
UCRL-PROC-212154

Parallel Deterministic Neutron
Transport with AMR

Christopher Clouse

May 11, 2005

Computational Method in Transport Workshop
Tahoe City, CA, United States
September 11, 2004 through September 16, 2004

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

bledsoe2
Text Box
This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng.48.

Parallel Deterministic Neutron Transport with AMR

C. J. Clouse1
1Lawrence Livermore National Laboratory, Livermore CA clouse1@llnl.gov

AMTRAN, a one, two and three dimensional Sn neutron transport code with adaptive
mesh refinement (AMR) has been parallelized with MPI over spatial domains and energy
groups and with threads over angles. Block refined AMR is used with linear finite
element representations for the fluxes, which are node centered. AMR requirements are
determined by minimum mean free path calculations throughout the problem and can
provide an order of magnitude or more reduction in zoning requirements for the same
level of accuracy, compared to a uniformly zoned problem.

1 Introduction

AMTRAN, a two and three dimensional Sn neutron transport code designed to run
effectively on large parallel machines that have both distributed memory and shared
memory parallelism, first began development in 1995 under an industrial partnership
agreement with several oil well logging companies and LLNL. Due to shortened time
lines and dwindling DOE funding in support of industrial partnership agreements,
AMTRAN never became a major contributor in oil well logging calculations. However,
it was recognized as an excellent R&D test bed for trying out new parallel algorithms and
AMR techniques as applied to the Boltzmann equation. Development has continued over
the years and, although the code and its algorithms have been presented at several
conferences [1][2] this is the first publication of the basic code and it’s techniques. At
the time development began in 1995, the notion of applying AMR techniques to neutron
transport problems was unexplored. Since that time, a number of other AMR neutron
transport codes have been developed [3][4]. AMTRAN, however, remains unique in its
combination of degrees of parallelism (MPI in space and energy and threading in angle)
and its use of finite element node centered fluxes (the other referenced AMR codes use
face or zone centered fluxes). As in the case of hydrodynamics, where spatial AMR was
first developed, many transport applications have widely varying resolution needs within
the same application. Stability and accuracy considerations require that spatial zoning be
able to resolve length scales less than a neutron mean-free-path for most commonly used
algorithms. This can be on the order of a millimeter in fissionable materials of nominal
density to a meter or more in air. An example of particular interest in our work is the
interrogation of cargo containers for fissionable material using a 14 MeV neutron source.
The cargo container could be a semi-tractor trailer with the neutron source situated on
one side of the trailer and a detector located on the opposite side. The goal is to be able
to match the detector signal with known configurations of various types of fissionable
materials. In this example, the distance between source and detector could be many
meters; the material throughout most of which is probably air or some other material that
is relatively transparent to neutrons, but the fissionable target would require good spatial

resolution. Spatial AMR allows us to get the needed resolution in the target without
making the overall calculation unwieldy.

2 Code Overview

AMTRAN operates in 2D cylindrical and 3D cartesian geometries. Node centered fluxes
are represented with continuous linear finite elements, similar to the methods employed
by Greenbaum and Ferguson5. Angular discretization in 2D and 3D is with standard
discrete ordinates and, therefore, requires half angle approximations to maintain
acceptable conditions on the ordinates when finite differencing the angular derivative in
cylindrical coordinates (see ref. 6 for a discussion of this topic). In 1D, a quadratic finite
element approximation for the angular unknown has been implemented and provides
significant computational savings over standard differencing (see ref. 7 for a detailed
discussion). AMTRAN has several simple internal generators: nested spheres with point
to point linearly interpolated densities, nested cylinders with constant densities and
constant density cartesian blocks. It is also capable of reading COG9 input and using the
geometry generator routines in COG to construct a mesh.

