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ABSTRACT

We present modeled neutron capture cross sections relevant to stellar production of 60Fe.
Systematics for the input parameters required by the Hauser-Feshbach statistical model are
developed based on measured data in the local region of the isotopic plane (20 ≤ Z ≤ 29,
43 ≤ A ≤ 65). These parameters and used to calculate reaction cross sections and rates for select
target isotopes. Modeled cross sections are compared to experimental data where available. The
59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe rates are compared to previous calculations. A brief discussion
of errors related to the modeling is provided. We conclude by investigating the sensitivity of
stellar production of 26Al and 60Fe to the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe reaction rates using a
single zone model.

Subject headings: nuclear reactions, nucleosynthesis, abundances - stars: interiors - supernovae: general

1. Introduction

The radioactive nucleus 60Fe has long been an
elusive candidate for γ-ray line study in the in-
terstellar medium. With a decay half life τ1/2 =
1.5×106 years, any 60Fe produced in pre- and post-
supernovae processes will remain in the interstel-
lar medium long enough that its γ-ray flux should,
in principle, be observable even when the period
between supernovae is long. The observability of
the gamma ray flux is, of course, dependent on the
amount of 60Fe produced and the sensitivity of the
detector.

The synthesis of 60Fe has been closely tied to
that of 26Al (τ1/2 = 7.17 × 105 years)

1Department of Physics, University of California, Davis

Davis, CA 95616
2United States Naval Academy, Annapolis, MD

(Timmes et al. 1995), which has been observed
in the Galactic plane (Hartmann, Diel, etc).
Based on theoretical predictions of stellar yields
(Woosley & Weaver 1995) and a coordinated sur-
vey of galactic chemical evolution
(Timmes Woosley & Weaver 1995), ∼ 2 M� of
26Al was predicted to exist in steady state in the
Galaxy. The expected line-flux ratio of 60Fe/26Al
(for each of the two lines of 60Fe) was predicted to
be 0.16 if SNII are the only sources of 26Al in the
Galaxy. Such a flux was well below the threshold
detection limits of the orbiting γ-ray telescopes in
the 1990’s. Recently, detection of both 26Al and
60Fe with the RHESSI satellite has been reported
(Smith 2003) initially with a flux ratio of 0.16, in
agreement with the prediction. The values has
since been revised to 0.093 (Smith 2004). This
latter result is confirmed by initial measurements
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from the INTEGRAL satellite which put the flux
ratio at 0.11 ± 0.03 (Harris 2005).

However, recent improvements to the stellar
model and the nuclear reaction rate library used
in the 1995 survey (Rauscher et al. 2002) now in-
dicate more 60Fe production by roughly a factor
two in a solar metallicity 25 M� star. In addition,
the amount of predicted 26Al has also changed,
bringing into question the amount of both ra-
dionucleides ascribed to synthesis in massive stars
(Prantzos 2004).

There are several factors that affect the syn-
thesis of 60Fe. Previous studies suggest that
both pre- and post-explosive processing contribute
(Timmes et al. 1995). Most of it is made in a high
temperature helium burning shell just prior to col-
lapse. The most important nuclear reaction un-
certainties are the neutron capture rate for 59Fe
(less so 60Fe), and the weak decay rates of 60Fe
and 60Co. Other important rates are those that
produce neutrons during the s−process, such as
22Ne(α,n)25Mg, and of course 12C(α,γ)16O which
affects the size of the helium shell.

Possibly more important are the roles of stel-
lar convection and mass loss. The latter was not
included in the calculation of the stellar yields in
(Woosley & Weaver 1995) . In this paper we will
investigate the uncertainties in the neutron cat-
pure rates of 59,60Fe, leaving the other items for
future study.

Since no experimental capture cross sections
exist for these radionuclides theoretical mod-
eling techniques must be employed. We will
concentrate on comparisons of our statistical
model input quantities and calculated capture
cross sections to those previously developed by
(Woosley et al. 1975; Holmes et al. 1976), here-
after WFHZ, and (Rauscher & Thielemann 2000;
Rauscher & Thielemann 2001), hereafter RT, used
to calculate the stellar yields used in the 1995 GCE
study (Timmes Woosley & Weaver 1995) and the
most recent nucleosynthesis (Rauscher et al. 2002)
respectively. For a summary of the cross section
development and a detailed sensitivity study of
nucleosynthesis in massive stars using WFHZ vs.
RT reaction rates, see (Hoffman et al. 1999). For
an online library of the rates used in both studies,
see (Hoffman et al. 2002).

Section 2 details how the input parameters for

the Hauser-Feshbach statistical model were devel-
oped. Section 4 gives results and comparisons to
experimental data and to previous calculations.
We explore sensitivity to the statistical model in-
put quantities in section 5. In section 6 we inves-
tigate the effect our modeled 59Fe(n,γ)60Fe and
60Fe(n,γ)61Fe have on nucleosynthesis. Conclu-
sions follow.

2. Statistical Model Input Parameters

Both direct and compound nuclear processes
contribute to neutron capture reactions. However,
at the incident energies of interest in this study,
direct capture accounts for only a small fraction of
the cross section, and may be omitted. We model
our cross sections in the context of the Hauser-
Feshbach model (Hauser & Feshbach 1952), where
the cross section is given in terms of energy-
averaged transmission functions. Consider the
reaction involving target I in state µ and incident
particle j resulting in a residual L in state ν and
outgoing particle(s) k. For reactions with parti-
cles in the exit channel, the cross section is given
by

σ̄µν
jk (E) =

πλ̄2
j

gµgj
× (1)

∑

i,i′,l,l′,J,Π

gJT JΠ
jil (E)

T JΠ
ki′l′(E + Qµν

jk )

Ttot
.

For radiative capture, the cross section is given by

σ̄µν
jγ (E) =

πλ̄2
j

gµgj

∑

i,l,X,L,J,Π

gJT JΠ
jil (E)

T JΠ
γXL(εν

γ)

Ttot
. (2)

In these expressions, πλ̄2
j = 0.6566(ÂjE

µ
j )−1

barns, with Âj = (AIAj)/(AI + Aj) being the
reduced mass in atomic mass units and Eµ

j is
the center of mass energy in units of MeV. The
gi are statistical weights, given by gi = 2Ji + 1.
Qµν

jk is the Q-value for the reaction, and the T
are transmission coefficients. The sum extends
over channel spins i, partial waves l, and spins
J and parities Π of accessible exited compound
nuclear states. For photons, the partial waves
are replaced by multipolarities. The denominator
Ttot in Equations 1 and 2 represents the sum of
the transmission probability to all accessible exit
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channels, given by

Ttot =

∑

k′′,i′′,l′′

[

ω
∑

ν′′=0

T JΠ
k′′i′′l′′(E

ν′′

) +

∑

J ′Π′

∫ Emax

Eω

T JΠ
k′′i′′l′′(ε)ρ(Ek′′

exc − ε, J ′,Π′)dε

]

+

∑

X′′,L′′

[

ω
∑

ν′′=0

T JΠ
γX′′L′′(εν′′

γ ) +

∑

J ′Π′

∫ εω
γ

0

T JΠ
γX′′L′′(ε)ρ(Eγ

exc − ε, J ′,Π′)dε

]

. (3)

In this expression, ρ(E, J,Π) is the spin dependent
level density, ω is the highest level up to which
the level scheme is complete, Emax is the maxi-
mum excitation energy available, and Ek′′

exc is the
excitation energy for the channel k′′.

The laboratory cross section, where the target
is in the ground state and excited states in the
residual cannot be distiguished, is given as the sum
of Equations 1 and 2 over the residual state ν, i.e.

σ̄lab
jk =

∑

ν

σ̄0ν
jk . (4)

This is the quantity that is measured in the labo-
ratory and is of use in comparing to experimental
cross section data.

Reaction rates λjk are determined by convolu-
tion of the cross section with a maxwellian velocity
distribution, which yields

λjk = NA 〈σv〉jk

=

√

8

πµj

NA

(kBT )3/2
(5)

∫ ∞

0

σ̄jkEj exp(−Ej/kBT )dEj .

Here, j and k refer to the projectile and outgoing
particle, respectively. The reduced mass of the
projectile is denoted by µj , and NA and kB are
Avagadro’s number and the Boltzmann constant.
It is generally more useful to express this quantity
in terms of billions of degrees Kelvin (T9):

λjk =
3.732 × 1010

Â
1/2

j T
3/2

9

∫ ∞

0

σjkEj exp(−11.605 Ej/T9)dEj

cm3mol−1sec−1 (6)

where Âj is the reduced mass of the projectile in
atomic units.

