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Abstract 
 
     This study focuses on the ductility evaluation of low-temperature (100° and 200°C) aged U-
6Nb alloy. The objective is to develop a ductility-based aging model to improve lifetime 
prediction for weapon components in the stockpile environment. 
      Literature review shows that the work hardening n-value and the strain-rate hardening m-
value are the two most important metallurgical factors for the uniform and the post-uniform 
(necking) ductility control, respectively. Unfortunately, both n and m values of the U-6Nb alloy 
are lacking. 
     The study shows that the total ductility of U-6Nb is dominated by the uniform ductility, 
which deteriorates in both 100°C and 200°C aging. Further analysis shows that the uniform 
ductility correlates well with the work hardening n-value of the later stage deformation in which 
dislocation-slip is the mechanism. The kinetics of the loss of uniform ductility and the associated 
reduction in work-hardening n-value in low temperature aging will be used for the development 
of a ductility-based aging model.  
     The necking ductility appears to be a minor but significant factor in the total ductility of U-
6Nb. It does not show a clear trend due to large data scatter. The uncertain nature of necking 
failure may always hinder a reliable measurement of necking ductility. Consequently, a precise 
measurement of strain-rate hardening m-value could be a viable alternative to model the 
metallurgical contribution to the necking ductility. The conventional strain rate step-change 
method and the ABI (Automated-Ball-Indentation) test both show promising result in m-value 
measurement.  

Introduction 
 
     The kinetics of the strength increase of U-6Nb in low temperature aging has been well 
studied. But the associated loss of ductility was less quantitatively analyzed. There are two 
hardening mechanisms in typical tensile test; the work hardening described by the work 
hardening exponent (n-value) and the strain-rate hardening described by the strain-rate 
sensitivity (m-value). A simplified constitutive equation is given by: 
                                  
                                           σ =  K εn έm  
where σ is the true stress, ε is the true strain, and έ is the strain rate. 
 
     It is well documented that the uniform ductility is related to the work hardening n-value, 
while the necking ductility is related to the strain-rate hardening m-value. This can be best 
demonstrated in Fig. 1. Therefore, it is a reasonable goal to develop a precise and ductility-based 
aging model for low-temperature aged U-6Nb through analyzing n and m values as functions of 
aging temperature and aging time.  
     The U-6Nb alloy has a very complicated deformation behavior, and does not follow a single 
constitutive equation for n-value calculation for its entire stress-strain curve. It starts to deform 
by twinning, followed by de-twinning, and finally fractures by the dislocation-slip mechanism. 
Different work hardening n-values are expected for different deformation mechanisms. 



     The current study demonstrates that the new ABI (Automated-Ball-Indentation) test at Y-12 
and the conventional strain rate step-change method are both viable tools for the m-value 
measurement. The advantages of fast, low-cost, and non-destructive nature of ABI test deserves 
further evaluation for ESC. 
      

Material and Test Methods 
Materials:  A 14-year-old Y-12 produced stockpile return component was used in the study.                       
The component has an initial water-quenched condition. 
Aging Process:  200°C for 2, 8, 24, and 96 hours 
                          100°C for 30 days and 77 days 
 

Results and Discussions 
On Stress-Strain Curve 
     A typical engineering stress-strain curve of U-6Nb is shown in Fig.2. The marked maximum 
engineering stress defines the uniform elongation and the necking elongation. The curve also 
shows a complicated deformation behavior which includes the twinning in the first 3% strain, the 
de-twining between 3 to 6% strain, a diffuse peak between 6-10% strain, and the final work-
hardening by the dislocation-slip mechanism beyond 10% strain.  
     The early stage twinning-related deformation shows a much higher work hardening rate (a 
rapid increase in strength) than that of the later stage deformation by dislocation-slip. Aging at 
200°C affects the work-hardening behavior of U-6Nb. It increases the work hardening in 
twinning, while reduces the work hardening in the subsequent dislocation-slip deformation, Fig. 
3. All the twinning deformation ceases at around 6% strain regardless of the aging conditions. 
The extent of the uniform ductility is expected to be controlled by the work-hardening capacity 
during the later dislocation-slip deformation. 
 
 On Strength and Ductility  
 200°C aging 
     U-6Nb shows a sharp increase in the yield strength (from 27 ksi to 100 ksi) and a moderate 
increase in the ultimate tensile strength (from 123 ksi to136 ksi) when aged at 200°C, Fig. 4.  
     The total elongation (uniform + necking) shows a decreasing trend but with substantial data 
scatter. The scatter is primarily from the necking component. The uniform elongation, which 
accounts for 70-80% of the total ductility, is a fairly reliable property and shows a clear 
decreasing trend, Fig. 5. The necking elongation is a minor but significant component. Due to the 
large data scatter, necking ductility does not show a clear trend.  
100°C aging 
      Figure 6 shows moderate but clear increase in yield strength and decrease in ductility when 
aged at 100°C for up to 77 days. Again, the uniform ductility is a dominant factor with a 
decreasing trend, while the necking ductility show large scatter. 
      