2.1 Production of AMR blocks
The AMR algorithm in AMTRAN is block based and thus produces a hexahedral
(quadrilaterals in 2D) block decomposition of the problem domain. Like previous AMR
work in the field of hydrodynamics, e.g. Berger and Colella8, the zone size in each
direction is halved for each increase in level of refinement, unlike most hydrodynamic

AMR techniques, though, no level nesting is required, i.e. it is possible to have adjacent
blocks differ by any power of 2 in zoning, as illustrated in fig. 1. Uniform zoning within
a block allows fast and efficient computation of the transport equation.
 The refinement criteria is based on neutron mean free path considerations,

)min(g

g

gah λ∑< (1)

Fig. 1. 2D example where dashed lines
indicate block boundaries.

where λg is the minimum neutron mean free path by energy group, h is the zonal width
and ag is a user defined multiplier, which can vary with energy group. Blocks are created
by beginning at the finest level and tagging all zones that need to remain at that level.
The tagged zones are boxed up using a “smart bisection” algorithm that can be briefly
described as follows for 3D with the obvious extension to 2D.
 Count up all the tagged zones in each 2D plane of the problem. Let yi represent the
number of tagged zones in plane i, then define fi to be the discrete function
f i = yi
The splitting plan, i = isplit, is chosen such that

where the second derivatives are defined using a standard central difference formula,

 A block is subject to further splitting until it satisfies one of two conditions: 1) it no
longer contains any tagged zones, in which case it is discarded, or 2) it satisfies the
following condition,

where irattag is a user specified efficiency ratio. Generally, more and smaller blocks will
be produced as the value of irattag is increased.

2.2 Sweeping the Mesh
The time-dependent transport equation can be written as follows,

S≡

where

angular flux for energy group g and angle m,

Legendre polynomial term l,

total cross section for energy group g,

irattag
zonesofnumbertotal

zonestaggedofnumber
≥

=Ψ g
m

=lP

=g
tσ

 







−= +)()(max

2

2

12

2

ii xf
dx

d
xf

dx

d
isplit (2)

)()(2)()(112

2

−+ +−≡ iiii xfxfxfxf
dx

d
 (3)

qPl
tv

g
f

g
lg gl l

g
m

g
t

g
m

g
m

g

+++=Ψ+Ψ∇•Ω+Ψ
∂

∂ ′

′ ′∑∑ φυσφσσ lg)12(ˆ1 r
 (4)

the lth component of a Legendre polynomial expansion of the differential
scattering cross section from group g’ to group g,

 gv = the neutron velocity for group g.

where m is the discrete angular index.

represents the production of the scalar flux into group g, and q represents a
possible, externally driven source term.

 AMTRAN can solve eq. 1 as either a fixed source calculation (where q is non-zero)
or the usual k eigenvalue calculation, where k is a multiplier on the fission source term,
or α eigenvalue calculation where the time dependent term is included in eq. 1 and the
time dependence is modeled as eαt. Eq. 1 is solved through standard source iteration and
angular sweeps in which the source terms on the right hand side of eq. 1 are evaluated
using the previous iterates values for the fluxes. Then, with the value of S determined,

inversion of the sweeping term on the left hand side of eq. 1 is accomplished by sweeping
through the mesh in the direction of neutron flow; one sweep for each unique
combination of direction and energy group. This downwind sweeping is complicated by
block decomposition on a domain decomposed mesh in which different domains reside
on different processors. In order to avoid idling processors, AMTRAN’s default domain
decomposition is limited to 8 domains (4 domains in 2D). By ensuring that each domain
includes one of the corners of the problem, all domains can immediately begin sweeping.
Fig. 2 illustrates a simple 2D example assuming four spatial domains and 12 angles.
Each block designated “A” can be swept immediately by any one of the three angles that
originate from its corner. After any “A” block is swept, its neighboring “B” blocks
would have sufficient boundary information to begin their sweep, followed by the “C”
blocks, etc. A domain continues to sweep blocks until no more blocks can be swept
without receiving information from neighboring domains, at which point it sends out all
of its downwind boundary information to the necessary neighboring domains and waits to

=′glgσ

g
m

m
l

g
l P ′′

Ψ= ∑)(
2

1
µφ

=ϕυσ g
f

Fig. 2. Dashed lines indicate domain
(and block) boundaries. Solid lines

indicate block boundaries.