Our cross section calculations include the
Moldauer approximation for the width fluctu-
ation correction (Moldauer 1976), and a sim-
ple exciton model for pre-equilibrium emission
(Cline & Blann 1971). Pre-compound emission
rates for nucleons and alpha particles are deter-
mined in accordance with (Gadioli et al. 1973)
and (Milazzo-Colli & Braga-Marcazzan 1973), re-
spectively. Pre-equilibrium emission only becomes
significant in this isoptopic region for incident neu-
tron energies above ∼5 MeV, and hence will not
affect neutron capture. To carry out statistical
model calculations, we adopt the STAPRE code
(Uhl & Strohmaier 1976), which embodies these
treatments. We have modified this code to enable
the use of additional prescriptions for the rele-
vant nuclear physics inputs, primarily the photon
transmission coefficients and the level densities.

In this section, we discuss the important in-
gredients of statistical model calculations and the
methods utilized to estimate them. These in-
clude the requisite nuclear structure data (ener-
gies, spins, and parities of the ground states and all
known excited states, as well as detailed branch-
ing ratios for gamma-cascade from excited to low-
lying states), particle and photon transmission co-
efficients, and nuclear level densities. The reliabil-
ity of Hauser-Feshbach calculations is chiefly de-
termined by the accuracy with which these com-
ponents can be evaluated.

2.1. Nuclear Structure Data

We adopt the experimental mass excess values
of (Wapstra et al. 2003) in determining nuclear
binding and separation energies. These quan-
tites are needed in calculating excitation energies
and Q-values. Ground state spin and parity as-
signments are from the Evaluated Nuclear Struc-
ture Data File (ENSDF 2003). The nuclear struc-
ture data needed to model gamma-ray cascades
are taken from the level schemes and parameters
found in the second Reference Input Parameter
Library (RIPL). For the iron, cobalt, and nickel
isotopes, additional evaluation was performed by
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R. Bauer (Bauer 2002). In general, we use sev-
eral more levels than were available in the previous
cross section calculations of WFHZ and RT.

2.2. Nuclear Level Densities

For excitation energies at the neutron bind-
ing energy and above, we adopt a back-shifted
Fermi gas formulation of the nuclear level density
(Gilbert & Cameron 1965):

ρ(U, J) = ρ(U) f(U, J) (7)

where ρ(U) is the state density, U = E − ∆ is
the back-shifted energy, and J is the spin of the
compound nucleus. We assume an equal distribu-
tion of parity states, so that ρ(U, J,Π) = 1

2
ρ(U, J).

The state density and spin dependence are given
by

ρ(U) =

√
π

12

exp(2
√

aU)

a1/4U5/4

1√
2πσ

(8)

f(U, J) =
2J + 1

2σ2
exp

[

−
(

J + 1
2

)2

2σ2

]

(9)

with

a = ã

[

1 + δW
1 − exp(−γU)

U

]

(10)

(Iljinov et al. 1992). Microscopic ground state
energies from (Möller et al. 1995) are adopted
as the shell corrections δW , as suggested in
(Rauscher et al. 1997). The parameter γ de-
scribes how quickly the energy dependence of
the level density parameter vanishes (i.e. how
quickly a approaches its asymptotic value ã with
increasing energy), and is generally in the range
of 0.04 − 0.08.

The spin cutoff parameter σ2 in Equation 8 has
been defined in a few different ways. The param-
eterization used by both WHFZ and RT is

σ2 = 0.01496 A5/3

√

U

a
(11)

though it may also be given by

σ2 = 0.0888
√

aUA2/3 (12)

as in the GNASH code (Chadwick 1998). In de-
veloping local systematics for the level density pa-
rameters, we consider both prescriptions.

The backshift ∆, which defines a false ground
state for nuclei containing paired nucleons, has

also been given multiple parameterizations. WFHZ
use

∆ = Pn + Pp − η

A
(13)

with η = 80 and pairing energies Pn and Pp from
(Gilbert & Cameron 1965). Similar values can be
acquired by considering the differences in binding
energies between neighboring nuclei, as is done in
(Rauscher et al. 1997). Using this method, one
has

∆p = BZ,N − 1

2
[BZ−1,N + BZ+1,N ]

∆n = BZ,N − 1

2
[BZ,N−1 + BZ,N+1]

∆ =
1

2
(∆p + ∆n) (14)

where BZ,N is the binding energy of the nucleus
(Z,N). In developing our level density systemat-
ics, we consider the second of these methods, as
well as ∆ = ∆′

p + ∆′
n where the ∆′ are zero for

paired nucleons.

Once prescriptions for σ2, ∆, and δW have been
chosen, the only undetermined level density pa-
rameters are γ and ã. For a given value of γ, ã can
be fit in such a way that it reproduces measured
s-wave resonance spacings at the neutron binding
energy (D0), via the relation

D0 =
2

ρ(Bn − ∆, 1
2
)

(15)

for target nuclei with a ground state spin of zero
and

D0 =
2

ρ(Bn − ∆, s + 1
2
) + ρ(Bn − ∆, s − 1

2
)
(16)

for other nuclei with ground state spin s. For nu-
clei without measured D0, systematic values of ã
must be adopted.

To simultaneously determine the best values to
use for γ and ã, we assume a functional form of

ã = αA + βA2/3 (17)

as in (Rauscher et al. 1997) and make a χ2 fit to
known D0 to obtain the parameters α, β, and γ.
We only include the measured D0 in our local re-
gion of interest (20 ≤ Z ≤ 29). RT employ this
method globally, using all available D0 measure-
ments. WFHZ do not use an energy dependent
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Fig. 1.— χ2 fit to derived level density parame-
ters.

level density parameter, but include the Gilbert
and Cameron shell corrections in thier level den-
sity parameter.

In making our least squares fit for the level den-
sity parameters, we have considered each of the pa-
rameterizations for the spin cutoff parameter and
backshift mentioned above. We also consider a
case where γ is fixed at the value of 0.04884 ob-
tained in the global fit of (Rauscher et al. 1997).
The smallest χ2 is obtained using Equation 11 for
the spin cutoff parameter and Equation 14 for the
backshift. This results in the set of parameters
γ = 0.070036, α = 0.038139, and β = 0.301954.
This systematic is shown in comparison to “ex-
perimental” ã (determined from measured D0 us-
ing our preferred prescriptions for σ and ∆ and
γ = 0.070036) in Figure 1.

This local systematic is superior with respect to
the replication of measured resonance spacings, as
may be seen in Table 1. In this table, the values
listed under RT and WFHZ are calculated using
their respective global systematics for level den-
sity parameters. The values listed under KHD
are calculated using our local systematic. Aster-
isks following a value indicate that the value is
within the errors of the measurement. Values are
listed by compound nucleus (target plus neutron).
Quantitatively, the performance of a systematic is
expressed in terms of the factor of merit g, given

by

g2 =
1

N

N
∑

i=1

(

yi − xi

σi

)2

(18)

where the yi are the measured data with errors
σi and the xi are the calculated values. The sum
extends over all compound nuclei listed in the ta-
ble. A small factor of merit indicates that a given
systematic did well in replicating the experimental
values.

Even though we have predicted systematic val-
ues for ã for these nuclei, in our cross section cal-
culations we use the “experimental” values shown
in Figure 1. Systematic values are only used when
in cases where there is not a measured D0.

The state density (Eqn. 8) diverges and the
spin cutoff parameter becomes imaginary at E =
∆. At these low energies, the nuclear level den-
sity is better described by a constant temperature
formula (Gilbert & Cameron 1965):

ρ(E) =
1

T
exp

[

E − E0

T

]

1√
2πσ2

. (19)

The Fermi gas and constant temperature state
densities are required to match tangentially at an
energy Ex which lies between ∆ and Bn. The spin
cutoff parameter below Ex has been treated sev-
eral different ways (Reffo 1978; Chadwick 1998).
We hold it constant at its value at Ex. The tan-
gential matching requirement fixes the values of E0

and T for a given Ex, and Ex may be fit in such
a way that the integrated level density matches
the cumulative number of discrete levels. Each
nucleus is fit individually, as opposed to using an
systematic matching energy such as that suggested
in (Gilbert & Cameron 1965). RT similarly em-
ploy a constant temperature state density at low
excitation energies. WFHZ deal with the diver-
gence in the Fermi gas state density by assuming
that the state density remains constant between
E = 0.5 MeV and E = 4/a + ∆, and falls to zero
below 0.5 MeV. Such an assumption has no effect
when the discrete level scheme is complete up to
E = 4/a + ∆.