On Work-Hardening n-value and Uniform Ductility 
     U-6Nb is deformed by twinning during the first 6% strain followed by a dislocation-slip 
mechanism to the final fracture at around 25% strain. A detailed analysis on the true stress–true 
strain curves confirms that there is a single work hardening n-value in the dislocation-slip region 
up to the uniform ductility limit. And this later stage n-value correlates well with the uniform 
ductility limit of U-6Nb, Fig. 7.   
     The good correlation between the uniform ductility limit and the later stage n-value covers a 
wide range of metal conditions such as water-quenched, naturally aged, low-temperature 
artificially aged, and mistakenly high-temperature aged conditions. 
 



On Strain-Rate Hardening m-value and necking ductility 
     The strain-rate hardening m-value is the most significant metallurgical properties for the 
necking ductility control. Figure 8 shows the strain-rate step-change test on U-6Nb and Ta. The 
benefit of higher m-value of Ta (0.027 vs. 0.008 of U-6Nb) on larger necking ductility is 
demonstrated in Fig. 9. 
 
On ABI Test 
     Figure 10 and Figure 11 show the ABI’s true stress-true strain curves of 200oC aged U-6Nb 
under low (0.0001 in./sec) and high (0.1 in./sec) strain rates test conditions. It demonstrates the 
excellent capability of ABI for metal strength and strain rate sensitivity evaluation. 
 

Conclusions 
 

1. We developed the metallurgical principles of ductility control for U-6Nb. 
2. The total ductility of U-6Nb is dominated by the uniform ductility, and the necking 

ductility is a minor but significant factor.  
3. The uniform ductility shows a clear decreasing trend in both 100° and 200°C aging. The 

kinetics of the loss of uniform ductility and the associated reduction in work-hardening n-
value has been developed for modeling work. 

4. The necking ductility evaluation is inconclusive due to the large data scatter.  
Measurement of the strain-rate hardening m-value is a viable alternative to model the 
necking ductility. 

5. The ABI test shows good potential as a cost-effective tool to evaluate the work hardening 
and the strain-rate hardening behaviors of U-6Nb. 

 
This work was performed under the auspices of the U.S. Department of Energy by University of 
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48, and by BWXT Y-
12, L.L.C. under Contract DE-AC05-00OR22800. 

Engineering Stress-Strain Curves of Metals

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60
Engineering Strain (% elongation)

En
gi

ne
er

in
g 

St
re

ss
 (K

si
)

HSLA Steel   n = 0.16  m = 0.005

3003-O Aluminum n = 0.22  m = 0.005 
Zn-Ti Alloy   n = 0.05  m = 0.06

A-K Steel   n = 0.23m = 0.012

70-30 Brass  n = 0.55  m = 0

2036-T4 Aluminum  n = 0.24  m = - 0.005

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6

% Uniform Elong. = 88.3 x (n-value) + 1.8

Work Hardening Exponent, n-value

%
 U

ni
fo

rm
 E

lo
ng

at
io

n

HSLA Steel
2036-T4 Al
70-30 Brass
A-K Steel
Zn-Ti Alloy
5182-O Al
3003-O Al
Cold-Rolled Al

% Necking Elong. = 580 x (m-value) + 5.2

0

10

20

30

40

50

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Strain-Rate Hardening m-vale

%
 N

ec
ki

ng
 E

lo
ng

at
io

n

Zn-Ti Alloy
70-30 Brass
A-K Steel
HSLA Steel
3003-O Al
5182-O Al
2036-T4 Al
5182-O Al       
(1500C)

Figure 1: Engineering stress-strain curves of 
various metals showing good correlations of 
n and m values on uniform and necking 
ductility. 
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Figure 2: Engineering stress-strain curve of 
U-6Nb showing different work hardening 
regions. 

Figure 3: Engineering stress-strain curves of U-6Nb 
showing the work hardening (slope of the curves) 
increases in early twinning and decreases in later 
dislocation-slip deformation by 200°C aging.  
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Figure 4: Properties of 2000C aged U-6Nb. 
Note the large scatter in total elongation data. 
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Figure 5: Ductility distribution showing dominant 
uniform elongation with a decreasing trend in 
aging, while necking ductility shows large scatter.
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Figure 7: Excellent correlation between the n-
value of dislocation–slip region and the 
uniform elongation for a wide range of  aging 
conditions of U-6Nb.
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Figure 6: Properties of 1000C aged U-6Nb 
showing moderate strength increase and 
ductility decrease. 
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Figure 9:  Engineering stress-strain curves of 
U-6Nb and Ta showing the benefit of large m-
value of Ta on necking ductility. 

Figure 8: Strain rate step-change tests showing a 
much larger m-value of  Ta than that of U-6Nb.  

ABI  True Stress-True Strain Curves of U-6Nb 
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Figure 10: ABI data showing strong age-
hardening behaviors in 2000C aging.

Figure 11: ABI data showing strain-rate 
hardening behaviors of 2000C aged U-6Nb 
(0.0001 in./sec low rate vs. 0.1 in./sec high rate).
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