receive upwind boundary information from any domains. AMTRAN assigns an
estimated weight to each zone in the generator mesh based on the mean free path in that
zone. This allows AMTRAN to estimate where to place domain boundaries such that
each domain has roughly equal weight and, therefore, will have roughly equivalent zone
counts after the AMR blocks are made. If each domain has roughly equivalent zone
counts, then each will finish their sweeps at about the same time, pass information to and
receive information from neighboring domains, and continue sweeping with little or no
idle time. If there are reflecting boundaries in the problem, then the corners that lie on
reflecting boundaries will begin their sweeps with “old” boundary information from the
previous iteration. (Our definition of the term “iteration” is comparable to the standard
textbook definition of an “outer iteration”, which implies all angles have been swept
through the entire mesh.) This causes some degradation in the rate of convergence, but
the fractional increase in the number of iterations it takes to converge is usually
substantially smaller than the relative speedup achieved by simultaneously beginning
sweeps from all corners. For example, in 3D critical sphere calculations with one
reflection plane, the number of iterations required to achieve convergence is about 20%
more than the number of iterations required by ordering the sweeps such that reflecting
boundaries are not swept until incoming sweep information is received, but the
calculation will run roughly twice as slow by ordering the sweeps since half the
processors will be idle at any given time. Because eight spatial domains (four in 2D) can
be very limiting when attempting to scale up to thousands of processors, recent work in
AMTRAN has focused on efficient use of processors with more than eight spatial
domains. Basically, the idea for achieving high efficiency is through the use of domain
overloading techniques. We have created the construct of a domain master which
represents a unique collection of domains that may or may not be located contiguously in
space. Domains are assigned to domain masters in such a way as to keep the domain
master busy as much of the time as possible. Systematic algorithms have been worked
out that asymptotically approach 100% theoretical efficiency as the number of domains
per domain master is increased. The difference between theoretical and actual efficiency
is dependent on how well the code is able to produce domains that are roughly equal in
computational work, since the algorithm assumes equal weight domains. Details of the
algorithm have been presented at an international conference10, and will be outlined in a
journal article in the near future.

2.4 Block Interfaces
 As the sweeps proceed from block to block, three scenarios can occur at block
boundaries: 1) no change in zoning, 2) go from a coarser mesh to a finer mesh, 3) go
from a finer mesh to a coarser mesh. The first scenario obviously requires no special
treatment. The second scenario can be dealt with in a straight forward fashion through
bilinear interpolation of the coarse grid fluxes onto the fine mesh. This is consistent with
the linear finite element representation of the fluxes at the nodes. Unfortunately, the
finite element representation of the fluxes at the nodes does not provide an
obvious

Comment [CC1]:

 unique solution to the third scenario, which is illustrated in fig. 3. Over time, three
different methods evolved in the code for treating scenario 3. The original method,
referred to as the pseudo-source method, is constrained by two criteria: fluxes of nodes at
the same physical location on two different mesh should have the same value and flux
must be conserved across the interface. To satisfy the first criterion, we require that
fluxes at nodes 1, 5, 21 and 25 in fig. 4 have the same value on the coarse and fine

blocks. If we integrate eq. 1 over a zone and focus on just the streaming term for the
specific example shown in figs. 3 and 4 with neutrons traveling in the +x direction. The
flux leaving the fine zones overlapping the coarse zone can be written as,

Fig. 3. A single zone from a coarse block

that borders a finer block along it’s x-face.

Fig. 4. Y-z interface of coarse to fine zone. Fine

zone nodes are numbered 1 to 25. Coarse zone

nodes are nodes 1, 5, 21 and 25.

dzdyww izi
i

yy

y

zz

z

yi Ψ∑ ∫ ∫
=

∆+ ∆+25

1

0

0

0

0

where, wyi and wzi are the y and z components of the linear finite element weight
functions at node i, defined as

and dyf = dzf = ¼ ∆y where ∆y = ∆z is the zone size on the coarse grid and the
coordinates of node 1 are given by (y0, z0). Likewise, the flux entering the coarse zone
can be expressed as

 (5)

where, wc
yi and wc

zi are the y and z components of the linear finite element weight
functions on the coarse zone at node i, defined as

At the time boundary information is received, the difference between eq. 2 and eq. 3 is

calculated and stored as an additional zone centered source term that is included in the

dyf

yy
w i

yi

)(
1

−
−=

dyf

yy
w i

yi

)(
1

−
−=

0=yiw

dzf

zz
w i

zi

)(
1

−
−=for yi-1 ≥ y ≥ yi, for zi-1 ≥ z ≥ zi

dzf

zz
w i

zi

)(
1

−
−=

for yi+1 ≥ y ≥ yi, for zi+1 ≥ z ≥ zi

0=yiwand, elsewhere,

dzdyww i
c
zi

i

yy

y

zz

z

c
yi Ψ∑ ∫ ∫

=

∆+ ∆+

25,21,5,1

0

0

0

0

y

yy
w ic

yi
∆

−
−=

)(
1

y

yy
w ic

yi
∆

−
−=

)(
1

z

zz
w ic

zi
∆

−
−=

)(
1for yi ≥ y, for zi ≥ z,

z

zz
w ic

zi
∆

−
−=

)(
1for y ≥ yi, for z ≥ zi.

