
UCRL-JRNL-211311

Multi-Model Combination techniques for
Hydrological Forecasting: Application to
Distributed Model Intercomparison
Project Results

N. K. Ajami, Q. Duan, X. Gao, S. Sorooshian

April 12, 2005

Journal of Hydrometeorology



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



1

Multi-Model Combination techniques for Hydrological Forecasting: 
Application to Distributed Model Intercomparison Project Results

Newsha k. Ajami1,*, Qingyun Duan2, Xiaogang Gao1, Soroosh Sorooshian1

1. University of California at Irvine (UCI), Irvine, CA
2. Lawrence Livermore National Laboratory, Livermore, CA

Abstract

This paper examines several multi-model combination techniques: the Simple Multi-

model Average (SMA), the Multi-Model Super Ensemble (MMSE), Modified Multi-

Model Super Ensemble (M3SE) and the Weighted Average Method (WAM).  These 

model combination techniques were evaluated using the results from the Distributed 

Model Intercomparison Project (DMIP), an international project sponsored by the 

National Weather Service (NWS) Office of Hydrologic Development (OHD).  All of the 

multi-model combination results were obtained using uncalibrated DMIP model outputs 

and were compared against the best uncalibrated as well as the best calibrated individual 

model results.  The purpose of this study is to understand how different combination 

techniques affect the skill levels of the multi-model predictions.  This study revealed that 

the multi-model predictions obtained from uncalibrated single model predictions are 

generally better than any single member model predictions, even the best calibrated 

single model predictions. Furthermore, more sophisticated multi-model combination 

techniques that incorporated bias correction steps work better than simple multi-model 

average predictions or multi-model predictions without bias correction.
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1. Introduction:

Many hydrologists have been working to develop new hydrologic models or to try 

improving the existing ones.  Consequently, a plethora of hydrologic models are in 

existence today, with many more likely to emerge in the future (Singh 1995, Singh and 

Frevert, 2002a and 2002b).  With the advancement of the Geographic Information 

System (GIS), a class of models, known as distributed hydrologic models, has become 

popular (Russo et al., 1994, Vieux, 2001).  These models explicitly account for spatial 

variations in topography, meteorological inputs and water movement.  The National 

Weather Service Hydrology Laboratory has recently conducted the Distributed Model 

Intercomparison Project (DMIP) that showcased the state-of-the-art distributed 

hydrologic models from different modeling groups (Smith et al., 2004).  It was found that 

there is a large disparity in the performance of the DMIP models (Reed et al., 2004).  The 

more interesting findings were that multi-model ensemble averages perform better than 

any single model predictions, including the best calibrated single model predictions, and 

that multi-model ensemble averages are more skillful and reliable than the single model 

ensemble averages (Georgakakos et al., 2004). Georgakakos et al. (2004) attributed the 

superior skill of the multi-model ensembles to the fact that model structural uncertainty is 

accounted for in the multi-model approach.  They went on to suggest that multi-model 

ensemble predictions should be considered as an operational forecasting tool.  The fact 

that the simple multi-model averaging approach such as the one used by Georgakakos et 

al. (2004) has led to more skillful and reliable predictions has motivated us to examine 

whether more sophisticated multi-model combination techniques can result in consensus 

predictions of even better skills.
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Most hydrologists are used to the traditional contructionist approach, in which the 

goal of the modeler is to build a perfect model that can capture the real world processes 

as much as possible.   Multi-model combination approach, on the other hand, works in 

essentially a different paradigm in which the modeler aims to extract as much 

information as possible from the existing models.  The idea of combining predictions 

from multiple models was explored more than thirty years ago in econometrics and 

statistics (see Bates and Granger, 1969; Dickinson, 1973 and 1975; Newbold and 

Granger, 1974).  In 1976, Thompson applied the model combination concept in weather 

forecasting.  He showed that the mean square error of forecast generated by combining 

two independent model outputs is less than that of the individual predictions.  Based on 

the study done by Clement (1989), the concept of the combination forecasts from 

different models were applied in diverse fields ranging from management to weather 

prediction.  Fraedrich and Smith (1989) presented a linear regression technique to 

combine two statistical forecast methods for long-range forecasting of the monthly 

tropical Pacific sea surface temperatures (SST).  Krishnamurti et al. (1999) explored the 

model combination technique by using a number of forecasts from a selection of different 

weather and climate models.  They called their technique Multi-Model Superensemble 

