¢

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

UCRL-PROC-212154

Parallel Deterministic Neutron
Transport with AMR

Christopher Clouse

May 11, 2005

Computational Method in Transport Workshop
Tahoe City, CA, United States
September 11, 2004 through September 16, 2004



Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence
Livermore National Laboratory under Contract W-7405-Eng.48.


bledsoe2
Text Box
This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng.48.


Parallel Deter ministic Neutron Transport with AMR

C.J. Clouse
1. awrence Livermore National Laboratory, Livermore CA clousel@linl.gov

AMTRAN, a one, two and three dimensional Sn neutransport code with adaptive
mesh refinement (AMR) has been parallelized withl lNeer spatial domains and energy
groups and with threads over angles. Block refiabtR is used with linear finite
element representations for the fluxes, which adercentered. AMR requirements are
determined by minimum mean free path calculatibnsughout the problem and can
provide an order of magnitude or more reductiomaning requirements for the same
level of accuracy, compared to a uniformly zoneabjam.

1 Introduction

AMTRAN, a two and three dimensional Sn neutron gpamt code designed to run
effectively on large parallel machines that havéhlabstributed memory and shared
memory parallelism, first began development in 1@88er an industrial partnership
agreement with several oil well logging companies BLNL. Due to shortened time
lines and dwindling DOE funding in support of inthiel partnership agreements,
AMTRAN never became a major contributor in oil wleljging calculations. However,

it was recognized as an excellent R&D test bedrfang out new parallel algorithms and
AMR techniques as applied to the Boltzmann equatidavelopment has continued over
the years and, although the code and its algoritheme been presented at several
conferences [1][2] this is the first publicationtb& basic code and it's techniques. At
the time development began in 1995, the notiorppfyang AMR techniques to neutron
transport problems was unexplored. Since that, tameimber of other AMR neutron
transport codes have been developed [3][4]. AMTRAdever, remains unique in its
combination of degrees of parallelism (MPI in spand energy and threading in angle)
and its use of finite element node centered flies other referenced AMR codes use
face or zone centered fluxes). As in the caseydfddynamics, where spatial AMR was
first developed, many transport applications haigely varying resolution needs within
the same application. Stability and accuracy awrsitions require that spatial zoning be
able to resolve length scales less than a neuteamffree-path for most commonly used
algorithms. This can be on the order of a millienéh fissionable materials of nominal
density to a meter or more in air. An exampleafipular interest in our work is the
interrogation of cargo containers for fissionablatenial using a 14 MeV neutron source.
The cargo container could be a semi-tractor traiién the neutron source situated on
one side of the trailer and a detector locatecheropposite side. The goal is to be able
to match the detector signal with known configuras of various types of fissionable
materials. In this example, the distance betweemnce and detector could be many
meters; the material throughout most of whichr@bpbly air or some other material that
is relatively transparent to neutrons, but thadisable target would require good spatial



resolution. Spatial AMR allows us to get the needesolution in the target without
making the overall calculation unwieldy.

2 Code Overview

AMTRAN operates in 2D cylindrical and 3D cartesgaometries. Node centered fluxes
are represented with continuous linear finite elemesimilar to the methods employed
by Greenbaum and FergusorAngular discretization in 2D and 3D is with stand
discrete ordinates and, therefore, requires hglfea@pproximations to maintain
acceptable conditions on the ordinates when fitifferencing the angular derivative in
cylindrical coordinates (see ref. 6 for a discus®bthis topic). In 1D, a quadratic finite
element approximation for the angular unknown heenkimplemented and provides
significant computational savings over standartediincing (see ref. 7 for a detailed
discussion). AMTRAN has several simple internaleyators: nested spheres with point
to point linearly interpolated densities, nestelinchers with constant densities and
constant density cartesian blocks. It is also bpaf reading CO&input and using the
geometry generator routines in COG to construceahm

2.1 Production of AMR blocks

The AMR algorithm in AMTRAN is block based and theduces a hexahedral
(quadrilaterals in 2D) block decomposition of theldem domain. Like previous AMR
work in the field of hydrodynamics, e.g. Berger &wlell&, the zone size in each
direction is halved for each increase in levelaiinement, unlike most hydrodynamic

Fig. 1. 2D example where dashed lines
indicate block boundarie

AMR techniques, though, no level nesting is reqljiiee. it is possible to have adjacent
blocks differ by any power of 2 in zoning, as ithaged in fig. 1. Uniform zoning within
a block allows fast and efficient computation af thansport equation.