2.3. Particle Transmission Coefficients

For the calculation of neutron and proton trans-
mission coefficients, we utilize the optical model
of (Koning & Delaroche 2003) (hereafter KD03).
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Table 1: S-wave resonance spacings from various
level density presciptions, in keV, compared to
measured values from the Reference Input Param-
eter Library. Asterisks indicate that a calculated
value is within the errors of the measurement. The
last line of the table is a figure of merit described
in the text.

AZ RIPL WFHZ RT KHD
43Ca 20.0 ± 5.0 52.6 39.4 18.2 *
44Ca 1.80 ± 0.30 4.98 5.74 2.65
45Ca 24.1 ± 3.2 65.4 51.6 28.5
46Sc 1.30 ± 0.10 2.93 3.15 1.38 *
47Ti 25.0 ± 4.4 29.6 12.6 8.50
48Ti 1.75 ± 0.25 3.48 2.72 1.58 *
49Ti 18.3 ± 2.9 46.5 43.9 24.0
50Ti 4.00 ± 0.80 4.93 5.35 3.80 *
51Ti 125 ± 70 127 * 125 * 98.1 *
51V 2.30 ± 0.60 2.99 1.59 1.45
52V 4.10 ± 0.60 5.51 5.90 4.34 *
51Cr 13.3 ± 1.3 25.7 19.3 11.0
53Cr 43.4 ± 4.4 50.3 37.1 31.7
54Cr 7.80 ± 0.80 7.07 * 7.76 * 5.48
55Cr 62.0 ± 8.0 75.5 58.2 * 48.2
56Mn 2.30 ± 0.40 3.73 2.42 * 2.47 *
55Fe 18.0 ± 2.4 37.8 18.1 * 17.2 *
57Fe 25.4 ± 2.2 47.8 21.4 21.1
58Fe 6.50 ± 1.00 7.66 5.91 * 5.19
59Fe 25.4 ± 4.9 51.2 24.4 * 26.9 *
60Co 1.25 ± 0.15 2.09 1.43 1.41
59Ni 13.4 ± 0.9 31.0 13.7 * 14.7
60Ni 2.00 ± 0.70 2.39 * 2.15 * 1.90 *
61Ni 13.8 ± 0.9 29.8 17.3 15.5
62Ni 2.10 ± 0.15 2.04 * 1.71 1.78
63Ni 16.0 ± 3.0 29.0 21.4 19.6
65Ni 19.6 ± 3.0 32.0 35.8 29.6
64Cu 0.95 ± 0.09 1.23 0.60 0.80

g – 8.07 5.41 1.76

Although they have tuned their parameters to fit
data for many different nuclear species, we have
used the global nucleon-nucleus potential, as it
gives a satisfactory fit to measured total neu-
tron cross section data in the region of interest
to us. Additionally, this potential provides rea-
sonable values for s- and p-wave strength func-
tions and potential scattering radii in this mass
region. Transmission coefficients were generated
from the optical potential using the ECIS-95 code

(Raynal 1996). Although designed for coupled
channel calculations, we use the code in a spherical
mode.

Previous modeling efforts have relied on other
optical potentials. RT use the potential of
(Jeukenne et al. 1977), hereafter JLM77. WFHZ
use an equivalent square well potential
(Michaud & Fowler 1970), primarily because the
transmission coefficients can be written in closed
form, saving considerable computation time. The
Woods-Saxon potentials of KD03 and JLM77 pro-
vide a more accurate representation of the nuclear
potential, and we do not consider the square well
potential further in our analysis.

We present in Figure 2 the total neutron cross
section for 56,57,58Fe targets as calculated using
the KD03 and JLM77 optical potentials. The
calculations are plotted against measured data
from (EXFOR). Error bars have been omitted
for clarity. The cross sections derived from the
KD03 model compare favorably to the experimen-
tal data, but not significantly better or worse than
those of JLM77. Comparisons using stable Cr,
Mn, Co, and Ni targets yield similar results.

In Figure 3 we present the ratios of model de-
rived s- and p-wave strength functions and poten-
tial scattering radii to measured values. The dot-
ted lines mark a factor of two from unity. The
KD03 model is superior to JLM77 in the replica-
tion of these values over the entire mass range pre-
sented, but both models do reasonably well around
A = 60.

We also include alpha particle and deuteron
exit channels in our modeling effort, using the
optical potentials of (McFadden & Satchler 1966)
and (Perey & Perey 1963), respectively. However,
The transmission coefficients for charged particles
are supressed by a Coulomb barrier at low ener-
gies, and will not significantly affect modeled neu-
tron capture cross sections.

2.4. Photon Transmission Coefficients

Our photon transmission coefficients depend
only on the multi-pole type (XL) and the tran-
sition energy (ε). They are related to the gamma
ray strength function fγ

XL(ε) by

T γ
XL(ε) = 2πε2L+1fγ

XL(ε). (20)
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The energy dependence of the E1 strength func-
tion is determined using the Enhanced General-
ized Lorentzian model (EGLO)

fγ
E1(ε) = NE1

4

3π

e2

~c

1

Mpc2
×

∑

GDR

[

εΓGDR(ε, Tf )

(ε2 − E2
GDR)2 + (ΓGDR(ε, Tf )ε)2

+

0.7
ΓGDR(0, Tf )

ε3

]

(21)

where Mp is the proton mass. The energy depen-
dent width ΓGDR(ε, Tf ) is given by

ΓGDR(ε, Tf ) =

[

κ + (1 − κ)
ε − ε

EGDR − ε

]

×

ΓGDR

E2
GDR

[

ε2 + (2πTf )2
]

(22)
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KD03 and JLM77 optical potentials to measured
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with ε = 4.5 MeV. For nuclei with A < 148,
the factor κ is unity. For heavier nuclei, κ =
1 + 0.009(A − 148)2 exp[−0.18(A − 148)]. The Tf

that appears in Equations 21 and 22 is the tem-
perature of the final state, determined from the
level density parameters. For a backshifted tran-
sition energy U = Sn − ε−∆, one determines the
energy dependent level density parameter (Eqn.
10). Provided U is positive, the temperature is
given by

Tf =
a

2

[

1 +
√

1 + 4aU
]

. (23)

Otherwise, Tf = 1/a. The NE1 appearing in
Equation 21 is an overall normalization constant
that will be described in the next section. We
include two GDR resonances in the description
of the E1 strength function. In many cases, the
energies, widths, and peak cross sections of the
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resonances have been experimentally determined
(RIPL). We use these measured values where
available. Where such data is not available we
have developed the following set of systematics by
making a χ2 fit to measured parameters in the re-
gion of interest

EGDR1 = −0.1079 A + 23.22

ΓGDR1 = −0.0118 A + 5.73

σGDR1 = 0.1050 A + 57.25

EGDR2 = −0.1695 A + 29.47

ΓGDR2 = −0.0134 A + 7.39

σGDR2 = 2.125 A − 75.27. (24)

The peak cross section (σGDR) provides an overall
multiplicative factor to the strength function and
can be absorbed into the overall normalization.

For the M1 strength function, we adopt a Sim-
ple Lorentzian (SLO) model

fγ
M1(ε) = NM1

4

3π

e2

~c

1

Mpc2
×

∑

GDR

εΓGDR

(ε2 − E2
GDR)2 + (ΓGDRε)2

(25)

with the global set of GDR parameters given in
(RIPL):

EGDR =
41

A1/3

ΓGDR = 4. (26)

The overall normalization for the M1 strength
function (NM1) is determined such that

fE1(Sn)

fM1(Sn)
= 0.0588 · A0.878 (27)

where Sn is the neutron separation energy.

We also include E2, M2, E3, and M3 tran-
sitions with Blatt-Weisskopf strength functions
(Blatt & Weisskopf 1952), normalized to

fγ
E2(Sn) = 7.2 × 10−7A

2/3

C fγ
E1(Sn)

fγ
M2(Sn) = 2.2 × 10−7fγ

E1(Sn)

fγ
E3(Sn) = 3.4 × 10−13A

4/3

C fγ
E1(Sn)

fγ
M3(Sn) = 1.1 × 10−13A

2/3

C fγ
E1(Sn). (28)

Previous modeling efforts (RT, WFHZ) utilize
an SLO representation for the E1 strength func-
tion and a Blatt-Weisskopf M1 strength function.

It has been suggested (RIPL) that the SLO over-
estimates the E1 strength function at low photon
energies. WFHZ use a set of GDR parameters that
depend only on the mass number of the compound
nucleus (with empirical provisions for closed shell
and near-closed shell nuclei) , while RT use an
energy dependent GDR width that accounts for
nuclear deformation. Both use a single resonance.
We will show in section 5 that the 59Fe(n,γ)60Fe
and 60Fe(n,γ)61Fe cross sections, and hence the
reaction rates, are somewhat sensitive to the rep-
resentation of the strength functions (i.e. EGLO
v. SLO), but almost completely insensitive to the
GDR parameters.