(MMSE) and compared it to simple model averaging (SMA) method.  Krishnamurti and 

his group applied the MMSE technique to forecast various weather and climatological 

variables (e.g. precipitation, tropical cyclones, seasonal climate) and all of these studies 

agreed that consensus forecast outperforms any single member model as well as the SMA 

technique (e.g. Krishnamurti et al., 1999; Krishnamurti, et al., 2000a,b; Krishnamurti et 

al., 2001; Krishnamurti et al., 2002; Mayers et al., 2001; Yun et al. 2003).  Khrin and 
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Zwiers (2002) reported that for small sample size data the MMSE does not perform as 

well as simple ensemble mean or the regression-improved ensemble mean. 

Shamseldin et al, (1997) first applied the model combination technique in the 

context of rainfall-runoff modeling.  They studied three methods of combining model 

outputs, the SMA method, the Weighted Average Method (WAM) and the Artificial 

Neural Network (ANN) method.  They applied these methods to combine outputs of five 

rainfall-runoff models for eleven watersheds.  For all these cases they reported that the 

model combination prediction is superior to that of any single model predictions.  Later 

Shamseldin and O’Connor (1999) developed a Real-Time Model Output Combination 

Method (RTMOCM), based on the synthesis of the Linear Transfer Function Model 

(LTFM) and the WAM and tested it using three rainfall-runoff models on five 

watersheds.  Their results indicated that the combined flow forecasts produced by 

RTMOCM were superior to those from the individual rainfall-runoff models.  Xiong et 

al. (2001) refined the RTMOCM method by introducing the concept of Takagi-Sugeno 

fuzzy system as a new combination technique.  Abrahart and See (2002) compared six 

different model combination techniques: the SMA; a probabilistic method in which the 

best model from the last time step is used to create the current forecast; two different 

neural network operations and two different soft computing methodologies. They found 

that neural network combination techniques perform the best for a stable hydro-climate 

regime, while fuzzy probabilistic mechanism generate superior outputs for more volatile 

environment (flashier catchments with extreme events).
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This paper extends the work of Georgakakos et al. (2004) and Shamseldin et al. 

(1997) by examining several multi-model combination techniques, including SMA, 

MMSE, WAM, and Modified Multi-model Average (M3SE) a variant of MMSE.  As in 

Georgakakos et al. (2004), we will use the results from the DMIP to evaluate various 

multi-model combination techniques.  Through this study, we would like to answer this 

basic question: “Does it matter which multi-model combination techniques are used to 

obtain consensus prediction”?  We will also investigate how the skills of the multi-model 

predictions are influenced by different factors, including the seasonal variations of 

hydrological processes, number of independent models considered, skill levels of 

individual member models, etc.  The paper is organized as follows.  Section 2 overviews 

different model combination techniques.  Section 3 describes the data used in this study.  

Section 4 presents the results and analysis.  Section 5 provides a summary of major 

lessons and conclusions.

2. A Brief Description of the Multi-model Combination Techniques

2.1 Multi-Model Super-Ensemble, MMSE:

Multi-Model Super-Ensemble, MMSE, is a multi-model forecasting approach 

popular in meteorological forecasting.  MMSE uses the following logic (Krishnamurti et 

al., 2000):

 ∑ −+=
=

N

i
isimtisimiobstMMSE QQxQQ

1
, ))()(()( (1)
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Where tMMSEQ )( is the multi-model prediction obtained through MMSE at time t, 

tisimQ ,)( is the ith model streamflow simulation for time t, isimQ )( is the average of the 

ith model prediction over the training period, )( obsQ is observed average over the 

training period, {xi, i=1,2,…, N}are the regression coefficients (weights) computed over 

the training period, and finally N is the number of hydrologic models. 

Equation (1) comprises two main terms. First term, )( obsQ , which replaces the 

MMSE prediction average with the observed average, serves to reduce the forecast bias. 

