SIAM Journal on Sci-
entific Computing, 18 (1997), pp. 686–708.

[38] R. Klein, J. Bell, R. Pember, and T. Kelleher, Three dimensional
hydrodynamic calculations with adaptive mesh refinement of the evolution of
Rayleigh Taylor and Richtmyer Meshkov instabilities in converging geometry:
Multi-mode perturbations, in Proceedings of the 4th International Workshop on
Physics of Compressible Turbulent Mixing, Cambridge, England, March 1993,
1993.

[39] Z. Lan, V. Taylor, and G. Bryan, Dynamic load balancing for adaptive
mesh refinement applications: Improvements and sensitivity analysis, Com-
puter Physics Communications, 126 (2000), pp. 330–354.

[40] A. Liu and B. Joe, Quality local refinement of tetrahedral meshes based on
bisection, SIAM Journal on Scientific Computing, 16 (1995), pp. 1269–1291.

[41] R. Löhner, An adaptive finite element scheme for transient problems in CFD,
Computer Methods in Applied Mechanics and Engineering, 61 (1987), pp. 323–
338.

[42] P. MacNeice, K. M. Olson, C. Mobarry, R. deFainchtein, and

C. Packer, Paramesh : A parallel adaptive mesh refinement community
toolkit, Computer Physics Communications, 126 (2000), pp. 330–354. See
http://ct.gsfc.nasa.gov/paramesh/Users manual/amr.html.

[43] P. McCorquodale, P. Colella, and H. Johansen, A cartesian grid em-
bedded boundary method for the heat equation on irregular domains, Journal of
Computational Physics, 173 (2001), pp. 620–635.

[44] W. F. Mitchell, A comparison of adaptive refinement techniques for elliptic
problems, ACM Transactions on Mathematical Software, 15 (1989), pp. 326–
347.

[45] D. Modiano and P. Colella, A higher-order embedded boundary method
for time-dependent simulation of hyperbolic conservation laws, in Proceedings
of the ASME 2000 Fluids Engineering Division Summer Meeting, Boston, MA,
June 2000. ASME Paper FEDSM00-11220.



Bibliography 21

[46] M. Parashar, GrACE–Grid Adaptive Computational Engine. See
http://www.caip.rutgers.edu/~parashar/TASSL/.

[47] M. Parashar and J. C. Browne, System engineering for high performance
computing software: The hdda/dagh infrastructure for implementation of par-
allel structured adaptive mesh refinement, in IMA Volume on Structured Adap-
tive Mesh Refinement Grid Methods, 2000, pp. 1–18.

[48] , On partitioning dynamic adaptive grid hierarchies, in Proceedings of the
29th Annual Hawaii International Conference on System Sciences, Maui, HI,
January, 1996, IEEE Computer Society Press, pp. 604–613.

[49] R. Pember, J. Bell, P. Colella, W. Crutchfield, and M. Welcome,
An adaptive cartesian grid method for unsteady compressible flow in irregular
regions, Journal of Computational Physics, 120 (1995), pp. 278–304.

[50] R. Propp, P. Colella, W. Crutchfield, and M. Day, A numerical
model for trickle-bed reactors, Journal of Computational Physics, 165 (2000),
pp. 311–333.

[51] J.-F. Remacle and M. Shephard, An algorithm oriented mesh database, In-
ternational Journal for Numerical Methods in Engineering, 58 (2003), pp. 349–
374.

[52] M.-C. Rivara, Algorithms for refining triangular grids suitable for adaptive
and multigrid techniques, International Journal for Numerical Methods in En-
gineering, 20 (1984), pp. 745–756.

[53] M.-C. Rivara and C. Levin, A 3-D refinement algorithm suitable for adap-
tive and multigrid techniques, Communications in Applied Numerical Methods,
8 (1992), pp. 281–290.

[54] R. E. Rudd and J. Q. Broughton, Concurrent coupling of length scales in
solid state systems, Phys Status Solidi B, 217 (2000), p. 251.

[55] K. Schloegel, G. Karypis, and V. Kumar, ParMETIS, 1999. See
http://www-users.cs.umn.edu/~karypis/metis/parmetis/index.html.

[56] J. Steensland, S. Chandra, and M. Parashar, An application cen-
tric characterization of domain-based sfc partitioners for parallel samr, IEEE
Transactions on Parallel and Distributed Systems, (2002), pp. 1275–1289.

[57] M. Sussman, A. Almgren, J. Bell, P. Colella, L. Howell, and

M. Welcome, An adaptive level set approach for incompressible two-phase
flows, Journal of Computational Physics, 148 (1999), pp. 81–124.

[58] J. Trangenstein and Z. Bi, Multi-scale iterative techniques and adaptive
mesh refinement for flow in porous media, Advances in Water Resources, 25
(2002), pp. 1175–1213.



22 Bibliography

[59] J. A. Trangenstein, Adaptive mesh refinement for wave propagation in non-
linear solids, SIAM Journal on Scientific and Statistical Computing, 16 (1995),
pp. 819–839.

[60] H. E. Trease, L. L. Trease, and J. D. Fowler, The P3D Code Develop-
ment Project. See http://www.emsl.pnl.gov/nwgrid/.

[61] H. S. Wijesinghe, R. D. Hornung, A. L. Garcia, and N. G. Had-

jiconstantinou, 3-dimensional hybrid continuum-atomistic simulations for
multiscale hydrodynamics, J. Fluid Eng., 126 (2004), pp. 768–777.

[62] R. Williams, DIME: Distributed Irregular Mesh Environment, California In-
stitute of Technology, 1990.

[63] , A dynamic solution-adaptive unstructured parallel solver, Report CCSF-
21-92, Caltech Concurrent Supercomputing Facilities, California Institute of
Technology, Pasadena, Calif., 1992.

[64] A. M. Wissink, D. Hysom, and R. D. Hornung, Enhancing scalability of
parallel structured AMR calculations, in Proceedings of the 17th ACM Inter-
national Conference on Supercomputing (ICS03), San Francisco, June 2003,
pp. 336–347.