Direction of neutron flow

A F

B

C

D

E

G

H

Fig. 5. Marching Method

solution of eq. 1 and, thus, from the perspective of nodes downwind from the boundary,
the total flux crossing from the fine mesh to the coarse mesh has been accounted for
through the inclusion of an additional source term, which we will refer to as the pseudo-
source term. In a similar fashion, the difference between the coarse and fine mesh for the
second term on the left hand side of equation 1, the absorption term, is also accumulated
into the pseudo-source term. The second method is referred to as the marching method
and is illustrated in fig. 5. In this method, the value of the most downwind node (node A
in fig. 5) is copied to the corresponding physical node on the neighboring coarse grid
(node F in fig. 5). The value of node G is then simply determined by flux conservation
across the interface between nodes F and G. The value of node H is then determined by
flux conservation across the interface between node G and H, etc.

The third method is referred to as the area weighting method and is illustrated with a 3D
example in fig. 6. In our example, we have a coarse block (block I) partially overlapped
by a fine block (block II) on the top face. For neutrons incident on the upper right front
corner, node C would not only receive a flux contribution from block II (indicated by the
shaded area) but also from two other blocks that overlap the two faces that are orthogonal

to the shaded face. The total contribution would be the area weighted sum of the three
incident faces. A corner node, like node C, can be shared by up to 8 blocks (in 3D), each
of which may have a different flux value for that node. Only in the case where all blocks
sharing a node are at the same AMR level are we guaranteed that all blocks see the same
physical value. In the case of node A, the lightly shaded area would contribute to the
area weighted nodal flux, but if node A were located on the left edge of block I, then the

Node C
Node B

Node A

Block I

Overlapping face of

Block II

Fig. 6. Area Weighting Method

lightly shaded area would either be located on a separate block or, in the case of block I
lying on the left edge of the problem, there would be no neighboring block. In either
case, the lightly shaded area would not contribute to node A’s value. Likewise, if the
direction of neutron flow were from back to front, only the shaded face, representing
block II’s contribution, would contribute to node C’s value. Thus, one can see that the
area and number of faces contributing to a nodal flux value is dependent on the direction
of neutron flow. Method 1 is difficult to implement in time-dependent problems and
method 2 is prone to instabilities. Thus, the default method used in AMTRAN is method
3.

2.5 Energy Group Parallelism
 Distributed memory parallelism (i.e. the number of MPI processes spawned) is equal
to 8 (or 4 in 2D) x the number of energy groups per process. If the number of processes
is not evenly divisible by 8 (or 4 in 2D) then the number of energy groups on a processor
will vary by processor. In the case of maximum parallelization, the user runs with one
energy group per process. Typically, in serial Sn codes, energy groups are swept
sequentially from highest to lowest where the source term is updated after each energy
group sweep so that effects from higher groups are immediately included in the lower
group sweeps, thus providing Gauss-Seidel like convergence on the iteration. Therefore,
in the case of no upscatter, the solution would converge after a single iteration of all
groups. In the case of maximum parallelization, which is frequently the case in a typical
AMTRAN calculation, all energy groups are being solved simultaneously, using source
terms calculated from the previous iterate fluxes and, therefore, the iterative technique is
Jacobi-like rather than Gauss-Seidel. One might expect a Jacobi solution to take more
iterations to converge than Gauss-Seidel however, in practice, what we observed for
problems dominated by fission, and thus have large upscatter components, there appears
to be a break-even point at about 16 energy groups where, for problems with fewer than
16 energy groups, a Jacobi solution converges in fewer iterations and with more than 16
energy groups, a Gauss-Seidel solution converges in fewer iterations. The difference was
not large, however, varying by about +/- 20% from 6 to 24 energy groups.
 In AMTRAN, each process calculates it’s energy group(s) contribution to the source
term of each energy group in the problem. At this point, two different methods can be
employed for communicating the results to the other processes. The first method is a
tree-summing algorithm illustrated in fig. 5 for a 4 group calculation with one energy
group per process.