Second term ])()[( , isimtisimi QQx∑ − , reduces the variance of the combination 

predictions, using multiple regressions. Therefore, the logic behind this methodology is a 

simple idea of bias correction along with variance reduction.  We should also note that 

when a multi-model combination technique such as MMSE is used to predict hydrologic 

variables like river flows, it is important that the average river flows during the training 

period over which the model weights are computed should be close to the average river 

flow of the prediction period (i.e., the stationarity assumption).  In Section 4, we will 

show that bias removal and stationarity assumption are important factors in multi-model 

predictive skills.

2.2. Modified Multi-Model Super Ensemble, M3SE

Modified Multi–Model Super Ensemble (M3SE) technique is a variant of the 

MMSE.  This technique works in the same way as in MMSE except the bias correction 

step.  In MMSE, model bias is removed by replacing the average of the predictions by the 
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average of observed flows.  In M3SE, the bias is removed by mapping the model 

prediction at each time step to the observed flow with the same frequency as the 

forecasted flow.  Figure (1) illustrates how forecasted flows are mapped into observed 

flows through frequency mapping.  The solid arrow shows the original value of the 

forecast and the dashed arrow points to the corresponding observed value.  The frequency 

mapping bias correction method has been popular in hydrology because it the bias 

corrected hydrologic variables agree well statistically with the observations, while the 

bias correction procedure used in MMSE might lead to unrealistic values (i.e., negative 

values).  After removing bias from each model forecast, the same solution procedure for 

MMSE is applied to M3SE.

2.3. Weighted Average method, WAM

Weighted Average Method (WAM) is one of the model combination techniques 

specifically developed for rainfall-runoff modeling by Shamseldin et al. (1997).  This 

method also utilizes the Multiple Linear Regression (MLR) technique to combine the 

model predictions.  The model weights are constrained to be always positive and to sum 

up to unity.  If we have model predictions from N models, WAM can be expressed as:

  ∑ ⋅=
=

N

i
tisimitWAM QxQ

1
,)()( (2)
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Where tWAMQ )( is the multi-model prediction obtained through WAM at time t.  

Constrained Least Square techniques can be used to solve the equation and estimate the 

weights.  For more details about this method reader should refer to Shamseldin et al. 

(1997).

2.4 Simple Model Average, SMA

The Simple Model Average (SMA) method is the multi-model ensemble 

technique used by Georgakakos et al. (2004).  This is the simplest technique and is used 

as a benchmark for evaluating more sophisticated techniques in this work.  SMA can be 

expressed by the following equation:

  ∑
−

+=
=

N
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isimtisim
obstSMA N
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QQ

1

, )()(
)( (3)

Where tSMAQ )( is the multi-model prediction obtained through SMA at time t.

2.5 Differences Between the Four Multi-model Combination Techniques

The major differences between these multi-model combination methods are the 

model weighting scheme and the bias removal scheme.  MMSE, M3SE and WAM have 

variable model weights, while SMA has equal model weights. MMSE and M3SE 

compute the model weights through multiple linear regressions while WAM computes 

the model weights using constrained least square approach that ensures positive model 

weights and total weights equal to 1.  With respect to bias correction, MMSE and SMA 

remove the bias by replacing the prediction mean with the observed mean, while WAM 
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does not incorporate any bias correction.  M3SE removes the bias by using frequency 

mapping method as illustrated in Section 2.3.  

3. The Study Basins and Data:

We have chosen to evaluate the multi-model combination methods using model 

outputs collected from the DMIP (Smith et al., 2004).  The DMIP was conducted over 

several river basins within the Arkansas Red River basins.  Five of the DMIP basins are 

included in this study: Illinois River basin at Watts, OK, Illinois River basin at Eldon, 

OK, Illinois River basin at Tahlequah, OK, Blue River basin at Blue, OK, and Elk River 

basin at Tiff City, MO. Fig. 2 shows the location of the basins while Table 1 lists the 

basin topographic and climate information.  Silty clay is the dominant soil texture type of 

those basins, except for Blue River, where the dominant soil texture is clay.  The land 

cover of those basins is mostly dominated by broadleaf forest and agriculture crops 

(Smith et al., 2004). 

The average maximum and minimum surface air temperature in the region are 

approximately 22°C and 9°C, respectively. Summer maximum temperatures can get as 

high as 38°, and freezing temperatures occur generally in December through February. 