3. Normalization of the E1 Strength Func-

tion

We now consider the overall normalization of
the E1 strength function. As will be seen in section
5, modeled neutron capture reactions are more
sensitive to this quantity that any other input pa-
rameter, and hence it is of primary importance.

As mentioned, WFHZ and RT have adopted an
SLO representaion for the E1 strength function
(see Eqn. 25). The E1 normalization is deter-
mined by an empirical fit to Maxwellian-averaged
cross sections (MACS) for neutron capture. The
MACS is related to the laboratory cross section in
a manner similar to the reaction rate:

〈σv〉
vT

=

∫ ∞

0
σnγvΦ(v)dv

vT
(29)

=
2√

π(kBT )2

∫ ∞

0

σnγ(E)W (E, kBT )dE

where W (E, kBT ) = E exp(−E/kBT ) and E is
the center of mass energy. Many neutron cap-
ture MACS have been measured, and a current
tabulation of recommended values at kBT = 30
keV is provided by (Bao et al. 2000). The pro-
cess of normalizing to MACS involves calculating
the cross section assuming NE1 = 1, finding the
ratios of the calculated MACS at 30 keV to the
measured values, and looking for systematic be-
havior. Since the photon transmission coefficients
are very small in comparison to the neutron trans-
mission coefficients at low excitation energies, and
since charged particle transmission coefficients are
suppressed by the Coulomb barrier, the Hauser-
Feshbach denominator (Eqn. 3) will be dominated
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by the neutron channels. Thus the neutron trans-
mission coefficient in the numerator of Equation
2 will roughly cancel with the denominator, mak-
ing the cross section approximately proportional
to any multiplicative constant in the photon trans-
mission coefficient. This being the case, one may
find the ratio of the measured 30 keV MACS to the
value calculated using an overall E1 normalization
of unity and substitute that value for NE1. The
resulting neutron capture cross section will then
replicate the measured 30 keV MACS to within a
small error. WFHZ and RT considered the global
systematic behavior of the measured to calculated
MACS ratio, and found the following empirical
normalizations:

WFHZ : NE1 = κE
NZ

A

RT : NE1 = (1 + χ)
NZ

A
(30)

where κE = 0.25 and χ = 0.2. Differences in
the overall normalizations arise from differences in
the GDR parameters, the energy dependent GDR
width used by RT, and the greater abundance of
measured MACS data available to RT.

Another method for normalizing the E1 strength
function involves fitting NE1 to average total s-
wave radiation widths (〈Γγ〉0). This quantity,
which can be measured in neutron resonance ex-
periments, may be calculated from the level den-
sities and photon transmission coefficients as

〈Γγ〉0 =
Jt + 1

2Jt + 1

〈

Γγ

(

Bn, Jt +
1

2
,Πt

)〉

+

Jt

2Jt + 1

〈

Γγ

(

Bn, Jt −
1

2
,Πt

)〉

.(31)

Here, Bn is the neutron binding energy of the com-
pound nucleus in question, and Jt is the ground
state spin of the nucleus formed by the emission of
a single nuetron from the compound nucleus. The
total widths of the two resonances are given by

〈Γγ(E, J,Π)〉 =
1

2πρ(E, J,Π)i
× (32)

∑

XL

∑

Jf ,Πf

[ ω
∑

ν=1

TXL
γ (E − Eν , Jν ,Πν) +

∫ E−Eω

0

dε TXL
γ (ε, Jf ,Πf )ρ(E − ε, Jf ,Πf )

]

.
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Fig. 4.— Systematics for average total s-wave ra-
diation width.

Here, the sum extends over all possible final state
spins (Jf ) and parities (Πf ). To normalize the E1
strength function using 〈Γγ〉0, one first assumes
NE1 is equal to unity and calculates the average
radiation width. Since 〈Γγ〉0 is proporitonal to
NE1, the proper normalization needed to replicate
the measured value will be

NE1 =
〈Γγ〉meas.

0

〈Γγ〉NE1=1

0

. (33)

Although 〈Γγ〉0 has only been measured for a
few select nuclei, the behavior of the widths
generally varies smoothly as a function of mass
so that systematics may be developed. This
method of normalizing the E1 strength function
has proven effective in previous modeling efforts
(Hoffman et al. 2004).

Our local systematics for 〈Γγ〉0 may be seen
in Figure 4. The variation of 〈Γγ〉0 in the our
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Table 2: Comparison of experimental and modeled 30 keV Maxwellian-averaged neutron capture cross sec-
tions, in mb. Asterisks following a calculated value indicate that it is within the errors of the measurement.

Target Recommended WFHZ RT KHD KHD2
50Cr 49 ± 13 34 44.8 * 58.2 * 58.7 *
51Cr 87 ± 16 63 86.0 * 137.9 131.1
52Cr 8.8 ± 2.3 12 16.7 23.1 12.2
53Cr 58 ± 10 24 26.0 35.7 34.5 *
54Cr 6.7 ± 1.6 7.2 * 9.4 25.1 12.0
55Mn 39.6 ± 3.0 28 35.5 49.9 46.3
54Fe 27.6 ± 1.8 28 * 46.5 52.4 34.7
55Fe 75 ± 12 46 83.9 * 88.3 85.9 *
56Fe 11.7 ± 0.5 19 26.2 23.3 11.0 *
57Fe 40 ± 4 21 30.3 27.1 33.9
58Fe 12.1 ± 1.3 9.5 12.9 * 61.8 26.1
59Co 38 ± 4 36 * 51.3 59.8 30.1
58Ni 41 ± 2 29 50.5 78.6 54.3
59Ni 87 ± 14 72 92.4 * 130.9 83.8 *
60Ni 30 ± 3 20 33.2 55.4 30.6 *
61Ni 82 ± 8 37 77.8 * 104.1 57.9
62Ni 12.5 ± 4.0 12 * 19.2 37.1 13.3 *
63Ni 31 ± 6 24 36.5 * 70.9 44.5
64Ni 8.7 ± 0.9 6.1 10.1 63.7 15.2

g – 4.399 7.349 18.762 3.823

range of interest is not as smooth as in higher mass
regions, but does exhibit some general systematic
behavior. We note that the measured 〈Γγ〉0 in this
region are also significantly larger than those for
nuclei of larger mass. Our systematic was found
by making a χ2 linear fit to the measured data,
with separate sytematics being developed for even-
and odd-Z nuclei. Whenever they are available,
we normalize to measured 〈Γγ〉0 when calculating
cross sections.

In Tables 2 and 3 we list the MACS and 〈Γγ〉0
computed from the input prescriptions of WFHZ,
RT, and the present work. We note that the
MACS for WFHZ and RT were taken directly
from the CRSEC and NONSMOKER codes uti-
lized by these groups. The tables also include the
recommended MACS from (Bao et al. 2000) and
measured 〈Γγ〉0 from (RIPL). The results in the
column labeled KHD in Table 3 are normalized
to systematic 〈Γγ〉0 only, since normalization to
measured values would result in exact replication
in every case. The respective results in Table 2 in-
volve a normalization to measured 〈Γγ〉0. The last
column in each table (labeled KHD2) lists results

that involve a secondary normalization, which will
be discussed shortly. Also included is a factor of
merit g (see Eqn. 18).

What we note at this point is that our pre-
scription for normalizing the E1 strength function,
when combined with our other statistical model
inputs, is superior in replicating measured 〈Γγ〉0
but tends to overestimate the MACS. WFHZ and
RT tend to underestimate 〈Γγ〉0 but do much bet-
ter on the MACS. This result is not terribly sur-
prising, since WFHZ and RT normalize the E1
strength function to 30 keV MACS, while we have
normalized to the measured 〈Γγ〉0. We note that a
few of the measrued 〈Γγ〉0, namely those for 59Fe,
59Ni, and 65Ni, are particularly high compared to
other nuclei in the near vicinity. Correspondingly,
our MACS for 58Fe(n,γ)59Fe, 58Ni(n,γ)59Ni, and
64Ni(n,γ)65Ni are very high.

The (n,γ) rates used in nucleosynthesis studies
(Woosley & Weaver 1995; Rauscher et al. 2002)
are normalized to agree with the recommended
MACS at 30 keV (for RT renormalizations, see
(Bao et al. 2000)). For a comparison of 30 keV
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Table 3: Modeled average totat s-wave radiation widths (in meV) compared to measured data. Asterisks
following a calculated value indicate that it is within the error of the measurement.