Many vendor implementations of MPI_Allreduce implement essentially the same
algorithm, however, we have seen MPI_Allreduce performance on some machines to be
substantially worse than our implementation of the above algorithm and, therefore, we do
not rely on the MPI_Allreduce call for the summing of the sources since it can be a

significant fraction of the run time of a calculation.

 A second method takes advantage of the fact that a process only needs to know what
the source contributions are to it’s energy group(s). Thus, after a process computes the
contribution of its energy group(s) to all the others, it sends individual messages to each
process containing the contribution to that process’ energy group(s). This is illustrated in
fig. 8. The method illustrated in fig. 7 requires 3(N-1) communications while that
illustrated in fig. 8 requires N(N-1) communications, where N is the number of MPI
processes per domain. The messages in the second method, though, are much smaller and
less synchronized than those in the first method and, as a result, provide about a factor of
2 reduction in wall clock time for a 16 energy group calculation on the IBM ASCI Pacific
Blue SP-2 machine at LLNL.

Fig. 7. Tree-summing algorithm

Process 1

Energy group 1

Process 2

Energy group 2

Process 3

Energy group 3

Process 4

Energy group 4

Process 1

Process 3

Sum Sources

Process 1

Sum Sources

Broadcast results

Process 1

Energy group 1

Process 2

Energy group 2

Process 3

Energy group 3

Process 4

Energy group 4

Process 1

Energy group 1

Process 2

Energy group 2

Process 3

Energy group 3

Process 4

Energy group 4

Fig. 8. Arrows for process 1 are labeled. Arrows for other processes

would be labeled in an analogous fashion.

3 Numerical Results

As a simple numerical demonstration of the effectiveness of spatial AMR, the two-
dimensional rod test case, as defined in ref. 4, will be used. This problem consists of a
cylindrical rod of 235U surrounded by vacuum with a density that decreases linearly from
66.71 g/cm3 at the center plane to 20.09 g/cm3 at the ends. All problems were run on
LLNL’s Thunder machine, which is a 1024 node (four processors per node), 1.4 GHz
Itanium machine. Aussourd4 specifies the finest level zoning to be 1 mm and gives
results for up to 8 levels of AMR, but states that efficiency gains beyond 3 levels are
negligible and tend to degrade accuracy. In fact, since the difference in density between
the peak value and the ends is only a little more than a factor of three and the neutron
mean free path varies linearly with the density, allowing more than three levels violates
AMTRAN’s default zoning criteria, since three levels of refinement already represents a
factor of four difference in zone size for each direction. Fig. 9 shows the zoning used by
AMTRAN with three levels of refinement. Table 1 shows the results of several serial
variations of the calculations relative to a serial baseline calculation consisting of a single
block, uniformly zoned with 1 mm zoning. The keff of the baseline calculation was
1.98480, which differs slightly from ref. 4. This isn’t surprising since the nuclear
database and energy group resolution were not specified, so a direct comparison could

not be made. The relative error in Table 1 is defined as:

and the relative compute time is just the ratio of the time for the calculation relative to the
baseline calculation:

 The major difference between Aussourd’s4 AMR method and our application is our
block based approach versus his tree based hierarchy. As he points out, the advantage to
a block based approach is it is more amenable to spatial parallelism, but is less efficient

in reducing zone counts. A tree based algorithm is better able to capture irregularly
shaped gradients. Our experience, however, has been that calculations generally run

Mesh Relative Error Relative compute time Number of zones

Uniform, single block
(baseline calculation)

0 1 20800

Uniform, multi-block 0 0.95 20800

3 level AMR 2.0e-5 0.20 5200

Ref. 4 with 3 level AMR 4.1e-5 0.30 5760

Table 1.

)
1

1
1(

baseline
eff

eff

k

k
absError

−

−
−= (6)

 







=

baselinetime

time
timeCompute (7)

more efficiently with liberal settings for the boxing efficiency; i.e. it is better to
minimize the number of blocks at the expense of running with more total zones. This
assumes, of course, that the difference in zone count is not too large; generally no more
than about 20%. If the difference is significantly more that 20%, it is probably
worthwhile to increase the boxing efficiency.
 Aussourd4 reports roughly 40% overhead associated with the AMR logic for this test
problem. As can be seen from table 1, we observe little, if any, overhead. In fact, the
multi-block logic, which is the major cost associated with the AMR overhead of our
block based approach, actually experiences a 5% reduction in run time for a uniform
calculation relative to a single block uniform calculation. This is most likely do to
improved cache performance of the multi-block approach since, if a block is small
enough for all the unknowns to fit into cache, the sweeps can be performed without cache
swapping. We have seen this effect in the past and, in fact, added an input variable which
allows users control over the maximum size of a block so calculations can be tuned for
different architectures. This super-linear speedup is also seen in the three level AMR
calculation, which runs 5 times faster than the baseline calculation despite the fact that
the zone count is only reduced by a factor of 4. It should be noted, though, that this
particular test problem is ideally suited for a block based AMR approach, since the
gradients are
planar.