The climatological annual average precipitation of the region is between 1010-1160 

mm/yr (Smith et al., 2004).

Seven different modeling groups contributed to the DMIP by producing flow 

simulation for the DMIP basins using their own distributed models, driven by 

meteorological forcing data provided by the DMIP.  The precipitation data, available at 

4x4 km2 spatial resolution, was generated from the NWS Next-generation Radar 
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(NEXRAD). Other meteorological forcing data such as air temperature, downward solar 

radiation, humidity and wind speed were obtained from the University of Washington 

(Maurer et al., 2001).  Table 2 lists the participating groups and models.  For more details 

on model description and simulation results, readers should refer to Reed et al. (2004). 

For this study, we obtained the river flow simulations from all participating 

models for the entire DMIP study period: 1993-1999.  The uncalibrated river simulation 

results were used for multi-model combination study.  Observed river flow data, along 

with the best calibrated single model flow simulations from the DMIP, were used as the 

benchmarks for comparing skill levels of the different multi-model predictions.  Data 

period from 1993 to 1996 was used to train the model weights from the multi-model 

combination techniques, while the rest of the data period (1997-1999) was used for 

validating the consistency of the multi-model predictions using these weights.

4. Multi-model Combination Results and Analysis

4.1 Model evaluation criteria

Before we present the results, two different statistical criteria are introduced: the 

Hourly Root Mean Square Error (HRMS) and the Pearson correlation coefficient (R).  

These criteria are used to compare the skill levels of different model predictions. These 

criteria are defined as follows:

  2

1
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4.2. Comparison of the Multi-model Consensus Predictions and the Uncalibrated 

Individual Model Predictions

In the first set of numerical experiments, the multi-model predictions were 

computed from the uncalibrated individual model predictions using different multi-model 

combination techniques described in Section 2.  Figures 3a-3j present the scatter plots of 

the HRMS versus R values of the individual model predictions and those of the SMA 

predictions.  The horizontal axis in these figures denotes the Pearson Coefficient from the 

individual models and SMA, while the vertical axis denotes HRMS of these predictions.  

Note that the most desired skill value set is located at the lower right corner of the 

figures.  Figures 3a, 3c, 3e, 3g and 3i show the results for the training period and while 

Figures 3b, 3d, 3f, 3h and 3j show the results over validation period.  These figures 

clearly show that the statistics from the individual model predictions are almost always 

worse than those of the SMA predictions.  These results confirm the fact that just simply 

averaging the individual model predictions would lead to improved skill levels. It is 

worth mentioning that these results are totally consistent with the conclusions from the 

paper by Georgakakos et al. (2004).

Figures 4a-4j show the scatter plots of the HRMS and R for all multi-model 

combination techniques as well as for the best uncalibrated and the best calibrated 

individual model predictions during the training and validation periods.  Clearly shown in 
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these figures is that all multi-model predictions have superior performance statistics 

compared to the best uncalibrated individual model prediction (best-uncal).  More 

interestingly, the multi-model predictions generated by MMSE and M3SE show 

noticeably better performance statistics than those by SMA.  This implies that there are 

indeed benefits in using more sophisticated multi-model combination techniques.  The 

predictions generated by WAM show worse performance statistics than the predictions 

generated by other multi-model combination techniques.  This suggests that the bias 

removal step incorporated by other multi-model combination techniques is important in 

improving predictive skills.  Figure 5 depicts an excerpt of flow simulation results from 

M3SE and MMSE during forecast period.  The advantage of bias removal technique in 

the M3SE over that of the MMSE is clear in this figure, as indicated by the negative flow 

values for some parts of the hydrograph generated by the MMSE while the M3SE does 

not suffer from this problem. 