Compound Nucleus Measured WFHZ RT KHD KHD2
51Cr 1500±500 754.69 1202.40 * 1748.77 * 1468.12 *
53Cr 1850±550 579.41 738.69 1750.40 * 803.63
54Cr 2100±800 418.80 1348.90 * 1751.21 * 3274.05
55Cr 2500±700 458.37 733.34 1752.03 930.33
56Mn 750±150 381.91 722.51 * 823.68 * 676.33 *
55Fe 1800±500 1060.90 1170.20 1752.03 * 973.08
57Fe 920±410 786.08 * 1088.30 * 1753.65 340.74
58Fe 1900±600 758.93 1300.10 * 1754.47 * 2362.64 *
59Fe 3000±900 429.09 542.33 1755.28 929.81
60Co 560±100 358.42 510.03 * 659.41 251.62
59Ni 2600±800 891.70 944.93 1755.28 1417.83
60Ni 2200±700 516.14 971.08 1756.10 * 1266.20
61Ni 1700±500 477.52 1050.60 1756.91 * 717.84
62Ni 2200±700 428.43 917.04 1757.73 * 1021.72
63Ni 910±270 314.44 629.14 1758.54 243.15
65Ni 2400±700 217.29 430.80 1760.17 * 360.42

g – 2.263 1.650 1.162 1.877

cross sections from WFHZ and RT over the mass
range from 20 ≤ A ≤ 85, see figures 10 and 11 in
(Hoffman et al. 1999).

These results seem to indicate that the mea-
sured MACS and 〈Γγ〉0 cannot be simultaneously
replicated. We then must ask ourselves which
quantity we are most interested in reproducing.
Ultimately our goal is to provide the best possible
rates for 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe, which
are directly related to the cross sections, i.e. it is
the cross sections that we need to do well on. To
this end, we should normalize to the MACS. How-
ever, we do not wish to completely abandon the
ties to measured radiation widths, so we proceed
by making a secondary normalization.

Global systematics for 〈Γγ〉0 seem to indicate
that the quantity is a function of both mass and
s-wave resonance spacing (Gardner 1975). Using
this as a guide, we consider the ratio of the mea-
sured MACS to our calculated MACS as a func-
tion of A and D0, shown in figure 5. The ratios
appear to slowly decrease in a linear fashion with
increasing mass. The behavior as a function of D0

is quite different. A nearly Lorentzian behavior
is noted. So our chosen fitting function for the

measured to calculated MACS ratio is of the form

ξ(A,D0) = (c1A+c2)

[

c3c
2
4D0

(D2
0 − c2

5)
2 + (c4c5)2

+ c6

]

.

(34)
A weighted fit to the calculated ratios yields the
following values for the fitting constants:

c1 = −0.028281

c2 = 1.958639

c3 = 1.747113

c4 = 38.080159

c5 = −1.648677

c6 = 0.913862. (35)

This factor is then applied as a secondary normal-
ization to the E1 strength function, so that we now
have

NE1(A,D0) = ξ(A,D0)
〈Γγ〉meas/sys

0

〈Γγ〉NE1=1

0

. (36)

Measured values for 〈Γγ〉0 are used when they are
available, otherwise the systematics of Figure 4 are
employed.

As expected, the application of this secondary
normalization greatly improves our ability to repli-
cate measured 30 keV MACS, while unraveling our
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Fig. 5.— Systematic for secondary normalization
of the E1 strength function. The surface is viewed
from two separate angles. Error bars reflect the
errors in measured Maxwellian averaged cross sec-
tions.

favorable comparison to measured 〈Γγ〉0. In Ta-
ble 2, we see that our calculations with this sec-
ondary normalization (column labeled KHD2) are
superior at replicating the measured values, as in-
dicated by the factor of merit. With regards to
the measured 〈Γγ〉0, the RT perform better than
our calculation with the secondary normalization,
though not by much. Given that our goal is to
replicate cross sections, we feel that our second
calculations are favorable over the others.

4. Results and Comparisons

Table 2 provides a first indication of the suc-
cess of our modeling effort. With the exception
of 58Fe(n,γ)59Fe, our modeled MACS are within a
factor of two of the measured values, and typically

within 30%.

As an additional check on the quality of our
calculations, we compare our results (and those of
WFHZ and RT) to measured cross section data
in Figure 6. The measured data is a compilation
of data sets available on (EXFOR). No effort has
been made to evaluate the quality of the various
data sets, and all have been included. Error bars
have been omitted for clarity. Our calculated cross
section is represented by a thick solid line. The
results from WFHZ, as obtained from the CRSEC
code, are represented by the dashed lines. The
results from the NONSMOKER code implemented
by RT are represented by the dotted lines.

The majority of measured neutron capture
cross section data lies in the resonance region,
and hence is not of much use in evaluating sta-
tistical model calculations. For a few of the tar-
gets considered (specifically 55Mn, 56,58Fe, 59Co,
and 60,64Ni) a limited amount of data is available
above the resonances, though at this point the
cross sections are generally only on the order of
10 mb. We are primarily interested in replicat-
ing the cross section at 30 keV of incident energy,
and the comparison to measured Maxwellian av-
eraged cross sections (Table 2) provides a more
suitable means of evaluating the performance of
the various calculations.

In Figure 7 we present our modeled reaction
rates for 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe. We
also provide for comparison the reaction rates of
WFHZ and RT. The modern rates are larger than
WFHZ for both targets, with our rates being the
highest in both cases.

We have modeled other additonal neutron in-
duced cross sections in this region of interest. For
these reactions, our modeled cross sections com-
pare favorably to measured cross section data.

5. Sensitivity of Reaction Rates to Varia-

tions in Input Parameters

We now consider the approximate uncertain-
ties in our reaction rates with respect to the vari-
ous input quantities. These uncertainties fall into
one of two classifications: those associated with
uncertainties in our local systematics, and those
associated with the choice of prescriptions for the
various input parameters. In this section we vary
only one input parameter at a time. Collective un-
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certainties including all input parameters will be
presented in the conclusions.

5.1. Errors in Systematic Input Parame-

ters

The Hauser-Feshbach input quantities pre-
sented in section 2 represent our best estimates
given available experimental data. As such, we
believe our reaction rates to be as accurate as
possible. However, these rates are based on sys-
tematics, and any uncertainty associated with the
development of these systematics will be reflected
in the rates.

5.1.1. Asymptotic Level Density Parameter

The standard deviation of the experimental
level density parameters ã from our systematic is
0.232 MeV−1, a value somewhat larger than the
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Fig. 8.— Sensitivity of 59,60Fe(n,γ) reaction rates
to uncertainties in the level density systematic

average errorbar on the experimental values (0.135
MeV−1). We assume that the errors in the level
density parameters for 60,61Fe are the same as the
standard deviation of the experimental values. We
then determine an approximate error in the 59,60Fe
neutron capture reaction rates by raising or lower-
ing the ã for 60,61Fe by 0.232 MeV−1. The results
are shown in Figure 8. The uncertainties in the
level density systematic amount to uncertainties
in the reaction rates of 22-28% for 59Fe(n,γ)60Fe
and 19-28% for 60Fe(n,γ)61Fe.

5.1.2. GDR Parameters

The standard deviations of experimental GDR
parameters from our systematic values are 0.482
MeV for the peak energy and 1.721 MeV for the
width. Despite the rather large uncertainty in the
GDR widths, the resulting uncertainties in the re-
action rates for 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe
are negligibly small (less than 1.5% for 59Fe, 0.5%
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Fig. 9.— Sensitivity to the average s-wave radia-
tion width

for 60Fe).

5.1.3. Normalization of the γ-ray Transmission

Coefficient

The experimental data for 〈Γγ〉0 in our region
of interest has an average error of ∼600 meV for
all even-Z compund nuclei and ∼160 meV for all
odd-Z compound nuclei (see Figure 4). These av-
erage errors are similar to the standard deviations
of the experimental values from the systematic,
which are 630.7 meV and 320.9 meV for even- and
odd-Z compound nuclei, respectively. Assuming
these values for the uncertainty of the radiation
widths of 60,61Fe yields the approximate uncer-
tainties in the reaction rates shown in Figure 9.
These uncertainties are in the range of 27-41% for
59Fe(n,γ)60Fe and 63-140% for 60Fe(n,γ)61Fe.

5.2. Variations in Input Parameter Pre-

scriptions

In addition to uncertainties in the reaction rates
stemming from the development of our local sys-
tematics, we also consider the uncertainties result-
ing from varying the overall prescription for the
Hauser-Feshbach input quantities.