 Fig. 9 shows the relative speed improvement for the rod test problem as a function of
processor count. All points were run with the three level AMR version of the problem,
giving a total of 5200 zones with 16 energy groups and S10 quadrature. The 4, 8 and 16
processor runs used 4 spatial domains. The 8 processor run has two processors assigned
per domain, and, therefore, would be running with 8 energy groups per processor. The
16 processor run has 4 processors assigned per domain, thus giving 4 energy groups per
processor. Since there are two reflecting planes in this problem (the axis and z=0), the

Fig. 9. Relative speedup as a function of the number of

processors for the rod test problem (fixed problem size).

domain decomposed problems take more iterations (~20% increase) to converge than
does the serial calculation, so the timings have been normalized to the iteration count of
the serial calculation. As can be seen from the plot, we achieve about a 12.8X speedup
with 16 processors, giving an overall parallel efficiency of 80%. The small problem size
limits the degree of parallelism we can employ for this particular test case (the 16
processor run completed 116 iterations in about 7 seconds). Two dimensional
calculations are commonly run that exceed 50,000 zones with 32 or more energy groups.
A large three dimensional calculation can have several million zones. These kinds of
calculations require hundreds to thousands of processors.

4 Future Work

Much of our recent effort has been focused on the ability to refine in direction. Problems
such as the neutron interrogation of a cargo container, mentioned in sec. 1, not only
require spatial AMR because of the large problem dimensions, but one is generally only
interested in a narrow region of directional phase space; basically the cone of angles,
originating from a 14 MeV source, that passes through the container and strikes a
detector on the far side of the container. This is the classic source/detector problem of
trying to get adequate resolution at a detector that is far from the source; ray effects can
be severe. We have been working on techniques that allow local adaptive refinement of
the directional set of angles and expect to publish our results in the near future. We also
hope to extend the quadratic finite element in angle7 work to multi-dimensions to see if
the substantial improvements in convergence as a function of the number of angles holds
for higher dimensions.

References

[1] Clouse, C.: “Parallel 3D Neutronics on an AMR Grid”, Fifth Joint Russian
American Conference on Computational Mathematics, Sept. 22, 1997.

[2] Clouse, C.: “Parallel Deterministic Neutron Transport with Adaptive Mesh
Refinement”, 16th International Conference on Transport Theory, Georgia Tech
University, Atlanta, GA, May 14, 1999.

[3] Baker R.: A Block Adaptive Mesh Refinement Algorithm for the Neutral Particle
Transport Equation. Nuc. Sci. & Eng., 141, 1-12 (2002)

[4] Aussourd, C.: Styx: A Multidimensional AMR SN Scheme. Nuc. Sci. & Eng.,
143, 281-290 (2003)

[5] Greenbaum, A. and J. Ferguson: A Petrov-Galerkin Finite Element Method for
Solving the Neutron Transport Equation. Journal of Comp. Phys., 64, 97-111
(1986)

[6] Lewis, E. and W. Miller: Computational Methods of Neutron Transport, Wiley
and Sons, New York, 137-140 (1984)

[7] Tolar, R. and J. Ferguson.: Quadratic Finite Element Method for 1D Deterministic
Transport. Trans. Am. Nucl. Soc., 90 (2004)

[8] Berger, M. and P. Collela: Local Adaptive Mesh Refinement for Shock
Hydrodynamics. Journal of Comp. Phys., 82, 64-84 (1989)

[9] Buck, R., E. Lent, T. Wilcox and S. Hadjimarkos: COG User’s Manual, fifth
edition. Lawrence Livermore National Laboratory. (2002)

[10] Compton, J. and C. Clouse: Domain Decomposition and Load Balancing in the
AMTRAN Neutron Transport Code, 15th Annual Conference on Domain
Decomposition Methods, Berlin, July (2003)

