
UCRL-CONF-210717

The Radiation Transport
Conundrum in Radiation
Hydrodynamics

J. I. Castor

March 21, 2005

Astrophysical Fluid Dynamics
Los Angeles, CA, United States
April 4, 2005 through April 9, 2005



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



The Radiation Transport Conundrum in
Radiation Hydrodynamics

presented to workshop

Astrophysical Fluid Dynamics
Institute for Pure and Applied Mathematics

University of California at Los Angeles
April 4–9, 2005

John I. Castor
Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory, under contract No. W-7405-Eng-48



Summary

• The conundrum in the title is whether to treat radiation in the lab frame or the comov-
ing frame in a radiation-hydrodynamic problem

• Several of the difficulties are associated with combining a somewhat relativistic treat-
ment of radiation with a non-relativistic treatment of hydrodynamics

• The principal problem is a tradeoff between easily obtaining the correct diffusion limit
and describing free-streaming radiation with the correct wave speed

• The computational problems of the comoving-frame formulation in more than one di-
mension, and the difficulty of obtaining both exact conservation and full u/c accuracy
argue against this method

• As the interest in multi-D increases, as well as the power of computers, the lab-frame
method is becoming more attractive

• The Monte Carlo method combines the advantages of both lab-frame and comoving-
frame approaches, its only disadvantage being cost
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The goals of radiation hydrodynamics —

• We solve the nonrelativistic Euler equations, or their equivalent (ALE, etc.) for the
material motion

• Radiation effects are included in the Euler equations as sources, balancing terms in
the radiation momentum and energy equations

• Radiation transport should be calculated in a way that is accurate in both optically
thick and optically thin regimes

• In the thick limit the radiation should tend to a Planck function when viewed in the
comoving frame of the fluid, and the Euler and radiation equations should sum to the
Euler equations with equilibrium radiation added to the material pressure and energy

• In the thin limit the radiation-matter coupling should become negligible and the radi-
ation should obey the free-streaming transport equation in the laboratory frame
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Why is this hard?

The problem arises because the radiation field is described by an intensity function
I (r, n, ν, t), and there is a choice of frame implicit in this function, one of

• Laboratory frame — at rest with respect to the system as a whole

• Comoving frame — obtained from the former by a Lorentz transformation with the
local fluid velocity

The direction vector n and the frequency ν change in the transformation, as does the
value of I .

The transport operator is simple in the lab frame and the material-coupling terms are
simple in the comoving frame, so both choices have good and bad aspects.
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What the comoving frame is and is not

The comoving frame is the frame of reference for ν, n and Iν, nothing more.
It says nothing about Eulerian vs. Lagrangean hydrodynamics, i.e., about
the nature and motion of the computational mesh

At one time I advanced a 1-D approach using Riemannian-geometry meth-
ods with a comoving coordinate system. This turns out not to be necessary
in 1-D and impossible in 2-D or 3-D, except for irrotational flows, a fatal lim-
itation

The most successful comoving-frame approach is to proceed from the lab
frame transport equation by applying Lorentz transformations
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The Lab frame picture

The exact transport equation in the lab frame is

1

c

∂ Iν
∂t

+ n · ∇Iν = jν − kν Iν

in which jν is the emissivity and kν is the absorptivity, and both include
scattering.

The effects of fluid motion are buried in j ν and kν.
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Relativity or not?

The question arises whether or not to treat the kinematics relativistically
in the radiation transport, when calculating the emission and absorption
terms, or in the comoving-frame transport equation. The all-relativistic ap-
proach is consistent and recommended, but often we are called to couple
radiation to non-relativistic hydrodynamics, which is the problem I want to
consider. In this case there will be inconsistencies if O(u2/c2) terms are
retained in the kinematics.
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The Doppler-aberration transformations

ν = ν0γu

(

1 +
n0 · u

c

)

n =
γuu/c + n0 + (γu − 1)(n0 · u)u/u2

γu(1 + n0 · u/c)

where “0” quantities are in the comoving frame of the fluid, which moves
with velocity u, and γu = (1 − u2/c2)−1/2. Make u � c and get

ν = ν0

(

1 +
n0 · u

c

)

n =
n0 + u/c

1 + n0 · u/c
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Transformation of the intensity