The refinement criteria is based on neutron mezanfath considerations,

h<min( > a®9) )
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where)f? is the minimum neutron mean free path by energumrh is the zonal width
anda® is a user defined multiplier, which can vary wéhergy group. Blocks are created
by beginning at the finest level and tagging alte®that need to remain at that level.
The tagged zones are boxed up using a “smart lweéegorithm that can be briefly
described as follows for 3D with the obvious extengo 2D.

Count up all the tagged zones in each 2D plarieeoproblem. Letyrepresent the
number of tagged zones in plan¢hen define;fto be the discrete function
fi =%V
The splitting plan, i = isplit, is chosen such that

2 f d2 (2)
— f(%.1) v f(x)

isplit = ma; d
dx

where the second derivatives are defined usingradatd central difference formula,

£ 100 = F(x)-2F(x)+ T(x.) ®

A block is subject to further splitting until iagsfies one of two conditions: 1) it no
longer contains any tagged zones, in which casealiscarded, or 2) it satisfies the
following condition,

numberof taggedzones_ .
> irattag
total numberof zones

where irattag is a user specified efficiency ra@enerally, more and smaller blocks will
be produced as the value of irattag is increased.

2.2 Sweeping the Mesh
The time-dependent transport equation can be wréassfollows,

+QeVYI+otW =Y I +1PY oy +voif+q )
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where

w?¢ = angular flux for energy group g and angle m,
P= Legendre polynomial termy

o8 = total cross section for energy grogp
9=



0wy = thel™ component of a Legendre polynomial expansion efdifferential
scattering cross section from grogipto groupg,
v, = the neutron velocity for group

$° = %Z P (u)¥f Wwhere mis the discrete angular index.

voip = represents the production of the scalar flux immugg, and q represents a
possible, externally driven source term.

AMTRAN can solve eq. 1 as either a fixed sourdeldation (where g is non-zero)
or the usual k eigenvalue calculation, where knsudtiplier on the fission source term,
or o eigenvalue calculation where the time dependent igincluded in eq. 1 and the
time dependence is modeled &5 &q. 1 is solved through standard source itemaiud
angular sweeps in which the source terms on tine hignd side of eq. 1 are evaluated
using the previous iterates values for the fluxgsen, with the value d determined,
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Fig. 2. Dashed lines indicate domain :ﬁ
(and block) boundaries. Solid lines
indicate hlock hotindarie

inversion of the sweeping term on the left han@ sifleq. 1 is accomplished by sweeping
through the mesh in the direction of neutron floenie sweep for each unique
combination of direction and energy group. Thigzdwind sweeping is complicated by
block decomposition on a domain decomposed mesthich different domains reside
on different processors. In order to avoid idlprgcessors, AMTRAN's default domain
decomposition is limited to 8 domains (4 domain&l). By ensuring that each domain
includes one of the corners of the problem, all dos can immediately begin sweeping.
Fig. 2 illustrates a simple 2D example assuming fpatial domains and 12 angles.
Each block designated “A” can be swept immediabglyany one of the three angles that
originate from its corner. After any “A” block s@vept, its neighboring “B” blocks

would have sufficient boundary information to betfieir sweep, followed by the “C”
blocks, etc. A domain continues to sweep block# na more blocks can be swept
without receiving information from neighboring doims at which point it sends out all
of its downwind boundary information to the necegseighboring domains and waits to