5.2.1. Level Density Prescription and Discrete

Levels

In the upper panels of Figure 10 we present
the sensitivity of the reaction rates where the
level density prescription (in conjunction with the
proper set of discrete levels) is varied, keeping all
other parameter input fixed. The sensitivity is ex-
pressed in terms of the percentage change in the
reaction rate, defined as

δσ =
σ − σKHD

σKHD
× 100% (37)

where σKHD are our recommended rates from Fig-
ure 7. The dotted lines correspond to the rates cal-
culated using the level densities and discrete levels
of RT. The dahsed lines represent the rates calcu-
lated using the level densities and discrete levels
of WFHZ.

These variations in the Fermi gas level density
prescriptions change the reaction rates by as much
as ∼50%, but generally the change is within 30%.
For both reactions, the level densities of RT and
WFHZ result in smaller reaction rates.

5.2.2. Neutron Transmission Coefficients

The sensitivity to the choice of neutron trans-
mission coefficient is shown in the second row of
panels in Figure 10. The uncertainties associated
with this input quantity are about half as large as
those due to the level density. In this analysis we
are keep the level density prescription fixed, using
our local systematic. Both of the older optical po-
tentials result in smaller rates, with the difference
being more significant for the JLM77 potential (up
to ∼30%).

5.2.3. E1 and M1 Strength Functions

We employ an EGLO representation of the E1
strength function and an SLO representation for
the M1 strength function. The third row of panels
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in Figure 10 show the percent change in the reac-
tion rate if one were to use an SLO representation
for E1 and Blatt-Weisskopf M1 strength functions.
In both cases, the effect is to lower the cross sec-
tion and reaction rate, by roughly 8% in the case
of the 59Fe(n,γ)60Fe and on the order of 15-18%
in the case of 60Fe(n,γ)61Fe.

Recently an enhancement of the photon strength
function for low energy photons has been mea-
sured in iron isotopes (Voinov et al. 2004). We
present the sensitivity of the reaction rates to
this enhancement in the fourth set of panels in
Figure 10, assuming that the parameters of the
enhancement measured for 57Fe would also apply
to heavier iron isotopes. This enhancement in-
creases the reaction rates by roughly 15-20% at
low temperatures, with the effect tapering off at
higher T9. Our recommended rates, presented in
figure 7, do not include this enhancement.

5.2.4. GDR parameter prescriptions

We have investigated the sensitivity of the reac-
tion rates to the prescription used for the GDR pa-
rameters. We include the GDR parameters from
RT, WFHZ, and the defaults from the STAPRE
code. Note that the three of the four prescrip-
tions represented include only a single resonance,
whereas in our systematic we include two reso-
nances. The reaction rates are not terribly sensi-
tive to the GDR parameters (or, for that matter,
the number of dipole resonances included). The
largest changes in the rates are only on the order
of 4%, obtained when using the STAPRE defaults.

5.2.5. Width Fluctuation Correction

The final set of panels in Figure ?? show the
effect of the WFC the capture reaction rates. The
percent change in the value of the rates when the
WFC is turned off represents an enhancement of
the capture cross section of up to 7-12%.

5.3. Cumulative Uncertainties

Based on the results of the previous sections,
we provide an estimate of the total uncertainties in
our calculated capture reaction rates. We present
two ranges of uncertainty, corresponding to the
two categories of sensitivity studies.

The first range of uncertainty represents the
uncertainties due to systematic parameters only
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Fig. 11.— Net uncertainty in capture reaction
rates based on uncertainties in local systematics

(level density parameter, GDR parameters, and
radiation widths), illustrated in Figure 11. Also
shown for reference are the reaction rates calcu-
lated from the CRSEC and NON-SMOKER codes.
The range of uncertainty is +60-75% to -49-55%
for 59Fe(n,γ)60Fe and +135-210% to -71-78% for
60Fe(n,γ)61Fe. This range should provide a rea-
sonable estimate of the total uncertainty in these
reaction rates. We must stress however that this
range of uncertainty does not represent by any
means an absolute error in our calculation.

The second range of uncertainty represents
all possible combinations of the input quantities
for level density prescription (and corresponding
set of discrete levels), optical model, inclusion
of width fluctuation corrections, GDR parameter
prescription, photon strength function prescrip-
tion, and the approximate systematic errors on the
average s-wave photon width to which the photon
transmission coefficients were normalized. This
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Fig. 12.— Range in capture reaction rates attain-
able by varying input parameter prescriptions

range is illustrated in Figure 12. The range of un-
certainty is +70-80% to -66-70% for 59Fe(n,γ)60Fe
and +190-230% to -85-92% for 60Fe(n,γ)61Fe. We
note that some of the prescriptions this second
range utilize a more limited set of measured data
and in some cases represent simpler models of
Hauser-Feshbach input quantites. As such, this
second uncertainty range should not be inter-
preted as an “error bar” for the reaction rate, but
simply a demonstration of the range that can be
attained by varying input quantity prescriptions.

As suggested in Figures 11 and 12, our calcu-
lated capture cross sections for both 59Fe and 60Fe
targets are always higher than either WFHZ or
RT, but are closer to those of RT.

6. Parameterized Single-Zone Nucleosyn-

thesis

We now investigate the effect our newly eval-
uated 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe rates will
have on the production of 60Fe. These two rates
may also indirectly affect the abundances of 26Al,
since they can affect the number density of neu-
trons. We simulate stellar environments using a
single zone nucleosynthesis code with an appro-
priate choice of thermodynamic parameters.

Our calculations include hydrostatic and ex-
plosive nucleosynthesis in several nuclear burning
stages. In the hydrostatic calculations, the tem-
perature and pressure are kept constant and the
burn continues until the primary nuclear fuel is
spent. Explosive nucleosynthesis is modeled be-
ginning with a peak density and temperature (ρp,
T9p) which subsequently decrease as the ejecta
cools. The time dependence of the thermody-
namic quantites are characterized by a hydrody-
namic time scale τHD:

ρ(t) = ρp exp(−t/τHD)

T9(t) = T9p exp(−t/τHD)

τHD ≈ 1√
24πGρ0

=
466√

ρ0

. (38)

In both cases, the thermodynamic conditions cho-
sen are representative of those typically found in
massive stars, and are identical to those used in
(Woosley 1986).

In our analysis, we use our modeled labora-
tory reaction rates (section 4) as opposed to so-
called “stellar rates” which account for the ther-
mal population of excited states in the target nu-
clei. The differences between the laboratory and
stellar rates are often summarized in the form of
stellar enhancement factors (SEF), defined as

SEF(T9) =
Laboratory rate

Stellar rate
. (39)

In previous reaction rate calculations, the SEF for
neutron capture onto 59,60Fe were generally close
to unity for temperatures below T9 = 3.0, as in-
dicated in Table 4. Since our analysis is limited
to temperatures lower than T9 = 3.0, using labo-
ratory rates in lieu of stellar rates will introduce
minor errors into the calculated abundances, gen-
erally on the order of 10-25% for 60Fe.
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Table 4: Stellar enhancement factors for
59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe

CRSEC
T9

59Fe(n,γ)60Fe 60Fe(n,γ)61Fe
0.1 1.000 1.000
0.2 1.000 1.000
0.5 0.999 1.000
1.0 0.983 1.006
2.0 0.879 1.050
3.0 0.784 1.016
4.0 0.738 0.965

NON-SMOKER
T9

59Fe(n,γ)60Fe 60Fe(n,γ)61Fe
0.1 1.000 1.000
0.2 1.000 1.000
0.5 1.000 1.000
1.0 0.985 1.000
2.0 0.880 0.996
3.0 0.796 0.986
4.0 0.754 0.992

We have modeled nucleosynthesis using four
sets of reaction rates. The first set (A) is the reac-
tion rate library used in the 1995 GCE study. The
second rate set (B) is identical to the first, except
that we substitute in our laboratory rates for the
59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe reactions (Figure
7). The third set (C) is similar to the second set,
except we use the upper limits of the rates as seen
in Figure 11. The fourth set (D) uses the lower
limits of these rates. The calculations include the
network of 336 isotopes presented in table 5.

In previous nucleosynthesis studies, 60Fe was
produced primarily in the neon burning shells. In
more advanced burning stages, the isotope was de-
stroyed. Thus, we focus our calculations on nu-
clear processing up through neon burning only.