The Lorentz transformation of the intensity is based on the principle that
Iν/ν3 is a Lorentz invariant—

Iν =

(

ν

ν0

)3
I 0
ν

There are no simple rules for directly obtaining jν and kν in the lab frame.
We must go to the comoving frame, obtain j 0

ν0
and k0

ν0
using the constitutive

relations for the material, possibly evaluating scattering terms expressed in
terms of I 0

ν , then transform back to the lab frame to get jν and kν. No other
approach, such as Taylor expansion, is sufficiently accurate
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The Euler equations with radiation coupling

g0 =

∫

dν

∫

4π
d�( jν − kν Iν)

g =
1

c

∫

dν

∫

4π
d� n( jν − kν Iν)

∂

∂t
(ρe +

1

2
ρu2) + ∇·(ρuh +

1

2
ρuu2) = −g0

∂ρu
∂t

+ ∇·(ρuu) + ∇p = −g

Besides the usual symbols, h is the specific enthalpy of the material.

Important note: the radiation terms are all in the lab frame here!
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Comoving-frame coupling terms

g0
0 =

∫

dν0

∫

4π
d� ( j0

ν − k0
ν I 0

ν )

g0 =
1

c

∫

dν0

∫

4π
d� n0( j0

ν − k0
ν I 0

ν )

from which it follows that

g0 = g0
0 + u · g0

g = g0 +
u

c2
g0

0

to order u/c. The second term in the equation for g is problematic. It is
the same order as the momentum addition to the material caused by the
increase of the relative mass density when the material gains energy, i.e.,
a purely relativistic effect
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Radiation terms in the internal energy equation

If we neglect the u/c2 term in the g equation, then the total material energy
and momentum equations combine to yield the internal energy equation

∂ρe

∂t
+ ∇·(ρue) + p∇·u = −g0 + u · g ≈ −g0

0

Notice: the internal energy equation contains the radiation coupling in the
comoving frame, while the total energy equation has the coupling term in
the lab frame. We have to keep the frames straight!
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Lab frame radiation moment equations

The energy and momentum conservation relations for radiation follow from
the integrals of the transport equation over n and ν:

∂E

∂t
+ ∇·F =

∫

dν

∫

4π
d�( jν − kν Iν) = g0

1

c

∂F
∂t

+ c∇·P =
1

c

∫

dν

∫

4π
d� n( jν − kν Iν) = g

with the energy density, flux and pressure tensor defined by

E =
1

c

∫

dν

∫

4π
Iν d�, F =

∫

dν
∫

4π nIν d�, P =
1

c

∫

dν

∫

4π
nnIνd�

Precise conservation is obtained by summing the moment equations with
the Euler equations, but the radiation equations seem unlike the matter
ones
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Total conservation equations

∂

∂t
(ρe + E +

1

2
ρu2) + ∇·(ρuh + F +

1

2
ρuu2) = 0

∂ρu + F/c

∂t
+ ∇·(ρuu + P) + ∇p = 0

In order to achieve more symmetry between the matter and radiation terms
it is necessary to cast the radiation moments in the comoving frame
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Lorentz transformation of radiation moments

E , F and P are parts of a good stress-energy 4-tensor, and therefore the
Lorentz transformation may be applied. It turns out to give

(

E FT

F c2P

)

=

(

E0 + (2u/c2) · F0 (F0 + uE0 + u · P0)
T

F0 + uE0 + u · P0 c2P0 + F0uT + uFT
0

)

to order u/c. The corrections in E and P are often small; we will use the
expression for F in terms of F0 in the total energy equation, which becomes

∂

∂t
(ρe + E +

1

2
ρu2) + ∇·

(

ρuh + F0 + uE0 + u · P0 +
1

2
ρuu2

)

= 0

The difference between F and F0 is just the convective radiation enthalpy
flux needed to restore symmetry between matter and radiation
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The comoving-frame approach