The obvious advantage of multi-model predictions from the training period carries 

into the validation period in almost all cases except for Blue River basin, where the 

performance statistics of the multi-model predictions are equal to or slightly worse than 

the best uncalibrated individual model prediction. The reason for the relative poor 

performance in Blue River basin is that a noticeable change in flow characteristics is 

observed from the training period to the validation period (i.e., the average flow changes 

from 10.8cms in the training period to 7.17cms in the validation period, standard 

deviation from 27.6cms to 16.8cms).  This indicates that the stationarity assumption for 

river flow was violated.  Consequently the skill levels of the predictions during validation 

period were adversely affected.
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To get a measure of how multi-model predictions fare against the best calibrated 

single model predictions, we also included them in Figures 4a-4j.  As revealed in these 

figures, MMSE and M3SE outperform the best-cal (best calibrated models) for all the 

basins except Blue River Basin during the training period.  During validation period, 

however, the best calibrated single model predictions have shown a slight advantage in 

performance statistics over the multi-model predictions.  MMSE and M3SE are shown to 

be the best performing combination technique during validation period and have statistics 

comparable to those of the best calibrated case, while WAM and SMA have worse 

performance statistics.

4.3. Application of Multi-model Combination Techniques to River Flow Predictions 

from Individual Months

Hydrological variables such as river flows are known to have a distinct annual 

cycle.  The predictive skills of hydrologic models for different months often mimic this 

annual cycle, as shown in Figure 6 which displays the performance statistics of the 

individual model predictions for Illinois River basin at Eldon during the training period.  

Figure 5 reveals that a model might perform well in some months, but poorly in other 

months, when compared to other models.  This led us to hypothesize that the weights for 

different months should take on different sets of values to obtain consistently skillful 

predictions for all months.  To test this hypothesis, model weights for each calendar 

month were computed separately for all basins and all multi-model combination 

techniques. 
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Figures 7a-7j show the scatter plots of the HRMS values when a single set of 

model weights were computed for overall training period versus the HRMS values when 

monthly weights were computed.  Figures 7a, 7c, 7e, 7g and 7i were for training period 

and Figure 7b, 7d, 7f, 7h and 7j were for validation period.  From these figures, it is clear 

that the performance of MMSE and M3SE with monthly weights is generally better than 

that with single sets of weights for the entire training period. While applying monthly 

weights for WAM does not improve the results, and in some cases the results worsens 

over the training period.  During the validation period, however, the performance 

statistics using single sets of weights are generally better than those using monthly 

weights.  This is because that the stationarity assumptions are more easily violated when 

the multi-model techniques are applied monthly.

4.4. The Effect of Different Number of Models Used for Model Combination on the 

Skill Levels of Multi-model Predictions

One often asked question on multi-model predictions is how many models are 

needed to ensure good skills from multi-model predictions.  To address this question, we 

performed a series of experiments by sequentially removing different number of models 

from consideration. Figure 8 displays the test results for MMSE.  Shown in the figure are 

the average HRMS and R values when a different number of models were included in 

model combination.  The figure suggests that the inclusion of at least four models is 

necessary for the MMSE to obtain consistently good skillful results. The figure also 

shows that including over 5 models would actually slightly deteriorate the results.  This 

indicates that the skill levels of the individual member models may affect the overall skill 
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levels of the combination results.  To illustrate how important the skills of individual 

models are on the skills of the multi-model predictions, we experimented with removing 

the best performing models and the worst performing models from consideration.  The 

effects of removing best and worst models on the HRMS and R values are shown in 

Figures 9a-9d.  The left most point in the figures corresponds to the case in which the 

worst performing model was removed while the next point with two worst models 

removed.  The right most point in the figure corresponds to the case in which the best 

performing model was removed and the next point with two best models removed.  It is 

clear from the figures that excluding the best model(s) would deteriorate the predictive 

skills more significantly compared to eliminating the weakest model(s). 

5. Conclusion and future direction

We have tested four different multi-model combination techniques to the river 

flow simulation results from the DMIP, an international project sponsored by NWS 

Office of Hydrologic Development to intercompare seven state-of-the-art distributed 

hydrologic models in use today (Smith et al., 2004).  The DMIP results show that there is 

a large disparity in the performance of the participating models in representing the river 

flows.  While developing more sophisticated models may lead to more agreement among 

models in the future, this work has been motivated by the premise that the skills of the 

existing models are not fully realized.  Multi-model combination techniques are a viable 

to extract the strengths from different models while avoiding the weaknesses. 