receive upwind boundary information from any dorsaidMTRAN assigns an
estimated weight to each zone in the generator in@shd on the mean free path in that
zone. This allows AMTRAN to estimate where to pl@omain boundaries such that
each domain has roughly equal weight and, thergfatiehave roughly equivalent zone
counts after the AMR blocks are made. If each dorhas roughly equivalent zone
counts, then each will finish their sweeps at albloetsame time, pass information to and
receive information from neighboring domains, andtmue sweeping with little or no
idle time. If there are reflecting boundarieshe problem, then the corners that lie on
reflecting boundaries will begin their sweeps wibhd” boundary information from the
previous iteration. (Our definition of the terntédiiation” is comparable to the standard
textbook definition of an “outer iteration”, whiégmplies all angles have been swept
through the entire mesh.) This causes some ddipada the rate of convergence, but
the fractional increase in the number of iteratiriakes to converge is usually
substantially smaller than the relative speedujpeaekd by simultaneously beginning
sweeps from all corners. For example, in 3D aitgphere calculations with one
reflection plane, the number of iterations requikedchieve convergence is about 20%
more than the number of iterations required by iindethe sweeps such that reflecting
boundaries are not swept until incoming sweep médion is received, but the
calculation will run roughly twice as slow by ordey the sweeps since half the
processors will be idle at any given time. Becaeight spatial domains (four in 2D) can
be very limiting when attempting to scale up tousends of processors, recent work in
AMTRAN has focused on efficient use of processaith wiore than eight spatial
domains. Basically, the idea for achieving higficedncy is through the use of domain
overloading techniques. We have created the amisif adomain mastewhich
represents a unique collection of domains that anagay not be located contiguously in
space. Domains are assigned to domain masteuslnasway as to keep the domain
master busy as much of the time as possible. @gsie algorithms have been worked
out that asymptotically approach 100% theoretiffatiency as the number of domains
per domain master is increased. The differenosdmt theoretical and actual efficiency
is dependent on how well the code is able to predimnains that are roughly equal in
computational work, since the algorithm assumeslegeight domains. Details of the
algorithm have been presented at an internaticnfecence’, and will be outlined in a
journal article in the near future.

2.4 Block Interfaces

As the sweeps proceed from block to block, thoemarios can occur at block
boundaries: 1) no change in zoning, 2) go fromaser mesh to a finer mesh, 3) go
from a finer mesh to a coarser mesh. The firstade obviously requires no special
treatment. The second scenario can be dealt wihstraight forward fashion through
bilinear interpolation of the coarse grid fluxesmthe fine mesh. This is consistent with

the linear finite element representation of thedkiat thé nodbs. Unfortunately, the - '[Comment [cc1]:

finite element representation of the fluxes atribdes does not provide an
obvious
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Fig. 3. A single zone from a coarse block

that borders a finer block along it's x-face.

unique solution to the third scenario, which ligstrated in fig. 3. Over time, three
different methods evolved in the code for treasngnario 3. The original method,
referred to as the pseudo-source method, is camstrdy two criteria: fluxes of nodes at
the same physical location on two different mesbukhhave the same value and flux
must be conserved across the interface. To sdhisffirst criterion, we require that
fluxes at nodes 1, 5, 21 and 25 in fig. 4 havestirae value on the coarse and fine
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Fig. 4. Y-z interface of coarse to fine zone. Fine

zone nodes are numbered 1 to 25. Coarse zone
nodes are nodes 1, 5, 21 and 25.

blocks. If we integrate eq. 1 over a zone anddanujust the streaming term for the
specific example shown in figs. 3 and 4 with nemsgréraveling in the +x direction. The
flux leaving the fine zones overlapping the coasee can be written as,

25 Yot+Ay zy+Az
jwyi w,, 'V, dzdy

=1y, )



where,wy; andw;; are the y and z components of the linear finiseneint weight
functions at node i, defined as