The comoving-frame method describes the radiation using n0 and ν0, the direction vector
and frequency as viewed by an observer comoving with the fluid. This is a particular case
of using an arbitrary tetrad {eµ

a , a = 1, . . . , 4} as the basis for 4-momentum space at each
point {xµ} of spacetime, where the eµ

a are any desired functions. Thus the 4-momentum
components in the natural basis and in the tetrad basis are related by

pµ = eµ
a pa

The functions eµ
a form a 4 × 4 matrix of which the inverse is the matrix ea

µ. The cru-
cial objects related to the eµ

a are the Ricci rotation coefficients �a
bc defined in the follow-

ing way: Let a vector with tetrad components Ma and natural components Mα = eα
a Ma

be displaced parallel to itself along dxα = eα
a dxa. Parallel displacement requires that

d Mα = −0α
βγ Mβdxγ , in terms of the Christoffel coefficients 0 of the basic manifold. But

the gradient in the tetrad functions also produces a change in the tetrad components for
the displaced vector. The result is

d Ma = −�a
bc Mbdxc with �a

bc = ea
αeγ

c eα
b;γ = ea

αeγ
c eα

b,γ + ea
αeβ

b eγ
c 0α

βγ

in which the comma and semicolon signify ordinary and covariant differentiation
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The tetrad-component transport equation

We let I ∝ Iν/ν3, a ∝ νkν and e ∝ jν/ν2 denote the invariant intensity,
absorptivity and emissivity, respectively. Let s be an affine parameter on
the photon’s null geodesic, so dxµ/ds = pµ, where pµ is the 4-momentum.
Then the invariant transport equation is

dI

ds
= e − aI

The derivative on the left is evaluated using the result just found for dpa,
with pµ = eµ

a pa —

eµ
a pa

I, µ − �a
bc pb pc ∂I

∂pa = e − aI
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The Ricci rotation coefficients derived from the Lorentz basis — 1

With the convention x0 = t, x1 = x , etc., the choice for the tetrad given by
the Lorentz-transformed natural basis is

(eµ
a ) =

(

γu γuuT/c2

γuu I + (γu − 1)uuT/u2

)

which in the low-velocity limit reduces to

(eµ
a ) =

(

1 uT/c2

u I

)

and the inverse is approximately

(ea
µ) =

(

1 −uT/c2

−u I

)
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The Ricci rotation coefficients derived from the Lorentz basis — 2

Then to O(u)

(eµ
a,0) =

(

0 aT/c2

a 0

)

, (eµ
a,1) =

(

0 ∂xuT/c2

∂xu 0

)

(eµ
a,2) =

(

0 ∂yuT/c2

∂yu 0

)

, (eµ
a,3) =

(

0 ∂zuT/c2

∂zu 0

)

with a ≡ ∂u/∂t (part of the fluid acceleration), and since all these compo-
nents are O(u), the Ricci coefficients are seen to be

(�0
bc) =

(

0 aT/c2

0 (∇u)T/c2

)

, (�1
bc) =

(

ax 0
∇ux 0

)

(�2
bc) =

(

ay 0
∇uy 0

)

, (�3
bc) =

(

az 0
∇uz 0

)
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Results from the Ricci coefficients

We see that unless u is both uniform and constant in time the Ricci coefficients �a
bc are

not symmetric in the two lower indices b and c, which cannot happen for the natural basis

in any coordinates, since the Christoffel coefficients are symmetric. In other words, in any

other case the frame obtained by a pure boost cannot be a comoving coordinate frame

The tetrad components of pb pc�a
bc are found to be

(

n0 · a/c + n0 · ∇u · n0 a + cn0 · ∇u
)

, and this leads to the transport equa-
tion in a form similar to Buchler’s (1983)

(

1 +
n0

c
· u
) 1

c

∂ I 0

∂t
+

(

n0 +
u
c

)

· ∇I 0

−
ν0

c

(a
c

+ n0 · ∇u
)

· ∇ν0n0 I 0 +
3

c

(n0 · a
c

+ n0 · ∇u · n0

)

I 0 =

j0 − k0I 0
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Critique of the comoving-frame equation

• Different suggestions have been made about the ordering of the terms in the CMF
equation. Letting the characteristic length scale and time scale be L and T shows
that the terms in the transport operator have orders of I 0/L, I 0/cT , uI 0/(Lc) and
uI 0/(c2T )

• If T is O(L/c) (radiation flow time scale) then the terms have order I 0/L and uI 0/(Lc),
and all terms are needed for first-order accuracy in u/c

• If T is O(L/u) (fluid-flow time scale) then the orders are I 0/L, uI 0/(Lc) and u2 I 0/(c2L),
and the terms divided by c2 are indeed second order in u/c and can be dropped for
a first-order solution