Hydrostatic Hydrogen Burning

We begin with thermodynamic conditions typi-
cal of a hydrogen envelope. The nuclear fuel is pro-
cessed hydrostatically at a temperature of 0.03 ×
109 K and a pressure of 5 g/cm3. The initial com-
position of the star is 70.6% 1H and 27.5% 4He,
plus solar seeds from (Anders & Grevesse 1989).
The burn is allowed to continue until the mass
fraction of hydrogen drops below 10−5. The re-

Table 5: Isotopes included in reaction networks

Element Masses Element Masses
H 1-3 Sc 40-51
He 3-4 Ti 42-52
Li 6-7 V 44-53
Be 7-9 Cr 46-56
B 9-11 Mn 48-57
C 11-14 Fe 50-62
N 13-17 Co 53-65
O 14-20 Ni 56-68
F 17-21 Cu 61-71
Ne 18-24 Zn 64-74
Na 20-25 Ga 67-75
Mg 22-28 Ge 68-76
Al 24-29 As 71-79
Si 26-34 Se 72-82
P 28-35 Br 75-85
S 30-38 Kr 76-88
Cl 33-39 Rb 81-89
Ar 34-42 Sr 82-90
K 36-43 Y 87-91
Ca 38-50 Zr 90-98

sulting abundances of 26Al and 60Fe are small
(∼ 10−11 and ∼ 10−44, respectively)

The 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe rates have
no significant effect on the 26Al abundances at this
stage. Abundances of both nuclides are negligible.

Hydrostatic Helium Burning

Following the depletion of hydrogen, we simu-
late a helium burning shell. We first explore hy-
drostatic burning. Typical thermodynamic con-
ditions for this nuclear burning stage consist of a
temperature of 0.2 × 109 K and a pressure of 103

g/cm3. For the initial composition of the helium
shell, we take the ashes of the previous respective
hydrogen burning, i.e. set A uses the ashes of set
A hydrogen burning, set B uses the ashes of set B
hydrogren burning, etc....

The hydrostatic evolution is allowed to proceed
until the helium is depleted to a mass fraction less
than 10−5. The resulting mass fractions of 26Al
and 60Fe are again comparatively small (∼ 10−19

for 26Al and ∼ 10−10 for 60Fe) , and varying the
59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe rates has a negli-
gible effect on the production of 26Al.
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Table 6: 26Al and 60Fe from explosive helium burning

26Al Mass Fraction
Set T9 = 1.0 T9 = 1.5 T9 = 2.0 T9 = 2.5
A 7.122×10−4 8.224×10−11 4.606×10−11 1.522×10−11

B 7.122×10−4 8.276×10−11 4.766×10−11 1.541×10−11

C 7.122×10−4 8.270×10−11 4.840×10−11 1.543×10−11

D 7.122×10−4 8.255×10−11 4.537×10−11 1.528×10−11

60Fe Mass Fraction
Set T9 = 1.0 T9 = 1.5 T9 = 2.0 T9 = 2.5
A 1.717×10−9 2.119×10−4 1.422×10−19 8.084×10−25

B 8.887×10−9 1.154×10−4 1.027×10−19 7.180×10−25

C 1.390×10−8 3.698×10−5 1.206×10−19 7.155×10−25

D 4.421×10−9 2.845×10−4 1.766×10−19 8.391×10−25

Explosive Helium Burning

Although 26Al and 60Fe are not abundantly
produced during hydrostatic helium burning, they
can be made explosively. As explained previously,
we simulate explosive conditions in our single zone
calculations via the time dependence of the tem-
perature and density, which are assumed to have
initial peak values as the shock enters the shell
and subsequently reduce exponentially. We inves-
tigate a range of peak temperatures from T9 = 1
to T9 = 2.5, as suggested in (Woosley 1986). We
assume a peak density of 104 g/cm3. The ini-
tial composition consists of the ashes of hydrogen
burning. The evolution is allowed to continue until
the temperature drops below T9 = 0.1

The resulting abundances of 26Al and 60Fe are
shown in table 6. We note that 26Al is produced in
greatest amounts at T9 = 1.0. 60Fe is produced in
greatest abundance at T9 = 1.5. The production
of 26Al is not affected by the 59Fe(n,γ)60Fe and
60Fe(n,γ)61Fe rates. Set B results in 60Fe abun-
dances that are roughly a factor of two smaller
that those of set A. Using the upper and lower val-
ues of our rates results in lower and higher abun-
dances, respectively, possibly suggesting that at
this stage of nuclear burning the destruction reac-
tion out of 60Fe is significant (i.e. there is a greater
production of 60Fe, but an ever greater depletion
of 60Fe via 60Fe(n,γ)61Fe).

Hydrostatic Carbon Burning

In our analysis, we consider a range of tempera-
tures for hydrostatic carbon burning from T9 = 1.2

to T9 = 2.2. The evolution continues until the
mass fraction of 12C drops below 10−3. We assume
a density of 105 g/cm3 in all cases. Initial compo-
sitions are the ashes of the respective hydrostatic
helium burning. The results are summarized in
Table 7.

The 26Al abundances now show some sensitiv-
ity to the choice of 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe
rates, but remain quite similar for each set. Our
recommended rates continue to result in lower
abundances of 60Fe at T9 = 1.5, although not to
the extent seen in explosive helium burning. Again
we note that the rate sets using the upper limits
of uncertainty in our calculated 59Fe(n,γ)60Fe and
60Fe(n,γ)61Fe rates result in smaller abundances
of 60Fe, while the lower rates result in larger abun-
dances.

Explosive Carbon Burning

Any significant amount of 60Fe produced in our
hydrostatic carbon burning calculations was made
within the first few seconds, and we can therefore
expect that the abundances of 60Fe produced in
explosive carbon burning will be similar to those
in the hydrostatic case. For these explosive cal-
culations, we use the ashes of helium burning as
our initial composition. We consider peak tem-
peratures ranging from T9 = 1.6 to T9 = 2.2, with
the peak density being 105 g/cm3 in all cases. The
evolution continues until the temperature drops to
T9 = 0.1. Results are given in Table 8.

Again, we see no significant change in 26Al
abundances when the 59,60Fe neutron capture

20



Table 7: 26Al and 60Fe from hydrostatic carbon burning

26Al Mass Fraction
Set T9 = 1.2 T9 = 1.4 T9 = 1.6 T9 = 1.8 T9 = 2.0 T9 = 2.2
A 3.94×10−10 3.10×10−8 9.11×10−6 6.52×10−5 1.71×10−5 6.15×10−7

B 4.14×10−10 3.09×10−8 9.08×10−6 6.75×10−5 1.84×10−5 7.17×10−7

C 3.55×10−10 3.14×10−8 9.10×10−6 7.03×10−5 1.90×10−5 6.86×10−7

D 3.77×10−10 3.12×10−8 9.17×10−6 6.51×10−5 1.88×10−5 7.06×10−7

60Fe Mass Fraction
Set T9 = 1.2 T9 = 1.4 T9 = 1.6 T9 = 1.8 T9 = 2.0 T9 = 2.2
A 2.64×10−6 2.35×10−4 4.70×10−4 5.81×10−4 4.12×10−4 1.49×10−4

B 2.12×10−6 1.02×10−4 3.16×10−4 4.51×10−4 3.77×10−4 1.11×10−4

C 4.84×10−7 2.80×10−5 2.37×10−4 3.85×10−4 3.52×10−4 8.49×10−5

D 3.65×10−6 3.11×10−4 5.84×10−4 6.51×10−4 4.46×10−4 1.40×10−4

Table 8: 26Al and 60Fe from explosive carbon burning

26Al Mass Fraction
Set T9 = 1.6 T9 = 1.8 T9 = 2.0 T9 = 2.2
A 2.450×10−6 2.823×10−6 6.205×10−5 2.070×10−4

B 2.464×10−6 3.090×10−6 6.253×10−5 2.073×10−4

C 2.490×10−6 3.215×10−6 6.297×10−5 2.074×10−4

D 2.457×10−6 2.904×10−6 6.179×10−5 2.071×10−4

60Fe Mass Fraction
Set T9 = 1.6 T9 = 1.8 T9 = 2.0 T9 = 2.2
A 1.276×10−6 1.806×10−4 6.987×10−4 7.397×10−4

B 6.239×10−6 2.907×10−4 6.926×10−4 7.527×10−4

C 8.823×10−6 1.870×10−4 6.447×10−4 7.406×10−4

D 3.338×10−6 3.249×10−4 8.292×10−4 7.925×10−4

rates are modified. In the previous burning stages,
our recommended rates generally led to smaller
60Fe abundances. In explosive carbon burning,
this is no longer be the case. Using our rates at
the lower temperatures results in more 60Fe by a
factor of 2-3. For the two higher temperatures,
60Fe abundaces are similar for sets A and B.