1 i -y fory > y>vyi W, :1_M forzy>z>z
yi dyf dzf
w1 YY) forysysy, w. —1-z-2) for z, > 2>z
y zi
dyf dzf
w,; =0 and, w,. =0 elsewhere,

anddyf = dzf= Y4 Ay whereAy = Az is the zone size on the coarse grid and the
coordinates of node 1 are given by, @). Likewise, the flux entering the coarse zone
can be expressed as

Yo+AY Zy+Az
C C
jwyi w,; P, dzdy )
i=152125 %

where,w; andw; are the y and z components of the linear finigengint weight
functions on the coarse zone at node i, defined as

we zl_u fory; >y, We =1— (z-2 forz >z,
yi Ay zi Az

We :1—M fory >y, Wwe :1_@ forz>z
yi Ay zi AZ

At the time boundary information is received, tlifedence between eq. 2 and eq. 3 is
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Fig. 5. Marching Method

calculated and stored as an additional zone cehsengrce term that is included in the



solution of eq. 1 and, thus, from the perspectiveagles downwind from the boundary,
the total flux crossing from the fine mesh to tlkarse mesh has been accounted for
through the inclusion of an additional source tenmich we will refer to as the pseudo-
source term. In a similar fashion, the differebeéveen the coarse and fine mesh for the
second term on the left hand side of equationel atisorption term, is also accumulated
into the pseudo-source term. The second methaddsred to as thearching method
and is illustrated in fig. 5. In this method, tredue of the most downwind node (node A
in fig. 5) is copied to the corresponding physitadle on the neighboring coarse grid
(node Fin fig. 5). The value of node G is then@y determined by flux conservation
across the interface between nodes F and G. The wanode H is then determined by
flux conservation across the interface between 1@dead H, etc.

The third method is referred to as the area weightiethod and is illustrated with a 3D
example in fig. 6. In our example, we have a aaisck (block 1) partially overlapped
by a fine block (block I1) on the top face. Fomub®ns incident on the upper right front
corner, node C would not only receive a flux cdnttion from block Il (indicated by the
shaded area) but also from two other blocks thetlap the two faces that are orthogonal
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Fig. 6. Area Weighting Method

to the shaded face. The total contribution wodHe area weighted sum of the three
incident faces. A corner node, like node C, cashm@red by up to 8 blocks (in 3D), each
of which may have a different flux value for thaide. Only in the case where all blocks
sharing a node are at the same AMR level are weagteed that all blocks see the same
physical value. In the case of node A, the ligktipded area would contribute to the
area weighted nodal flux, but if node A were lodabte the left edge of block I, then the



lightly shaded area would either be located orparsge block or, in the case of block |
lying on the left edge of the problem, there wdoédno neighboring block. In either
case, the lightly shaded area would not contributeode A’s value. Likewise, if the
direction of neutron flow were from back to fronfly the shaded face, representing
block II's contribution, would contribute to nodés@alue. Thus, one can see that the
area and number of faces contributing to a nodalhlue is dependent on the direction
of neutron flow. Method 1 is difficult to implemeim time-dependent problems and
method 2 is prone to instabilities. Thus, the difaethod used in AMTRAN is method
3.

2.5 Energy Group Parallelism

Distributed memory parallelism (i.e. the numbeM#?| processes spawned) is equal
to 8 (or 4 in 2D) x the number of energy groupspgrecess. If the number of processes
is not evenly divisible by 8 (or 4 in 2D) then tihember of energy groups on a processor
will vary by processor. In the case of maximumgilatization, the user runs with one
energy group per process. Typically, in seriat8des, energy groups are swept
sequentially from highest to lowest where the setecm is updated after each energy
group sweep so that effects from higher groupsmangediately included in the lower
group sweeps, thus providing Gauss-Seidel like eayence on the iteration. Therefore,
in the case of no upscatter, the solution wouldreage after a single iteration of all
groups. In the case of maximum parallelizationicivhis frequently the case in a typical
AMTRAN calculation, all energy groups are beingveal simultaneously, using source
terms calculated from the previous iterate fluxed, aherefore, the iterative technique is
Jacobi-like rather than Gauss-Seidel. One migpéeixa Jacobi solution to take more
iterations to converge than Gauss-Seidel howengactice, what we observed for
problems dominated by fission, and thus have lapgeatter components, there appears
to be a break-even point at about 16 energy grodnese, for problems with fewer than
16 energy groups, a Jacobi solution convergesmerf@erations and with more than 16
energy groups, a Gauss-Seidel solution convergiesver iterations. The difference was
not large, however, varying by about +/- 20% froito 4 energy groups.