• Both kinds of ordering have been, and are still, advocated by various authors

• The conservative solution is to include all the terms, or, better yet, use the fully
relativistic form
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Transforming the momentum-space gradient

Rather than considering I 0 as a function of the Cartesian tetrad compo-
nents ν0n0, we can use spherical momentum coordinates: ν0 and the an-
gles implicit in n0. So instead of a momentum-space gradient term, we
have a frequency-derivative term and an angle-derivative term:

ν0

c

(a
c

+ n0 · ∇u
)

· ∇ν0n0 I 0 →

1

c

(n0 · a
c

+ n0 · ∇u · n0

)

ν0
∂ I 0

∂ν0
+

1

c

(a
c

+ n0 · ∇u
)

· (I − n0n0) · ∇n0 I 0

The former is the Doppler term and the latter is the aberration term. The
factor I−n0n0 is the perpendicular projector relative to n0 that converts ∇n0

into the gradient on the unit sphere
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Frequency-integrated CMF moment equations

The transport equation including the 1/c2 terms leads to these equations
for the frequency and angle moments:

∂

∂t

(

E0 +
1

c2
u · F0

)

+ ∇·(uE0 + F0) + P0:∇u +
a

c2
· F0

=

∫

dν (4π j0
ν − k0

νcE0
ν) = g0

0

and

1

c

∂

∂t
(F0 + u · P0) + c∇·

(

P0 +
1

c2
uF0

)

+
a
c

E0 +
1

c
F0 · ∇u

= −

∫

dν k0
νF0

ν = cg0
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Recovering lab-frame moment equations from CMF moments

Summing the CMF energy equation and the product of u with the momen-
tum equation, and conversely, then discarding the higher-order terms in u,
leads to

∂

∂t

(

E0 +
2

c2
u · F0

)

+ ∇· (F0 + uE0 + u · P0) = g0
0 + u · g0

1

c

∂

∂t
(F0 + uE0 + u · P0) + ∇·

[

cP0 +
1

c
(uF0 + F0u)

]

= cg0 +
1

c
ug0

0

which are equivalent to the lab-frame moment equations given earlier

Global energy and momentum conservation are obeyed only to
O(u/c) when the comoving-frame equations of that order are used
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Making conservative CMF moment equations

Dropping the “small” terms from the CMF moment equations leads to this set:

∂ E0

∂t
+ ∇·(uE0 + F0) + P0:∇u =

∫

dν (4π j0
ν − k0

νcE0
ν) = g0

0

c∇·P0 = −

∫

dν k0
νF0

ν = cg0

which satisfy this energy conservation law

∂ E0

∂t
+ ∇· (F0 + uE0 + u · P0) = g0

0 + u · g0

This system does exactly conserve energy and momentum, at the cost of not
being hyperbolic—with unbounded propagation speed, but the correct diffusion
limit. The other problem is that these moment equations do not follow accurately
from any form of the CMF transport equation. Castor, Buchler, Mihalas and
Mihalas and others have advocated using this system
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The diffusion limit

For the limit λ → 0, where λ is the radiation mean free path, there is an asymptotic relation
for the comoving-frame intensity (the boxed terms are omitted in the simplified equation):

I 0
ν0

∼ Bν0

−λν0

d Bν0

dT

(

no · ∇T +
1

c

∂T

∂t
+

1

c
u · ∇T +

n0 · u
c2

∂T

∂t
+

n0 · a
c2

T +
n0 · ∇u · n0

c
T

)

with the implications

• The energy density tends to thermal equilibrium in the comoving frame

• The flux is O(λ) in the comoving frame

• Obtaining these results in a lab-frame calculation imposes constraints on the spatial
differencing (see Mihalas and Auer [2001])
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Solving CMF transport

A variety of methods have been used:

• With steady-state or backwards-time-differenced equations, the 1-D problem be-
comes a PDE in z (or r ) and ν, and it can be solved as an initial-value problem
in ν

• This requires a monotone velocity field, which is the case for many of the examples,
but fails in general, or in 2-D or 3-D

• The gray (frequency-integrated) moment system removes the complexities of fre-
quency- and angle-derivatives, but requires an auxiliary calculation to close the sys-
tem of moments (e.g., Eddington tensor or flux limiter)