Through a series of numerical experiments, we have learned several valuable 

lessons.  First, simply averaging the individual model predictions would result in 
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consensus multi-model predictions that are superior to any single member model 

predictions.  More sophisticated multi-model combination approaches such as MMSE 

and M3SE can improve the predictive skills even further.  The multi-model predictions 

generated by the MMSE and M3SE can be even better than or at least comparable to the 

best calibrated single model predictions.  This suggests that future operational hydrologic 

predictions should incorporate multi-model prediction strategy.

Second, in examining the different multi-model combination techniques, it was 

found that bias removal is an important step in improving the predictive skills of the 

multi-model predictions.  MMSE and M3SE predictions, which incorporated bias 

correction steps, perform noticeably better than WAM predictions, which did not 

incorporate bias removal.  The M3SE has the advantage of generating consistently river 

flow results over the MMSE because of its bias removal technique is more compatible 

with hydrologic variables such as river flows. Also important is the stationarity 

assumption when using multi-model combination techniques for predicting river flows.  

In Blue River basin where the average river flow values are significantly different 

between the training and validation periods, the advantages of multi-model predictions 

was lost during the validation period.  This finding was also confirmed when the multi-

model combination techniques were applied to river flows from individual months.

Third, we attempted to address how many models are needed to ensure the good 

skills of multi-model predictions.  We found that at least four models are required to 

obtain consistent multi-model predictions.  We also found that the multi-model prediction 

skills are related to the skills of the individual member models.  If the prediction skill 
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from an individual model is poor, removing that model from consideration does not affect 

the skill of the multi-model predictions very much.  On the other hand, removing the best 

performing model from consideration does adversely affect the multi-model prediction 

skill.

This work was based on a limited data set.  There are only seven models and a 

total of seven years of river flow data.  The findings are necessarily subject to these 

limitations.  Further, the regression-based techniques used here (i.e., MMSE, M3SE and 

WAM) are vulnerable to multi-colinearity problem that may result in unstable or 

unreasonable estimates of the weights (Winkler, 1989).  This, in turn, would reduce the 

substantial advantages achieved employing these combination strategies.  There are 

remedies available to deal with colinearity problem (Shamseldin, et al., 1997; Yun et al., 

2003).  This may entail more independent models to be included in the model 

combination.  

Multi-linear regression based approach presented here is only one type of the 

multi-model combination approach.  Over recent years, there are other model 

combination approaches developed in fields other than hydrology, such as the Bayesian 

Model Average (BMA) method, in which model weights are proportional to the 

individual model skills and can be computed recursively as more observation information 

becomes available (Hoeting et al., 1999).  Model combination techniques are still young 

in hydrology.  The results presented in this paper and other papers show promise that 

multi-model predictions will be a superior alternative to current single model prediction.
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Table 1. Basin Information

Basin name Area (Km2) Annual  
Rainfall (mm)

Annual runoff 
(mm)

Dominant Soil texture vegetation cover

Illinois River Basin at Eldon 35d 55' 16" 94d 50' 18" 795 1175 340 Silty Clay Broadleaf forest

Blue River Basin at Blue 33d 59' 49"  96d 14' 27' 1233 1036 176 Clay Woody Savannah

Illinois River Basin at Watts 36d 07' 48" 94d 34' 19" 1645 1160 302 Silty clay Broadleaf forest

Elk River Baisn at Tiff City 36d 37' 53"    94d 35' 12'' 2251 1120 286 Silty clay Broadleaf forest

Illinois River Basin at Tahlequah 35d 55' 22" 94d 55' 24" 2484 1157 300 Silty clay Broadleaf forest

USGS Gage Location         
Lat            Lon
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Participant Model Primary Application
Spatial unit for 
rainfall-runoff 

calculation

Rainfall-runoff 
scheme

Channel routing 
scheme

Agricultural Research 
Services (ARS) SWAT Land 

Management/Agricultural

Hydrologic 
Response Unit 

(HRU)

Multi-layer soil 
water balance

Muskingum or 
Variable storage

University of Arizona 
(ARZ) SAC-SMA Streamflow Forecasting Sub-basins SAC-SMA Kinematic Wave

Environmental Modeling 
Center (EMC)