In AMTRAN, each process calculates it's energyug(s) contribution to the source
term of each energy group in the problem. At gasnt, two different methods can be
employed for communicating the results to the offtecesses. The first method is a
tree-summing algorithm illustrated in fig. 5 fodaroup calculation with one energy
group per process.

Many vendor implementations of MPI_Allreduce impkamh essentially the same
algorithm, however, we have seen MPI_Allreducegrantince on some machines to be
substantially worse than our implementation ofaheve algorithm and, therefore, we do
not rely on the MPI1_Allreduce call for the summivigthe sources since it can be a



significant fraction of the run time of a calcuati

Sum Sour ces Sum Sour ces

Process 1 —» Process 1 > Process 1
5

»
Energy group fﬁ

& g
Process 2 f 5
Eneray aroup

Broadcast results

Process 3 ——», | Process3 —

Energy group f

Process 4

Energy group

Fig. 7. Tree-summing algorithm

A second method takes advantage of the fact thed@ess only needs to know what
the source contributions are to it's energy groupfshus, after a process computes the
contribution of its energy group(s) to all the athet sends individual messages to each
process containing the contribution to that praomsergy group(s). This is illustrated in
fig. 8. The method illustrated in fig. 7 requil@N-1) communications while that
illustrated in fig. 8 requires N(N-1) communicat&mhere N is the number of MPI
processes per domain. The messages in the secdhddn#nough, are much smaller and
less synchronized than those in the first methat] as a result, provide about a factor of

2 reduction in wall clock time for a 16 energy goaalculation on the IBM ASCI Pacific
Blue SP-2 machine at LLNL.

Process 1 Process 1

Energy group 1 Energy group 1

Process 2 Process 2
Energy group 2 Energy group 2
Process 3 Process 3
Energy group 3 Energy group 3

Process 4 \ Process 4

Energy group 4 Al Energy group 4
Fig. 8. Arrows for process 1 are labeled. Arrdarsother processes
would be labeled in an analogous fashion.




3 Numerical Results

As a simple numerical demonstration of the effesiess of spatial AMR, the two-
dimensional rod test case, as defined in ref. # bgiused. This problem consists of a
cylindrical rod of***U surrounded by vacuum with a density that deceekisearly from
66.71 g/c at the center plane to 20.09 gfcat the ends. All problems were run on
LLNL’s Thunder machine, which is a 1024 node (fpuwcessors per node), 1.4 GHz
Itanium machine. Aussoutdpecifies the finest level zoning to be 1 mm aives

results for up to 8 levels of AMR, but states thfficiency gains beyond 3 levels are
negligible and tend to degrade accuracy. In fante the difference in density between
the peak value and the ends is only a little maa ta factor of three and the neutron
mean free path varies linearly with the densitigvaihg more than three levels violates
AMTRAN's default zoning criteria, since three leself refinement already represents a
factor of four difference in zone size for eachedtion. Fig. 9 shows the zoning used by
AMTRAN with three levels of refinement. Table los¥s the results of several serial
variations of the calculations relative to a sebb@seline calculation consisting of a single
block, uniformly zoned with 1 mm zoning. Thg;kf the baseline calculation was
1.98480, which differs slightly from ref. 4. Thgn't surprising since the nuclear
database and energy group resolution were notfgmkcso a direct comparison could

1-k,
Error = abs(l- ]-_kTgline) (©)
eff

not be made. The relative error in Table 1 isrdefias:

and the relative compute time is just the ratitheftime for the calculation relative to the
baseline calculation:

. tim
Compute time = [—e] )
tIrnebaseline

The major difference between Aussoufd®R method and our application is our
block based approach versus his tree based higrafchhe points out, the advantage to
a block based approach is it is more amenableatieparallelism, but is less efficient

Mesh Relative Error Relative compute time Numbfezames
Uniform, single block| 0 1 20800
(baseline calculation)
Uniform, multi-block 0 0.95 20800
3 level AMR 2.0e-5 0.20 5200
Ref. 4 with 3 level AMR| 4.1e-5 0.30 5760

Table 1.

in reducing zone counts. A tree based algorithbetter able to capture irregularly
shaped gradients. Our experience, however, hasthatcalculations generally run



more efficiently with liberal settings for the boxi efficiency; i.e. it is better to
minimize the number of blocks at the expense ofimgpwith more total zones. This
assumes, of course, that the difference in zonatdsunot too large; generally no more
than about 20%. If the difference is significantipre that 20%, it is probably
worthwhile to increase the boxing efficiency.

Aussourd reports roughly 40% overhead associated with thi&RAogic for this test
problem. As can be seen from table 1, we obséitle If any, overhead. In fact, the
multi-block logic, which is the major cost assoeivith the AMR overhead of our
block based approach, actually experiences a 5%ctied in run time for a uniform
calculation relative to a single block uniform adltion. This is most likely do to
improved cache performance of the multi-block apphosince, if a block is small
enough for all the unknowns to fit into cache, sheeeps can be performed without cache
swapping. We have seen this effect in the pastiarfdct, added an input variable which
allows users control over the maximum size of @lbko calculations can be tuned for
different architectures. This super-linear speedwgso seen in the three level AMR
calculation, which runs 5 times faster than theetias calculation despite the fact that
the zone count is only reduced by a factor oftshbuld be noted, though, that this
particular test problem is ideally suited for adidased AMR approach, since the
gradients are
planar.
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Fig. 9. Relative speedup as a function of the remalh

processors for theod test problel (fixed problem size

Fig. 9 shows the relative speed improvement ferrtdd test problem as a function of
processor count. All points were run with the éhievel AMR version of the problem,
giving a total of 5200 zones with 16 energy groapd S10 quadrature. The 4, 8 and 16
processor runs used 4 spatial domains. The 8 gsoceun has two processors assigned
per domain, and, therefore, would be running wign8rgy groups per processor. The
16 processor run has 4 processors assigned pefrddmss giving 4 energy groups per
processor. Since there are two reflecting planékis problem (the axis and z=0), the



domain decomposed problems take more iteratior@%~iBcrease) to converge than
does the serial calculation, so the timings hawnlmrmalized to the iteration count of
the serial calculation. As can be seen from thg ple achieve about a 12.8X speedup
with 16 processors, giving an overall parallel@éicy of 80%. The small problem size
limits the degree of parallelism we can employtfas particular test case (the 16
processor run completed 116 iterations in aboetcosds). Two dimensional
calculations are commonly run that exceed 50,00@gevith 32 or more energy groups.
A large three dimensional calculation can have i@ vaillion zones. These kinds of
calculations require hundreds to thousands of jgsmos.

4 Future Work

Much of our recent effort has been focused on Hiliyato refine in direction. Problems
such as the neutron interrogation of a cargo cnaetamentioned in sec. 1, not only
require spatial AMR because of the large problemedisions, but one is generally only
interested in a narrow region of directional phgsace; basically the cone of angles,
originating from a 14 MeV source, that passes thinctlne container and strikes a
detector on the far side of the container. Thibésclassic source/detector problem of
trying to get adequate resolution at a detectdrishf@ar from the source; ray effects can
be severe. We have been working on techniquestioat local adaptive refinement of
the directional set of angles and expect to puldishresults in the near future. We also
hope to extend the quadratic finite element in ehgbrk to multi-dimensions to see if
the substantial improvements in convergence asctitin of the number of angles holds
for higher dimensions.
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