• Either the transport equation or the angle-moment equations comprise a hyperbolic
system (with the fluid equations) and the general Godunov procedure can be applied
(cf., Balsara 1998–1999, for the gray moment system)

• Godunov methods are based on exact conservation, and the simplified CMF equa-
tions are required to satisfy this
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The mixed-frame expansion method

Introduced by Fraser (1966), and developed by Hsieh and Spiegel (1976),
Mihalas and Klein (1982), and Lowrie, Morel and Hittinger (1999), this
method uses the lab-frame equations with jν and kν replaced by O(u/c)
expansions involving j0

ν and k0
ν :

jν ≈ j0
ν +

1

c
u · n

(

2 j0
ν − ν

∂ j0
ν

∂ν

)

kν ≈ k0
ν −

1

c
u · n

(

k0
ν + ν

∂k0
ν

∂ν

)

apart from scattering; coherent isotropic scattering in the fluid frame leads
to a messy expression for jν involving frequency derivatives of the intensity.
All these expansions fail when u is comparable to or larger than a line width
in velocity units—generally in any supersonic flow. For this reason this
method is not used for problems involving lines
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The Monte Carlo method

• The particles (bunches of photons) are tagged with the lab-frame frequency and
direction

• Tracking is done in the lab frame, and the probability of an absorption or scattering
event is computed in each zone by making a Doppler transformation of the particle
when it enters a zone

• When an interaction event occurs, the particle is transformed into the fluid frame,
so its energy and momentum may be deposited, or it may be scattered using the
scattering matrix appropriate to the fluid frame; relativistic Compton scattering is
easily accommodated using sampling methods

• If a scattering has occurred, the scattered photon is transformed back to the lab
frame for further tracking

This method does the transport accurately to all orders of u/c
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Implicit radiation-matter coupling

• In a majority of radhydro problems the coupling of matter and radiation is so strong
that time-implicit methods must be used

• The velocity and density updates may be operator-split, but a simultaneous solution
is needed for the radiation field and the material temperature

• A popular approach is to apply the Newton-Krylov technique to the radiation+temp-
erature problem, with a pre-conditioner based on some simple radiation approxima-
tion

• This might be gray diffusion, or even a diagonal operator ≈ escape probability

• The accuracy ultimately depends on the “formal solution” that gives the radiation in
terms of a known material field — the lab-frame method is a good candidate here

• For Monte Carlo, implicit methods like that of Fleck and Cummings are possibilities
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Scorecard of the algorithms

Algorithm Advantages Disadvantages

pretend u = 0 simplicity radiation pressure and energy effects are
lost entirely

mixed frame (lab-frame
u-expansion)

easy to solve the transport
eq. (without scattering); ex-
act conservation

fails for problems with lines; difficult to treat
scattering; complexity; dense mesh in ν-n

comoving frame
moment eqs.

obtains diffusion limit; solve
coupled radhydro problems
with elliptic solvers; adapted
to coupled RH Godunov
method

frequency-dependent problem much more
difficult to solve, esp. for non-monotone or
multi-D flows; closures may be inaccurate;
have to choose between conservation and
full u/c accuracy

comoving-frame
transport

obtains diffusion limit; no ad
hoc closure

PDE difficult to solve for non-monotone or
multi-D flows

Monte Carlo exact apart from statistics cost

lab-frame eqs. with
exact (formal) sources

easy to solve; exact conser-
vation

care is required with the sources and differ-
encing to obtain diffusion limit; dense mesh
in ν-n

31



Summary

• The conundrum in the title is whether to treat radiation in the lab frame or the comov-
ing frame in a radiation-hydrodynamic problem

• Several of the difficulties are associated with combining a somewhat relativistic treat-
ment of radiation with a non-relativistic treatment of hydrodynamics

• The principal problem is a tradeoff between easily obtaining the correct diffusion limit
and describing free-streaming radiation with the correct wave speed

• The computational problems of the comoving-frame formulation in more than one di-
mension, and the difficulty of obtaining both exact conservation and full u/c accuracy
argue against this method

• As the interest in multi-D increases, as well as the power of computers, the lab-frame
method is becoming more attractive

• The Monte Carlo method combines the advantages of both lab-frame and comoving-
frame approaches, its only disadvantage being cost
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