In the previous stages, the lower cross sections
(set D) resulted in greater abundances of 60Fe and
vice versa. The T9 = 1.6 abundances in Table 8
show an opposite effect: the higher cross sections
result in greater abundances, perhaps indicating
that the destruction of 60Fe by neutron capture
does not play as large a role.

We note furthermore that in previous studies
60Fe was produced primarily in the neon burning
shell (Timmes et al. 1995), while in our calcula-

tions 60Fe is being produced abundantly in ther-
modynamic conditions typical of carbon burning.

Hydrostatic Neon Burning

For hydrostatic neon burning, we consider tem-
peratures ranging from T9 = 1.3 to T9 = 2.5, and a
density of 3× 105 g/cm3. Initial compositions are
the respective ashes of hydrostatic carbon burn-
ing at T9 = 1.8. The composition evolves until
the mass fraction of 20Ne drops below 10−3. Typ-
ical timescales for this evolution range from 1010

seconds to 10−2 seconds, with the longer times
associated with the lower temperatures. Varying
only the the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe rates
changes the evolution time by only ∼5%.

The abundances of 26Al and 60Fe following hy-
drostatic neon burning are shown in Table 9. The
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26Al abundances become significant at T9 = 2.0.
while 60Fe abundances become large around T9 =
1.7. For T9 > 1.5 the 60Fe abundances are simi-
lar to those of the initial compositions (see Table
7), possibly indicating that the abundance of 60Fe
does not change much during the course of neon
burning.

Explosive Neon Burning

For explosive neon burning, we consider peak
temperatures ranging from T9 = 1.8 to T9 = 3.2.
In massive stars, the entropy in the convective
neon burning shell is roughly constant prior to
and after the shock. This condition results in a
relationship between the peak temperature and
density, where ρp = 4 × 104 {g/cm3K27) T3

9p

(Woosley & Weaver 1980). Initial compositions
are the same as those for hydrostatic neon burn-
ing. The mass fractions of 26Al and 60Fe resulting
from these explosive runs are summarized in Table
10.

While 26Al is being produced at lower tempera-
tures (compare to the initial compositions in Table
7, 60Fe abundances remain essentially unmodified
up to temperature of T9 = 2.4. Above T9 = 2.4,
the 60Fe is depleted.

A Result From KEPLER

The process of parameterizing the thermody-
namic conditions allows us to study the direct ef-
fects of the rates on nucleosynthesis. However,
there are aspects of stellar environments that may
affect the production of a given isotope which are
not accounted for in a single zone calculation. For
instance, we have seen that the initial composition
can have a significant impact on the nucleosynthe-
sis. In a true stellar model, convection may carry
stellar matter from one zone to another, which
could result in a continuous supply of, say per-
haps, new 58Fe nuclei to seed the production of
60Fe.

Stan Woosley has used our recommended cap-
ture rates, along with their upper and lower un-
certainties, and modeled the production of 60Fe
using the stellar evolution code KEPLER (? ).
The case chosen was a 25 M� star, which in pre-
vious studies had produced large amounts of 60Fe.
Using the unmodified WFHZ rate set, this partic-
ular star produced a total of 2.61 × 10−4 M� of

60Fe. Using our recommended rates, the same star
produces 1.86× 10−4 M� of 60Fe – a factor of 1.4
reduction. This is consistent with our single zone
results. The upper and lower limits of our recom-
mended rates produce 2.85×10−4 and 2.27×10−4

M�, respectively. Such non-monotonic behavior is
likely due to the fact that raising the rates will in-
crease both the production and destruction of the
isotope. This also is consistent with the results in
Figure ?? for carbon burning around T9 = 1.4.

The range in 60Fe abundances resulting from
modification of the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe
capture rates is again too small to account for the
discrepancy between the predicted and observed
flux ratios. It appears likely that other aspects
of nucleosynthesis, be it other reaction rates or
stellar structure, will have a greater impact on the
60Fe abundance.

7. Conclusions

We have modeled neutron capture cross sec-
tions on several isotopes in the region of chromium
through zinc. The aim of this modeling effort was
to produce reaction rates for neutron capture onto
unstable 59Fe and 60Fe targets, which rates are key
nuclear uncertainties in the stellar nucleosynthesis
of 60Fe. In the process of modeling these rates, we
have developed local systematics for the level den-
sity parameter and average total S-wave radiation
widths. We have used modern prescriptions for
our statistical model inputs, including gamma ray
strength functions and transmission coefficients.
To the greatest extent possible, we have tied these
input quantities to measured data. The overall
comparison of our modeled cross sections to mea-
sured cross section data is superb. Our modeled
rates for the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe are
both higher than those of previous efforts. We
have also investigated the sensitivity of our sta-
tistical model calculations to uncertainties in the
input quantities. This leads us to suggest a likely
range of uncertainty in our calculated reaction
rates.

We have performed initial nucleosynthesis cal-
culations using a parameterized single zone model.
While our new rates tend to produce less 60Fe
for most temperatures in various nuclear burning
stages, the results are generally well within a fac-
tor of two. The abundances change when we use
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Table 9: 26Al and 60Fe from hydrostatic neon burning

26Al Mass Fraction
Set T9 = 1.3 T9 = 1.5 T9 = 1.7 T9 = 2.0 T9 = 2.3 T9 = 2.5
A 5.00×10−13 7.24×10−10 3.39×10−7 7.51×10−5 5.99×10−5 4.35×10−5

B 4.80×10−13 7.48×10−10 3.37×10−7 7.69×10−5 6.34×10−5 4.47×10−5

C 5.09×10−13 7.32×10−10 3.30×10−7 7.36×10−5 6.01×10−5 4.62×10−5

D 4.90×10−13 7.62×10−10 3.36×10−7 7.51×10−5 6.23×10−5 4.41×10−5

60Fe Mass Fraction
Set T9 = 1.3 T9 = 1.5 T9 = 1.7 T9 = 2.0 T9 = 2.3 T9 = 2.5
A 1.52×10−16 1.27×10−13 3.07×10−4 5.48×10−4 4.99×10−4 4.38×10−4

B 7.20×10−17 7.19×10−14 2.37×10−4 4.22×10−4 3.68×10−4 2.91×10−4

C 6.42×10−17 6.66×10−14 2.00×10−4 3.57×10−4 2.99×10−4 2.19×10−4

D 1.08×10−16 9.83×10−14 3.43×10−4 6.13×10−4 5.50×10−4 4.65×10−4

Table 10: 26Al and 60Fe from explosive neon burning

26Al Mass Fraction
Set T9 = 1.8 T9 = 2.0 T9 = 2.2 T9 = 2.3 T9 = 2.4 T9 = 2.5 T9 = 2.7 T9 = 2.9
A 6.50×10−5 6.54×10−5 7.60×10−5 1.04×10−4 1.25×10−4 5.16×10−5 5.65×10−7 6.76×10−8

B 6.73×10−5 6.77×10−5 7.87×10−5 1.07×10−4 1.29×10−4 5.28×10−5 5.67×10−7 6.84×10−8

C 7.01×10−5 7.05×10−5 8.19×10−5 1.11×10−4 1.32×10−4 5.43×10−5 5.68×10−7 6.82×10−8

D 6.49×10−5 6.53×10−5 7.59×10−5 1.04×10−4 1.25×10−4 5.16×10−5 5.93×10−7 6.80×10−8

60Fe Mass Fraction
Set T9 = 1.8 T9 = 2.0 T9 = 2.2 T9 = 2.3 T9 = 2.4 T9 = 2.5 T9 = 2.7 T9 = 2.9
A 5.81×10−4 5.81×10−4 5.78×10−4 5.67×10−4 5.26×10−4 4.49×10−4 2.25×10−4 5.17×10−7

B 4.51×10−4 4.51×10−4 4.49×10−4 4.39×10−4 4.00×10−4 3.11×10−4 1.73×10−5 1.99×10−10

C 3.85×10−4 3.85×10−4 3.83×10−4 3.74×10−4 3.36×10−4 2.42×10−4 2.69×10−6 1.47×10−10

D 6.51×10−4 6.51×10−4 6.48×10−4 6.35×10−4 5.86×10−4 4.84×10−4 1.09×10−4 4.09×10−10

the upper and lower uncertainties in our recom-
mended rates, but still they are generally within a
factor of two. These results are in agreement with
calculations involving more complex stellar mod-
els. These calculations suggest that the disparity
in the stellar abundance of 60Fe between the 1995
GCE survey and the more recent nucleosynthesis
cannot be accounted for by the 59Fe(n,γ)60Fe and
60Fe(n,γ)61Fe reaction rates alone.
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