NOAH Land 
Surface Model

Land-atmosphere 
interactions 1/8 degree grids

Multi-layer Soil 
water and energy 

balance
--

Hydrologic Research 
Center (HRC) HRCDHM Streamflow Forecasting Sub-basins SAC-SMA Kinematic Wave

Office of Hydrologic 
Development (OHD) HL-RMS Streamflow Forecasting 16 km2 grid cells SAC-SMA Kinematic Wave

Utah State University 
(UTS) TOPNET Streamflow Forecasting Sub-basins TOPMODEL --

University of Waterloo, 
Ontario (UWO) WATFLOOD Streamflow Forecasting 1-km grid Linear Storage 

Routing

Table 2. DMIP participant modeling groups and characteristics of their distributed hydrological models (Reed et al., 2004) 
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Figure 1: Frequency curve which is being used for Bias-correction for MMC method
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Figure 2. DMIP Test Basins; (Smith et al., 2004)



29

0 0.2 0.4 0.6 0.8 1

20

40

60

R

H
R

M
S

Pearson Coefficient versus HRMS 
Illinois River Basin at Watts 

Training period (1993-1996)

0 0.2 0.4 0.6 0.8 1

20

40

60

R

H
R

M
S

Forecast period (1997-1999)

0 0.2 0.4 0.6 0.8 1

20

40

60

80

R

H
R

M
S

Illinois River Basin at Tahlequah
0 0.2 0.4 0.6 0.8 1

10

20

30

R

H
R

M
S

llinois River Basin at Eldon 

0 0.2 0.4 0.6 0.8 1
10

20

30

R

H
R

M
S

UWO-uncal
UTS-uncal
OHD-uncal
HRC-uncal
EMC-uncal
ARZ-uncal
ARS-uncal
SMA

0 0.2 0.4 0.6 0.8 1

20

40

60

80

R

H
R

M
S

0 0.2 0.4 0.6 0.8 1
10

20

30

R

H
R

M
S

0 0.2 0.4 0.6 0.8 1
10

20

30

R

H
R

M
S

Blue River Basin at Blue 

0 0.2 0.4 0.6 0.8 1

20

40

60

80

R

H
R

M
S

Elk River Basin at Tiff City

0 0.2 0.4 0.6 0.8 1

20

40

60

80

R

H
R

M
S

Figure 3: Hourly root mean square error versus Pearson coefficient for SMA and uncalibrated member 
models for all the basins.

a b

c d

g

e f

h

i j





31

0.7 0.8 0.9 1
15

20

25

30

Illinois River Basin at Watts
Training

R

H
R

M
S

0.8 0.85 0.9 0.95 1
15

20

25
Forecast

R

H
R

M
S

0.8 0.85 0.9 0.95 1
10

15

20

25

R
H

R
M

S

0.8 0.85 0.9 0.95 1
15

20

25

30

R

H
R

M
S

Illinois River Basin at Tahlequah

0.8 0.85 0.9 0.95 1
10

15

20

25

R

H
R

M
S

Illinois River Basin at Eldon

0.8 0.85 0.9 0.95 1
15

20

25

30

R

H
R

M
S

0.7 0.8 0.9 1
10

15

20

25

R

H
R

M
S

Blue River Basin at Blue

0.7 0.8 0.9 1
10

15

20

25

R

H
R

M
S

0.7 0.8 0.9 1
20

30

40

50

60

R

H
R

M
S

Elk River Basin at Tiff City

0.7 0.8 0.9 1
20

30

40

50

R

H
R

M
S

MMSE

M3SE
WAM
SMA
Best-cal

Best-uncal

Figure 4. Hourly root mean square error versus Pearson Coefficient for all model combination 
(MMS, MMC, WAM and SMA) against the best performing uncalibrated and calibrated model  

for all the basins (the closer to the bottom-right corner the better the model)

a b

c d

e f

g h

i j





33

5.45 5.5 5.55 5.6 5.65

x 10
4

0

5

10

15

20

25

Time (Hour)

Tr
an

sf
or

m
ed

 F
lo

w
 (C

M
S)

Illinois River Basin at Watts (Forecast period, August-Dec 1999) 

Observed

MMSE

M3SE

Best-cal
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Figure 8. Average HRMS and R statistics for MMSE when different number of models were 
included in model combination.
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combination.




